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Abstract: The co-torrefaction of several biomasses may be a viable solution in the study area, as it
produces biofuels and addresses waste-treatment concerns. This review evaluates biomass through
ultimate, proximate, and FTIR analyses, and the mechanism of the co-torrefaction process is observed
for product quality with a synergistic effect. Furthermore, the parameters of co-torrefaction, including
temperature, reaction time, mass yield, energy yield, and the composition of the H/C and O/C ratio
of the co-torrefied materials, are similar to those for coal composition. Different reactor types, such
as fixed-bed, fluidized-bed, microwave, and batch reactors, are used for co-torrefaction, in which
biomass blends with optimized blend ratios. The co-torrefaction process increases the bio-solid
yield and heating value, the capacity to adsorb carbon dioxide, and the renewable fuel used for
gasification. One of the objectives of this study is to adopt a process that must be viable, green, and
sustainable without generating pollution. For this reason, microwave co-torrefaction (MCT) has been
used in many recent studies to transform waste and biomass materials into an alternative fuel using
a microwave reactor.
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1. Introduction

Since the beginning of the industrial era in the 18th century, the world has consumed
most of the fossil fuels (such as coal, oil, and natural gas) at a high speed [1]. The widespread
use of fossil fuels has lead to two major crises: energy depletion and global warming. As a
result, the development of renewable energy and the reduction in carbon dioxide emissions
have become a critical priority in the 21st century [2,3]. People in various countries depend
on biomass as a sustainable energy source to meet the expanding energy demands and
support economic growth [4,5]. Most biomasses have a low carbon content and high
oxygen, hydrogen, and sulfur contents, which maximizes air pollution and greenhouse
gas emissions [6,7]. In the opinion of most experts, the development of renewable energy,
at present, is essential to reduce the use of fossil fuels, greenhouse gas emissions, and
ecological pollution. Renewable biomass or bioenergy is the most abundant energy source
in technologies to date [8–11].

Various categories of biomass resources are processed using various thermochem-
ical techniques, such as torrefaction and pyrolysis, including gasification, which uses
higher temperatures (≥200 ◦C) to valorize biomass into bio-solids and bio-oil, including
syngas [10,12,13]. Renewable energy generated from wind, solar, hydro, geothermal, and
biomass [14,15] sources is replacing energy derived from fossil fuels. Bioenergy derived
from biomass has some potential to partially replace non-renewable sources, such as coal
(electricity generation). However, compared to coal, biomass, by nature, has a lower energy
density, greater moisture levels, and volatiles [16]. Due to this, biomass must undergo
pre-treatment to enhance its qualities before it can be used instead of fossil fuel [17]. Pyrol-
ysis, which depends on temperature and heating rate, promotes the synthesis of bio-solid,
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bio-oil, and syngas from biomass resources in an inert environment [18,19]. Torrefaction
uses moderate temperatures (200–300 ◦C) to convert biomass into fuel bio-solids [20–22].
Co-torrefaction is the heating of two biomasses at 200–300 ◦C in an inert environment. Due
to the higher biomass-to-coal ratio, fuel has greater flexibility and produces less tar [23,24].

Several previous studies emphasized co-thermal processing, such as the co-pyrolysis
of waste resins and conventional biomass, and also reported their interaction effects. For
example, the synergistic impact on liquid and gas yields was identified when biomass
was combined [25]. As a result of the addition of pine cones to polymeric materials, the
number of gaseous products increased more than expected, resulting in a lower char
yield [26]. Co-torrefaction is feasible for the production of bio-solids [27]. The bio-solid
fuels can be utilized for co-firing or environmental remediation applications through
the thermochemical process (torrefaction) [28]. The use of biomass for co-torrefaction
with a low calorific value implies the maximum amount of oxygen and hydrogen in the
biomass. Co-torrefaction can increase the calorific value of a bio-solid fuel by removing
the moisture content and the decomposing part of the volatile matter [29]. Microwave
co-torrefaction of an empty fruit bunch with used engine oil at 300 ◦C has been shown
to improve the high heating value (28.0 MJ/kg) of solid fuel [30]. Numerous types of
biomass waste can be used without harming the environment [31]. Solid biomass and
bio-oil can be combined by mixing several biomass ratios, thus reducing waste disposal
and greenhouse gas emissions [32–34]. The co-torrefaction of various feedstocks improves
the fuel properties of the product [35]. It is challenging to store hygroscopic raw biomass
because of its higher moisture content and lower energy density [36,37]. This means that
the use of raw biomass as a fossil fuel alternative, such as coal, is limited because of these
features. Processing, on the other hand, can address the drawbacks of raw biomass. To
achieve this, biomass can be pretreated by a process known as co-torrefaction. Temperatures
of 200 ◦C–300 ◦C are used under vacuum, and nitrogen is supplied during the heating of
raw biomass [22,36]. Furthermore, the study observed that co-torrefaction can significantly
increase the properties of biomass at some levels [38], such as reducing the moisture
content of the raw biomass, resulting in higher energy density and a higher heating
value (HHV) [39]. Furthermore, the hygroscopic characteristic of raw biomass has been
transformed into hydrophobic fuel [40]. Figure 1a presents the total publications obtained
from different countries, while Figure 1b indicates the dynamics of the yearly publications.
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Figure 1. Number of publications in the co-torrefaction process (a) country-wise for the whole period
and (b) year-wise retrieved from the Scopus database (2 October 2022).

The following table summarizes the most recent research conducted on the co-torrefaction
of biomass and garbage, including studies, features, and outcomes. The co-torrefaction of
biomass as feedstock did not indicate a synergetic effect. The torrefied product presented
an inconsequential improvement in HHV for use as a fuel co-fire [41]. The co-torrefaction
process used empty fruit bunch (EFB) pellets as the primary feedstock and cooking oil
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(UCO) as the secondary feedstock to enhance the calorific value, and hence the increased
quality of the EFB pellets. As a result, high-calorific-value torrefied pellets that are more
environmentally friendly were produced. Microwave co-torrefaction (MCT) is a new tech-
nology that combines microwave heating with co-torrefaction [42]. Torrefied biomass
pellets were compared with typical furnace-based co-torrefaction in terms of their prop-
erties, manufacturing process, waste reduction, and energy-conversion efficiency [42]. A
torrefied biomass can be integrated into coal-fired boilers through direct, indirect, or simul-
taneous co-firing systems [43]. The study shows that microwave heating is an innovative
technology integrated with the torrefaction process [42,44]. The work conducted on the
co-torrefaction of various biomass and waste materials is summarized in Table 1.

