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Abstract: Integrating renewable energy sources (RESs) into modern electric power systems offers
various techno-economic benefits. However, the inconsistent power profile of RES influences the
power flow of the entire distribution network, so it is crucial to optimize the power flow in order
to achieve stable and reliable operation. Therefore, this paper proposes a newly developed circle
search algorithm (CSA) for the optimal solution of the probabilistic optimal power flow (OPF). Our
research began with the development and evaluation of the proposed CSA. Firstly, we solved the
OPF problem to achieve minimum generation fuel costs; this used the classical OPF. Then, the newly
developed CSA method was used to deal with the probabilistic power flow problem effectively.
The impact of the intermittency of solar and wind energy sources on the total generation costs was
investigated. Variations in the system’s demands are also considered in the probabilistic OPF problem
scenarios. The proposed method was verified by applying it to the IEEE 57-bus and the 118-bus test
systems. This study’s main contributions are to test the newly developed CSA on the OPF problem to
consider stochastic models of the RESs, providing probabilistic modes to represent the RESs. The
robustness and efficiency of the proposed CSA in solving the probabilistic OPF problem are evaluated
by comparing it with other methods, such as Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), and the hybrid machine learning and transient search algorithm (ML-TSO) under the same
parameters. The comparative results showed that the proposed CSA is robust and applicable; as
evidence, an observable decrease was obtained in the costs of the conventional generators’ operation,
due to the penetration of renewable energy sources into the studied networks.

Keywords: optimization; probabilistic OPF; solar energy; wind energy; circle search algorithm

1. Introduction

Integrating RES, such as solar photovoltaic (PV) and wind turbine (WT) sources, into
electric distribution networks has been emphasized in the last two decades, due to the
advantages of low prices and an environmentally clean electric power supply. However,
managing the intermittent profile of renewable energy sources (RESs) is challenging in
terms of keeping the system operation smooth. Optimizing the power flow in electric
distribution networks plays an important role. The optimal power flow (OPF) problem is a
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large-constrained multi-objective problem, wherein the main objectives are to reduce the
fuel cost of power generation and reduce the losses of the transmission lines, considering
the constraints of power generation and voltage variations [1–3]. The OPF for large power
systems requires extensive data on the