Table 1. Latest developments in the co-torrefaction process.

Sr.
No. Biomass Type Blending Ratio Process and Type

of Reactor Process Condition Outcome Application Ref.

1 Waste epoxy resin
and fir

Mixing ratio of
fir:waste epoxy

resin is 1:3

Co-torrefaction
Conventional

heating batch-type
reactor

Temperature:
120 ◦C–180 ◦C,

time:
10 min–40 min

Solid yield 76.86%.
Enhancement in HHV 1.12

Energy yield 85.79% Improved
evaporation of volatile

compounds. Solid yield
adversely affected

Improvement of
biochar [23]

2 Sewage sludge and
Leucaena

Mixing ratio of
sewage

sludge:Leucaena is
(75:25%)

Co-torrefaction
Microwave heating

Microwave power
level 100 W, time:

30 min,
temperature: 170

◦C–390 ◦C

Bio-char made from pure
Leucaena wood has a CO2

adsorption capacity of
53 mg/g

Solves waste-water
problem. Production

of biofuels
[44]

3 Biomass and coal
Blending ratio of
biomass:coal is

(30:70%)

Vertical tubular
furnace

Temperature: 300
◦C, time: 60 min

Produced mass yield:
(57.0–63.8%), energy yield:
(77.0–89.0%), (18.1–22.2%)

reduction in CO2 emissions

Enhances the quality
of coal [45]

4
Microalgae and
Lignocellulosic

biomass
-

Co-torrefaction
A gas

chromatographic
furnace with a
glass reactor

Temperature: 250
◦C, time: 60 min

Better temperatures (92.6%)
result in higher energy

efficiency, but the moisture
content of the feed mixture

quickly decreases this
efficiency (16.9 to 57.3% for

70% moisture)

High production of
bio-char with high

calorific value
[35]

5
Mango seed and

passion shell with
optoelectronic sludge

Blending
optoelectronic

sludge with mango
seed in a

25/75 ratio

Wet co-torrefaction
Microwave reactor

Temperature from
120 ◦C to 180 ◦C),
reaction duration
from 10–40 min

Higher heating value of
19.0 MJ/kg, 92.1% of energy
yield, fuel ratios of 1.60–1.82,

and an energy return on
investment of 14.7%

The production of
fuel of the highest

grade
[46]

6
Food sludge and

lignocellulosic
biowaste

Mixing macadamia
husk and sludge in

a (25/75%) ratio
(db%)

Wet co-torrefaction
Microwave reactor

Temperature: 150
◦C, duration:

20 min

HHV:19.6 MJ/kg; decreased
ash content; first-order kinetics;
increased thermal stability and

combustion efficiency of
biochar; 7.4 energy return on

investment; 45.2% reduction in
carbon gas emissions

Production of
bio-solid and nutrient

recovery
[41]

7

Empty fruit bunch
pellet, used cooking

oil, and waste
engine oil

- Co-torrefaction
Microwave reactor

Temperature: 200,
250 ◦C and 300 ◦C,
heating rate: 50–65

◦C/min,
time: 5–8 min

There is an 85.5 wt% mass
yield Fuel ratio: 1.8. Carbon
content: 68.3%. Fixed carbon:

62.3%. HHV: 28.0 MJ/kg.

Production of solid
fuel with greater

improvement
[30]

10

Hemicellulose,
cellulose, lignin,
xylan, dextran,

xylose, and glucose

Weight ratio (1:1:1)

Co-torrefaction
Conventional

heating
thermogravimetry

Temperature: 230
◦C, 260 ◦C and

290 ◦C

There is no synergistic effect of
co-torrefaction on weight loss

of the blend
- [47]

11

Textile sludge and
lignocellulose

biowaste
(macadamia husk)

- Wet co-torrefaction
Temperature: 120
◦C–180 ◦C, time:

10–30 min

Amount of fixed carbon: 29.8%,
HHV: 19.7 MJ/kg Production of biofuel [41]

12

Mango branches
(MBr), waste

newspaper (Np), and
low-density

polyethylene (LDPE)

Three binary
mixtures prepared,

with a mass
ratio of 1:1

Bench-scale tubular
reactor

Temperature:
300 ◦C

(MBr-LDPE) carbon content:
71.94% HHV: 35.84 MJ/kg

Improved fuel
characteristics that

allow co-firing
[48]

13

Food sludge and six
widely produced

lignocellulose
bi-wastes

Blending ratios of
0/100, 25/75,

50/50, and 100/0

Microwave heating
system

Torrefaction
temperature (120,
150, and 180 ◦C),
reaction time (10,
20, and 30 min)

Food sludge blended with
macadamia husk (25/75 db%)
highest fixed carbon content

(25%) HHV: (19.6 MJ/kg)

Renewable energy
resource. [41]

This article presents the detailed information about the co-torrefaction process and its
mechanisms. It also explores the role of temperature and residence time on higher heating
value (HHV), mass, and energy yield during the co-torrefaction process. The main idea in
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this paper is the Ven Krevelen diagram used to describe the quality of co-torrefied biomass.
Process variables, reactor type, and numerous analysis tools are presented, including
proximate and ultimate analyses. The impacts of mixing ratios and thermogravimetric
measurements of mixing biomass are also discussed. Furthermore, numerous reactor
configurations and applications for co-torrefaction processes are studied.

2. Biomass Residue and Their Analysis
2.1. Ultimate Analysis

The ultimate analysis presents the compositional analysis in its constituent elements,
such as (carbon, oxygen, hydrogen, nitrogen, and sulfur). The carbon content of bio-waste
is vital for increasing the value of HHV and decreasing COx emissions in the environment.
The characteristic of biofuels improves with a decrease in oxygen content, increasing stabil-
ity, and reducing the production of smoke (e.g., light material) through combustion [49].
The oxygen, sulfur, and nitrogen content of optoelectronic sludge (OS) and bio-waste de-
creased. In contrast, the carbon content increased as a result of the co-torrefaction process.
Nitrogen (6.4 wt.%) and sulfur (4.6 wt.%) were deficient in the raw and torrefied products,
leading to lower sulfur and nitrogen oxide emissions during burning. The co-torrefaction
of OS and bio-waste increased the release of hydrophilic functional groups, thus dehy-
drating bio-solids as presented in Table 2 [46]. Furthermore, during wet co-torrefaction,
deoxygenation and decarboxylation reactions occurred [50]. Excess lignocellulosic material
is expected to degrade during the torrefaction of EFB pellets, resulting in incondensable
bio-oil and incondensable syngas [42]. Increasing the temperature to 300 ◦C resulted in a
higher degree of devolatilization, resulting in the higher carbon content of torrefied biomass
pellets. [42]. The atomic ratio of hydrogen, oxygen, and carbon helped us to understand
the heating value of the fuel. The heating value of the co-torrefied product depends on
the oxygen-to-carbon ratio (O/C) and is very important, as the heating value decreases
from 18.90 to 13.57 MJ/kg with an increase from 0.99 to 1.02, as presented in Table 2. With
the mix of OS and MIse (25/75%) with a temperature of 150 ◦C at 30 min, the value of
(O/C) decreased to 0.88 with an increase in HHV to 19 MJ/kg [46]. Another major factor
affecting the heating value is the hydrogen-to-carbon (H/C)-ratio value. The HHV of
biomass was 14.8 MJ/kg for 0% lignocellulosic material (Lc) with a value (H/C) of 0.12, and
the HHV for 100% Lc was 21.4 MJ/kg with a value (H/C) of 0.07, the lowest and highest
values, respectively. Mixtures for co-torrefaction with Lc included at 0% to 50% achieved
HHVs greater than 18 MJ/kg at a temperature of 300 ◦C, as concluded from Table 2 [35].
Additionally, the elimination of nitrogen and deoxygenation reactions had a substantial
impact on the final qualities of the bio-char content; therefore, bio-solids that experienced a
co-torrefaction process at temperatures higher than 275 ◦C were shown to have improved
fuel properties [51].

Table 2. Ultimate and proximate analyses of torrefied biomass.

Biomass/Torrefied
Biomass

Temp
(◦C)

Time
(min)

Carbon
(%)

Hydrogen
(%)

Nitrogen
(%)

Oxygen
(%)

Sulphur
(%)

Moisture
(%)

Volatile
Matter

(%)

Fixed Carbon
(%)

Ash
(%)

HHV
(MJ/kg) Ref.

OS _ _ 43.89 4.80 6.38 43.48 1.45 99.00 64.89 9.30 25.81 13.57 [46]
Mangifera indica

seed (MIse) _ _ 46.11 5.54 0.89 47.20 0.27 4.97 96.38 2.24 1.38 18.90 [46]

OS and MIse
(25/75%) 150 30 45.1 9.8 4.6 39.6 0.9 _ _ _ 3.0 19.0 [46]

EFB _ _ 43 6 1.2 49.8 0 15 62 15 8 18.5 [42]
EFB pellet with UCO 300 _ 68.2 8.0 0.7 23.1 0 1 33 63 3 26.4 [42]

Cv _ _ 51.29 ± 0.09 7.31 ± 0.42 9.05 ± 0.00 32.11 ± 0.10 0.24 ± 0.04 6.35 ± 0.52 86.46 ± 0.74 6.01 ± 0.73 7.53 ±0.09 15.54 [35]
Lc _ _ 50.10 ± 0.16 6.21 ± 0.09 1.10 ± 0.08 42.59 ± 0.04 0.00 ± 0.00 9.28 ± 0.84 78.41 ± 3.89 19.06 ± 3.97 2.53 ± 0.08 18.94 [35]

Lc 100% 300 45 70.2 5.1 1.5 21.9 1.2 5 58.6 34.9 6.5 21.4 [35]
Lc 50% 300 30 61.2 6.0 5 27.6 0.2 30 63.0 26.6 10.5 19.1 [35]

2.2. Proximate Analysis

Proximate analysis bases its estimates on moisture, volatile matter (VM), fixed carbon
(FC), and ash [52]. The reduced VM and ash content increased the energy density of the
pellets and improved the stability of the flame following the pre-treatment of the biomass
(co-torrefaction) [42]. Bio-oil and incondensable syngas are projected to emerge from
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the decomposition of the lignocellulosic component of EFB pellets during torrefaction,
while the FC and carbon content of subsequent torrefied biomass pellets increases [53]. A
temperature of about 300 ◦C resulted in a higher degree of devolatilization, resulting in a
higher carbon content in torrefied biomass pellets [27].

The proximate compositions of bio-char were estimated and their HHV values utilized
to establish their potential for energy or material applications. Initially, the moisture
content of EFB was 15% and HHV was 18.5 MJ/kg. The moisture level of the EFB pellets
containing the used cooking oil was equal to 1, and the HHV increased to 26.4 MJ/kg, which
was substantially higher than EFB alone, as determined in Table 2 [42]. The proximate
compositions of the Chlorella vulgaris (Cv) and Lc samples differed significantly. Cv had
more ash with a value of 7.53%, while Lc included more fixed carbon at 19.06%. Lc-reduced
ash at 2.53% is associated with a greater HHV due to energy recovery and also the low Cv
value associated with the fixed carbon value of 6.01%, as presented in Table 2 [35]. Hybrid
coal has a low moisture content and a narrow range of 0.6–2.1% by w/w [45,54]. Bio-solid
acquires its hydrophobic properties by dehydration, which also prohibits the generation of
hydrogen bonds [51].

Furthermore, the heat obtained from the feed evaporated the moisture at approxi-
mately 108 ◦C, accompanied by the evaporation of volatile compounds at temperatures
higher than 200 ◦C [45]. During torrefaction, the biomass constituent, mainly hemicellulose,
decomposes and becomes free of volatile matter [17]. Due to this, the VM content of the
hybrid coal is reduced while its FC content increases. Regarding VM, sugarcane bagasse
biomass is the most effective, followed by rubberwood and empty palm fruit bunches [45].
Lc 50% at a temperature of 300 ◦C had a VM of 63% with a HHV of 19.1 MJ/kg, and in
Lc 100%, the VM was 58.6% with a temperature of 300 ◦C with a HHV of 21.4 MJ/kg, as
presented in Table 2. This shows that the impact of an increased VM value decreased the
energy density of the biomass. During the torrefaction process, the ash remained fixed,
which caused this effect [55]. The variations in the ultimate and proximate analyses of
biomass before and after co-torrefaction are presented in Table 2.

2.3. FTIR Analysis

The microscopic chemical composition can be deduced from FTIR [56] analysis. Xy-
loglucan, xylan, and glucomannans may all be present in hemicellulose [57]. This technique
exposes the structural makeup of hemicellulose [54]. For example, FTIR was also used to
analyze the conversion of cellulose, which is the main component of plant cell walls [56].
FTIR is an efficient method used for studying hydrogen-bond formation in amorphous
cellulose [58]. Furthermore, numerous lignin compounds based on the differences in
hydrogen-bonding mechanisms between hardwood and softwood are also determined
using this technique [59]. In one study, the cellulose in the raw MIse and PEsh samples
was associated with peaks at 910–945 cm−1 and 1110 cm−1, respectively; the lignin in these
samples was associated with peaks at 1213, 1427, and 1506, and the hemicellulose fraction
was associated with peaks at 1063, 1244, and 17,440 cm−1 [60,61]. The deoxygenation,
dehydration, and decarboxylation of the co-torrefied samples led to the destruction of
cellulose, hemicellulose, and lignin in biochar, as can be observed by the much lower peak
intensities of the co-torrefied samples compared to the raw samples (i.e., OS, MIse, and
PEsh) presented in Figure 2 [46].
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© 2021 Elsevier Ltd.

3. Co-Torrefaction Mechanism and Operation Parameters
3.1. Co-Torrefaction Process

Co-torrefaction occurs when two biomass blends undergo a process and are converted
into a bio-solid. Figure 3 illustrates the process of co-torrefaction. In Figure 3, two resid-
ual/waste biomass were blended together in various blending ratios (0:100, 25:75, and
50:50%). The feedstock was placed into the furnace for pre-treatment (co-torrefaction) and
run under vacuum with a supply of nitrogen, so that an inert atmosphere was created in
the furnace in order to avoid the possible ignition of the sample. The duration of this step
depended on the flow rate and size of the furnace. After purging the supply of nitrogen
was interrupted, the sample was kept in a crucible placed in the central furnace with a
heating rate of 10 ◦C/min in the temperature range of 200–300 ◦C for a residence time of
30 min to 2 h [62]. Three products (bio-oil, bio-solid, and bio-gas) were obtained from the
furnace following the co-torrefaction of blending the residual biomass. The main outcome
of the co-torrefaction process is a high-quality bio-solid product [63]. The co-torrefaction
process is endothermic at low temperatures, but progresses toward an exothermic process
when char is formed during the thermal degradation of lignocellulosic biomass at high tem-
peratures [64]. During the degradation of the components, various reactions are involved.
The first stage is to remove the moisture content at 110 ◦C. The following stage is to remove
inbound moisture or a fully moisture-free environment when the temperature increases to
200 ◦C. At 200 ◦C, the torrefaction process begins to decompose volatile matter to produce
solid, liquid, and gaseous products. At 200–250 ◦C, the stage of decomposition of hemicellu-
lose occurs that is characterized by limited devolatilization, and a solid structure is formed.
During this stage, C-C, C-O, and inter- and intramolecular hydrogen breakdowns occur,
which form condensable liquids and non-condensable gases. The stage of 250–300 ◦C is the
extensive part of the torrefaction process in which hemicellulose decomposes into volatiles
and solid products are formed [42].
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3.2. Synergistic Effect

When two or more biomass wastes combine to generate a more significant impact than
either of them could produce alone, this is called a synergistic effect. When materials are
combined, synergistic effects may be used to increase co-torrefaction yields. Furthermore,
the combination of OS with MIse and Passiflora edulis shell (PEsh) for wet torrefaction
(WT) has a synergistic impact on the increase in HHV content in co-torrefied bio-solid,
especially in a 75/25% ratio [46]. As a consequence of these results, combining OS with
fruit bio-waste is an additional effective way to help the process, involving the betterment
of the bio-solid as a product. Therefore, it is likely to be used instead of traditional fuels in
the future (e.g., coal) [65].

3.3. Operating Parameters

The co-torrefaction process utilized a variety of biomasses that were thermochemi-
cally processed and acquired desirable qualities. During the co-torrefaction of biomass,
numerous operating parameters affected the co-torrefaction process, such as the role of
temperature, residence duration on mass and energy yields, and the HHV of biomass, and
the Van Krevelen diagram.

3.3.1. Studying the Role of Temperature and Residence Time on Mass and Energy Yields

The mass and energy yields of the co-torrefied biomass varied with temperature and
the reaction time. The increase in temperature and residence time decreased the mass and
energy yields, while the energy density increased. The mass yield of OS decreased when
the co-torrefaction temperature increased from 120 ◦C to 180 ◦C, from 98.4% after 10 min
at 150 ◦C to 79.9% after 30 min at 180 ◦C. The main constituents of raw sewage (such as
low-molecular-weight hydrocarbons) were degraded with the increasing co-torrefaction
intensity. This reaction had an energy density of 1.14 and a 100% energy yield at 150 ◦C
for a reaction time of 30 min [46]. During co-torrefaction at a temperature of 150 ◦C and
a reaction time of 10 min, a further 99.4% energy yield was obtained with an associated
energy density of 1.01 [46]. As a result, unnecessary energy consumption is reduced, and a
high HHV of bio-solid is obtained [46]. During 20 min of torrefaction at 150 ◦C, 95.2% of
the energy was extracted, with a maximum energy density of 1.20.

The mass and energy yields were affected by various blend ratios and types of biowaste
used [29]. The OS and bio-waste co-torrefied together produced more than 80% of the total
mass and energy yield. These were the same yields reported for the microwave-based
torrefaction of OS, which may have been due to the heating of the samples from the inside
at lower temperatures and for shorter periods, leading to their higher energy efficiency [66].
This might be because microwave-irradiation heating modes are more energy efficient, as
they can heat the interiors of materials at lower co-torrefaction temperatures for shorter
periods of time [67]. The bulk bio-solid yields decreased when the ratio of the OS/biowaste
blend was reduced from 75/25 to 25/75%, especially in the case of the PEsh OS blend [46].
This phenomenon occurs because biomass has a higher microwave-absorption capacity
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than sludge, resulting in the considerable devolatilization of biomass as the percentage of
bio-waste in the mix increases [68]. Because MIse and PEsh have lower energy densities
than those of pure OS, they increase the energy density of pure OS. When OS is combined
with MIse and PEsh bio-wastes, the energy and mass yields are the same. When the
OS/bio-waste blending ratio was altered from 75/25% to 25/75%, the bio-solid mass
yields decreased from 95.1% to 92.1% for OS combined with MIse and 93.4–65.2% for OS
mixed with PEsh. These results are consistent with the other research investigating the co-
torrefaction of sewage sludge and Leucaena using microwave heating [67]. Note that when
the OS–PEsh and OS–MIse co-torrefied bio-char was mixed at 50/50 and 25/75%, the mass
recovery and energy yields of the OS–PEsh co-torrefied bio-solid were substantially lower
than those of the OS–MIse co-torrefied bio-solid [46]. Furthermore, when bio-waste and
sludge are mixed for co-torrefaction, heat can degrade a significant amount of hemicellulose
and cellulose, reducing the mass and energy yields of bio-char while maintaining its higher
energy content [68]. Furthermore, bio-solids produced from co-torrefied food waste offer
an improved substitute for peat in terms of their thermal qualities when combined with
sugarcane bagasse, rice straw, Pisdium guajava, Annona squamosal, macadamia husk, and
pistachio husk, respectively [41].

3.3.2. Studying the Role of Temperature and Residence Time on HHV

The quality of a bio-solid can be significantly influenced by the proportions of biomass
used in the mixing process. The combination of OS with MIse and PEsh bio-waste generates
a bio-solid with different HHVs. The Mlse and PEsh biowastes were observed to have
experimental HHVs of 19.4 and 18.6 MJ/kg, respectively, which was significantly higher
than OS (15.5 MJ/kg) after 30 min of torrefaction at 150 ◦C; microwave-assisted WT was
used to mix textile sludge and lignocellulose bio-waste, and bio-char HHV increased in the
same proportion as the blending ratios of the two types of bio-waste increased. Following
30 min of torrefaction at 150 ◦C, it was revealed that the maximum high-heating values of
OS mixed with MIse and PEsh were better than those obtained with the other blending
ratios (75/25 and 50/50%). These were 19.0 and 18.3 MJ/kg, respectively [46]. The resulting
bio-solid had a maximum of 19.2–21.1 MJ/kg HHV, which was an increase over lignite coal
(19.2–21.1 MJ/kg) [69]. A total of 55% of the carbon in bio-char was fixed carbon compared
to raw food sludge (FS). The fixed carbon and ash contents of biomass increased when
the FS and bio-waste were mixed. As a result, agricultural bio-waste can be appropriately
disposed of by reusing it as renewable energy [70]. As the ratio of blending for bio-waste
increased, the HHVs increased more than the FS; the energy density of the subsequent
bio-solid also increased. Sewage sludge and Leucaena co-torrefaction produced a similar
outcome. When bio-solid was created from torrefied food scraps, it had a significantly
higher HHV than bio-solid created from torrefied food scraps alone (19.2–20 MJ/kg).
The HHV content of FS with MH (25/75% dry basis) presented the highest amount of
investigational HHV [41].

This is consistent with those previously described for torrefied wood and agricul-
tural biomass after hydrothermal carbonization. The higher degree of carbonization
of torrefaction significantly accelerated cellulose and hemicellulose degradation, result-
ing in a reduction in smoke (from fly ash, COx, NOx, and SOx) produced during bio-
fuel combustion [71]. The increase in the temperature and reaction time of torrefaction
steadily increases the HHV. The result is affected more by the reactor time of co-torrefaction
than by the temperature of the OS bio-solid. The heating value of the bio-solid was
24.1 MJ/kg, at a temperature of 300 ◦C at a residence time of 45 min. The blended FS
bio-solid had a maximum heating value of 18.9 MJ/kg at 150 ◦C at 30 min. The HHV
of bio-solid from FS was 21.7% higher than that of the raw sludge [41]. The increase in
torrefaction temperature decreased the mass yield from 84.2% (120 ◦C for 30 min) to 67.7%
(200 ◦C for 30 min). It could be associated with protein breakdown and polysaccharides in
solids of sludge [72].



Energies 2022, 15, 8297 9 of 20

3.3.3. Van Krevelen Diagram

The Van Krevelen diagram was first used to categorize the coal and estimate the
compositional change throughout maturity by plotting O/C against H/C. In order to better
understand fuel quality, one must consider the atomic ratios of the constituting elements.
The HHV of biomass, for example, ranged from approximately 20.5 to 15 MJ/kg as the
oxygen–carbon ratio increased from 0.86 to 1.03 [73].

The Van Krevelen diagram also compares torrefied and untorrefied biomass. Tor-
refied biomass has a higher carbon content and decreases oxygen and hydrogen contents
compared to untorrefied biomass. The other aspect is that co-torrefied biomass has lower
oxygen-to-carbon and hydrogen-to-carbon ratios compared to untorrefied biomass, as
presented in Figure 4. Untorrefied biomass, such as OS 100%, MIse 100%, EFB 100%,
Cv 100%, and Lc 100%, have low HHVs due to the higher O/C and H/C ratios, and
co-torrefied biomass, such as OS:MIse (25:75%) torrefied = 150 ◦C, EFB with used UCO
torrefied = 300 ◦C, Lc 50% torrefied = 300 ◦C, and Lc 100% torrefied = 300 ◦C, have high
HHVs due to the low O/C ratio, as depicted in Figure 4. This discussion shows that
torrefied biomass has better fuel than untorrefied biomass.

Figure 4 also presents the O/C and H/C values of the coal. Anthracite has elaborated
low values of the O/C and H/C ratios and presents high-solid-fuel properties. After
comparing the torrefied with untorrefied biomass in different literature surveys, it can be
observed that the un-torrefied biomass outlies the coal value of the O/C and H/C ratios.
However, the ratios of H/C and O/C of the torrefied biomass are close to those for coal.
For example, EFB pellets with UCO, T = 300 ◦C show that the O/C- and H/C-ratio values
are very similar to anthracite coal, showing that this biomass has a good fuel quality.
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Fuel quality decreases as the O/C and H/C ratios increase. A decrease in the O/C ratio
was compared to the raw materials Cv and Lc in bio-solids formed at 200 ◦C and 225 ◦C,
indicating some deoxygenation. However, no structural alterations were observed because
the H/C ratio was equivalent to the feedstock. Thermal processes, such as bio-solid torrefac-
tion, results in O/C and H/C ratios compared to peat, lignite, and anthracite coal, further
demonstrating the impact of temperature on fuel quality [29]. A temperature-dependent
decrease in the H/C ratio was also observed at co-torrefaction temperatures higher than
250 ◦C. This indicates that the carbonaceous structure is reorganized as more aromatic
compounds are produced [75]. The lignocellulosic structure of the bio-solid undergoes an
enhanced rearrangement under high-torrefaction conditions, altering the porosity of the
material by eliminating OH-binding groups [76]. Compared to raw biomasses, bio-solids
also have a higher energy content due to their lower moisture content [74]. The calorific
value of co-torrefied biomasses depends on the oxygen, hydrogen, and carbon content
present in the feed. The feed contains a significant amount of oxygen and a low carbon con-
tent, so its calorific value is low and vice versa [77]. The primary objective of pre-treatment
is to improve the carbon content and reduce the oxygen level. Co-torrefaction is used to
reduce the oxygen concentration of biomass, which directly affects the heating value of any
fuel and presents a higher calorific value. As a result, it is challenging to convert biomass
into liquid fuels with an improved heating value. Products can be produced from the
biomass of high-oxygen or -hydrogen contents [56].

4. Reactor for Co-Torrefaction Technology

Numerous reactor configurations are reported for use in the co-torrefaction process
and are explained below.

4.1. Conventional/Fixed-Bed Reactor

The experiments conducted on a smaller scale, such as those conducted in a laboratory,
frequently use a fixed-bed reactor. Before being placed into the reactor, biomass is typically
dried and co-torrefied in a furnace [78]. According to the authors, this was the most
straightforward reactor configuration for biomass co-torrefaction [78]. At the end of the
process, the biomass was cooled and collected for further study. Temperatures were
evenly distributed throughout the sample due to the biomass being covered in a crucible.
Additionally, the biomass was placed for a specific time, and a heating rate was chosen
for use in biomass blends. At a certain flow rate of gas, nitrogen gas (N2) was supplied to
displace the air. The gas entered the reactor by the gas inflow located at the top, and it left
the reactors from the bottom [79].

4.2. Fluidizing-Bed Reactor

The co-torrefaction process was also performed in the fluidized-bed reactor (Figure 5),
where the biomass particles interact with the gas stream. In the co-torrefaction process, a
multicomponent bed is selected for biomass particles. For example, biomass and coal sludge
particles use a multicomponent, such as coal sludge and a straw pellet bed. The fractional
content of the coal sludge varied according to the particle size distribution. The “cold”
model was tested using an acrylic glass column that allowed a visual examination and a
piece of equipment to have some length, width, and height. The column was supported
by a perforated plate that served as an air-distribution grille. A net was attached to the
grill top to prevent the mixture from clogging up the holes. The air-distribution grille of
the device was supported by an air-suction chamber equipped with Raschig rings beneath
the fluidized bed, which helped smooth the airflow. A blower with a pressure head was
used to introduce ambient air into the fluidized bed [80]. The flow rate was measured, and
airflow control was performed using a bypass conduit that bypassed airflow through a hose.
The air velocity leaving the device was determined using a hot wire anemometer. Each
experiment consisted of observations of air velocity. The transition from mono-disperse
to fluidized state occurred in a poly-disperse particle bed, particularly when the particles
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had a variety of shapes and sizes [81,82]. The minimal fluidization velocity of a mixture of
particles was hypothesized to be defined by a linear connection between the variance of
the pressure difference between them and its mean value, and thus the velocity of the gas
blown over the bed [80,83].
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4.3. Microwave Reactor

This reactor type is discussed using the example of various biomasses. This experi-
ment utilized a co-torrefied reactor and a microwave heating reactor. The exact ratio of
feedstock combination was used three times without using a microwave absorbent in the
microwave co-torrefaction (MCT) process. Through dipolar polarization, ionic conduction,
and interface polarization, microwave irradiation caused the particles to become internally
heated. In recent years, a progressive shift away from traditional torrefaction and towards
more productive microwave torrefaction has been observed [85]. As shown in Figure 6,
microwave power is used to conduct the process [30]; the physical and chemical charac-
teristics of the bio-solid formed result from the torrefaction of biomass in a microwave
reactor. Significant process factors that affect the quality of the bio-solid produced by
microwave reactor torrefaction include the microwave cavity mode, microwave power,
temperature, reaction time, and biomass moisture content. Meanwhile, the modification of
the mixer and the addition of multiple magnetron units are recommended to overcome the
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uneven distribution of microwave heating. The quality of the bio-solid is also influenced
by the kind of biomass used, as various feedstocks have different optimum torrefaction
conditions [86].
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4.4. Co-Torrefaction in a Batch Reactor

The co-torrefaction technique is used to produce bio-char in batch reactors. Figure 7
is a schematic diagram of a batch-type reactor system. The entire system can be divided
into three sections: the entrance, the main body, and the output. The intake section consists
of a nitrogen gas cylinder and a flow meter. The nitrogen flow rate was set at a specific
value. The primary component of this system was a glass tube. The study was conducted to
improve the synergistic effect of bio-solids [87]. The research was conducted to determine
whether co-torrefaction with intermediate waste has a synergistic impact, using a different
type of biomass in a batch reactor to improve the bio-solid. The interaction was evaluated
using the synergistic effect ratio [87].
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A boat, hook, and furnace equipped with a thermocouple helped to control the furnace
temperature. The co-torrefaction ingredients were loaded into the boat. Materials weighing
around 30 grams were used for each run. Two plugs were used to secure the boat and seal
the glass tube. A hook was inserted into the plug to monitor the whereabouts of the boat. In
the furnace, a glass tube with a boat and a thermocouple attached to the center of the sample
pile was inserted and heated [88]. The accessory was used to draw the co-torrefied biomass
boat (char) out of the glass tube when the co-torrefaction phase was completed. The weight
percent of the char to the raw biomass was used to calculate the solid output. Two cylinders
and a cooling system were added to the output section of the system. A water-coated glass
tube was used to cool the device. After the thermal decomposition process was completed,
the unit was cooled down and shut down. The primary consideration was maintaining
a constant temperature throughout the batch reactor as the torrefaction process occurred.
This was performed, and the bio-solid product was completely under control [89].

5. Application of the Co-Torrefaction Process

Co-torrefaction is used for various applications, including improving bio-char and
CO2 adsorption.

5.1. Biochar Enhancement

Although tar was previously believed to be the primary energy source in the liquid
product, numerous experimental experiments have been published in the literature [90,91].
It was treated as an undesirable result of torrefaction. Tar was choking the facilities or
pipes [92]. Its high viscosity was related to the existence of several heavy chemicals. Oil, on
the other hand, lacked significant HHV concentration. However, its lower viscosity made
it easier for real-world applications [93,94]. Tar, on the other hand, has a much higher HHV
concentration than oil. Bio-char was coated with a new method of reusing tar following the
principles of sustainability and the circular economy, which improved its HHV. Tar was
pipetted into charcoal at a volume of 0.5 mL, followed by at least 12 h of roasting to verify
that the enhanced bio-char had the same dry foundation as the raw bio-char for the HHV
measurement. Pre- and post-modification increased the HHV.

Furthermore, the HHV of the tar was improved with a ratio of Fir 60 to WE2 60 to
Fir 40 to WE1 60 to Fir 20 [87]. The coating procedure must be constant across all samples
to ensure that the two orders are similar. The increase in bio-char porosity helped the tar
adsorption of raw biomass [95]. The waste-to-energy approach, which used recycled tar
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to increase the HHV content of bio-char, was an effective way to remove an unwanted
by-product and treat it as a useful component [96].

5.2. CO2 Adsorption through Bio-Solid via the Co-Torrefaction Method

Bio-solids for CO2 adsorption were prepared using sewage sludge and Leucaena
wood by microwave co-torrefaction. Sludge-to-wood ratios of 75:25, 50:50, and 25:75%
were used to produce a bio-solid as the adsorption of CO2 [44]. The carbon and fixed
carbon content of Leucaena wood increased, even if the mass and energy yields of the
wood decreased. Carbon-rich bio-solid can absorb more CO2 molecules than a lower
carbon-rich bio-solid [97]. The adsorption capacity is about four times greater for the pure
Leucaena bio-solid than for the pure sewage bio-solid. Increasing the amount of Leucaena
wood in the mixture would have a negative impact on the composition or characteristics
of the bio-solid, resulting in the adsorption of CO2 in the bio-solid. When it comes to the
adsorption of CO2 on the bio-solid surface, the adsorption reaction can control how well
the intra-particle diffusion kinetic model performs [44].

The adsorption of CO2 increased with a higher concentration of the Leucaena wood
mixture. The pure Leucaena bio-solid had an adsorption capacity of approximately four
times that of the pure-sewage bio-solid. According to the results, the observed CO2
adsorption capacity was close to the predicted values of 0.75 or 0.50. Unfortunately, the
measured adsorption capacity was less than predicted for a mixing ratio of 0.25 [98]. Thus,
the experimental outcome was lower than that predicted in theory. The significant usage of
Leucaena wood in bio-solids can have a detrimental effect on its composition or properties,
resulting in a lower capacity to absorb CO2. To fully understand this occurrence, more
research is necessary. The carbon-rich bio-solid could absorb more CO2 molecules than
bio-solids with a lower carbon content. Pure bio-char manufactured from Leucaena wood
has four times the absorption capacity of pure bio-solid generated from pine wood [68].

5.3. Renewable Fuel for Gasification

Torrefaction is mainly used as a pre-treatment process to improve sustainable and
renewable biofuels. This biofuel may be used in alternative bioenergy-production processes.
Torrefied biomass (wood) is primarily used as biofuel production for gasification [99].
The experimental study supports the stated advantages of gasification combined with
torrefaction. The experiments involved the gasification of torrefied beech wood in an
entrained flow (EF) reactor. Torrefaction has been shown to decrease the O/C ratio in
biomass and improve the quality of syngas. Torrefied wood gasification yields 6.5% more
hydrogen, 20% more carbon monoxide, and approximately the same level of carbon dioxide
as original wood [100]. Combining the torrefaction of agricultural waste well with the
co-gasification of coal in an entrained flow gasifier [101] improved the fuel quality. The
advantages of this method include the fact that the torrefaction facility can be close to the
gasifier (the mill can grind both torrefied biomass and coal), torrefaction gas can be used as
an energy source in the pyrolysis reactor, the torrefaction liquids can be mixed with a coal
slurry, and the gasification of the wet biomass is enhanced [102].

6. Circular Economy

Understanding the waste economy has promoted valuation strategies to reduce re-
source wastage [103]. Rapid industrialization, increased human population, ongoing
environmental impacts, and energy security have contributed to a widespread acceptance
of the need to change from a linear to circular economy (CE) [104]. The idea of the CE
is closely related to the philosophy of environmentally friendly practices. It offers an
alternative framework that emphasizes a significant decrease in adverse effects on the
environment and the development of new commercial prospects [105]. The linear economic
model based on the overall approach of “extract, use, and dispose of operations” is generally
unsustainable, leading to many environmental concerns and challenges with respect to energy
security. Torrefaction is mainly used as a pre-treatment process to improve sustainable and
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renewable biofuels. This biofuel may be used in alternative bioenergy-production processes.
Torrefied biomass (wood) is primarily used as a biofuel-production process for gasification.

Moreover, this model has been the primary cause of these problems. The CE frame-
work encourages industrialization operations to study ways in which they might make
more effective use of their resources and outputs. This is one of the objectives of the CE
framework [103]. This involves the optimal use of waste products, such as the thermo-
chemical conversion process (co-torrefaction) of bio-waste. The considerable increase in
population and urbanization led to an instant increase in the waste produced [106]. The
technology and methods required to manage and treat waste are, at present, in existence
and have reached a mature stage, particularly in developed countries. Despite this, it is still
predicted that trash will continue to be a burden on the environment and a contributor to
the spread of the CE. Therefore, it offers prosperity for employment to manufacture goods
with value additions and energy. The waste classified as biomass originates from living
biological entities, such as plants and animals.

In addition, waste products and residues derived from agriculture and neighboring
industries are included. For the longest period of time, waste from these sources has been
frequently used as a low-cost energy source. This includes the use of solid fuels, such
as pellets and briquettes, and more advanced bioenergy products [107]. However, the
more economical use of these wastes considerably depends on the suitable expansion of
available bio-compounds other than bioenergy. This is because bioenergy is a somewhat
limited resource. This is one of the significant aspects that must be developed to create
technologies that can generate a variety of organic goods that are commercially viable.
The co-torrefaction of various waste streams, such as sewage sludge and bio-wastes, is a
reasonable solution that can help develop waste-mitigation techniques, as stated by several
industry experts [23]. The improved fuel characteristics of the bio-solid that was generated
were achieved by applying microwave co-torrefaction of an EFB [30]. Using MCT, the
researchers discovered that they could produce torrefied biomass with a heating value of
28 MJ/kg, a mass yield of 85.5%, and a fuel-to-energy ratio of 1.8, all of which contributed
to the CE [30].

7. Research Gaps and Recommendations

Co-torrefaction-related factors and how they affect various other processing stages
were studied. Future research goals might consist of the following:

• Co-torrefaction techniques depend on the activation energies to degrade cellulose,
hemicelluloses, and lignin.

• Co-torrefaction may be examined at the microscopic level by identifying unique
functional groups and determining the energy required to cleave bonding bonds.

• Utilizing Fourier transform infrared (FTIR) and Raman spectroscopy to study the
spontaneous co-torrefaction process.

• Using the Hunter colorimeter, determine the level of co-torrefaction severity predicated
on color changes.

• Thermogravimetric analysis was utilized to investigate the kinetics of weight reduction.
• Investigating how various temperatures affect the structure of biomass.
• Integration of co-torrefaction and densification as part of an integrated operation.
• Method to calculate the energy required for the production of condensable and non-

condensable products through co-torrefaction.
• The off-gassing and spontaneous combustion behaviors of co-torrefied biomass stored

at various storage temperatures are suggested.
• The recommendation process of the co-torrefaction process.
• It is essential to comprehend the environmental aspects of alternative fuel techniques

if one is interested in generating environmentally friendly fuels.
• It is possible to significantly reduce emissions by increasing the properties of biomass

fuels. Consequently, biomass must be processed before being used in energy ap-
plications to optimize its fuel properties. Considering the environmental impact of
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pre-treatment procedures is essential because they use large amounts of energy and
other resources.

• Life cycle analysis (LCA) is the most widely used method for determining whether a
bioenergy system is environmentally feasible.

• Thus, a key component in controlling the release of prospective greenhouse gas emis-
sions throughout the co-torrefaction process is the thermal energy source employed in
drying through the co-torrefaction process. Therefore, such emissions can be reduced
by adopting renewable fuels as a heat source.

8. Conclusions

The potential of biomass blends of various intermediate bio-wastes’ pre-treatment
through the co-torrefaction process made using co-torrefied biomass is a good competitor
for energy generation. The bio-solid was deoxygenated, decarboxylated, and dehydrated
for the final compositions during the co-torrefied samples. HHV, fixed carbon content,
and energy density were found in bio-solids generated from feedstock that were only
co-torrefied or in respect of different mixing ratios. As a result, co-torrefaction provides
an option for converting bio-waste into biofuels with high efficiency. Additional studies
may be conducted to economically evaluate and fully demonstrate the possibility of co-
torrefaction for using bio-waste in actual applications, such as being utilized as industrial
furnaces and boiler fuels. The standard for sub-bituminous and anthracite coal with low
ash and sulfur contents is to reduce GHG emissions. Consequently, it is considered a
potentially useful method for manufacturing high-quality products and biofuels that can
serve as an alternative to bio-waste disposal while reducing the concerns.
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D.; Štěpanec, L. Applications of machine learning in thermochemical conversion of biomass-A review. Fuel 2023, 332, 126055.
[CrossRef]

11. Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling
technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [CrossRef]

12. Cheng, Y.W.; Chong, C.C.; Lee, S.P.; Lim, J.W.; Wu, T.Y.; Cheng, C.K. Syngas from palm oil mill effluent (POME) steam reforming
over lanthanum cobaltite: Effects of net-basicity. Renew. Energy 2020, 148, 349–362. [CrossRef]

13. Farooq, W.; Ali, I.; Raza Naqvi, S.; Sajid, M.; Abbas Khan, H.; Adamu, S. Evolved Gas Analysis and Kinetics of Catalytic and
Non-Catalytic Pyrolysis of Microalgae Chlorella sp. Biomass With Ni/θ-Al2O3 Catalyst via Thermogravimetric Analysis. Front.
Energy Res. 2021, 9, 775037. [CrossRef]

14. Moriarty, P.; Honnery, D. Global Renew. Energy resources and use in 2050. In Managing Global Warming; Elsevier: Amsterdam,
The Netherlands, 2019; pp. 221–235.

15. Raza, M.; Inayat, A.; Ahmed, A.; Jamil, F.; Ghenai, C.; Naqvi, S.R.; Shanableh, A.; Ayoub, M.; Waris, A.; Park, Y.-K. Progress of the
Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing. Sustainability 2021, 13, 11061. [CrossRef]

16. Wen, J.-L.; Sun, S.-L.; Yuan, T.-Q.; Xu, F.; Sun, R.-C. Understanding the chemical and structural transformations of lignin
macromolecule during torrefaction. Appl. Energy 2014, 121, 1–9. [CrossRef]

17. Mamvura, T.A.; Danha, G. Biomass torrefaction as an emerging technology to aid in energy production. Heliyon 2020, 6, e03531.
[CrossRef]

18. Mahari, W.A.W.; Chong, C.T.; Lam, W.H.; Anuar, T.N.S.T.; Ma, N.L.; Ibrahim, M.D.; Lam, S.S. Microwave co-pyrolysis of waste
polyolefins and waste cooking oil: Influence of N2 atmosphere versus vacuum environment. Energy Convers. Manag. 2018, 171,
1292–1301. [CrossRef]

19. Lam, S.S.; Mahari, W.A.W.; Jusoh, A.; Chong, C.T.; Lee, C.L.; Chase, H.A. Pyrolysis using microwave absorbents as reaction
bed: An improved approach to transform used frying oil into biofuel product with desirable properties. J. Clean. Prod. 2017, 147,
263–272. [CrossRef]

20. Uemura, Y.; Sellappah, V.; Trinh, T.H.; Hassan, S.; Tanoue, K.-I. Torrefaction of empty fruit bunches under biomass combustion
gas atmosphere. Bioresour. Technol. 2017, 243, 107–117. [CrossRef]

21. Atabani, A.E.; Pugazhendhi, A.; Almomani, F.; Rene, E.R.; Naqvi, S.R. Recent advances in the thermochemical transformation of
biomass to bio-oil, biochar and syngas and its upgrading methods. Process Saf. Environ. Prot. 2022, 168, 624–625. [CrossRef]

22. Khan, A.A.; Gul, J.; Naqvi, S.R.; Ali, I.; Farooq, W.; Liaqat, R.; AlMohamadi, H.; Štěpanec, L.; Juchelková, D. Recent progress in
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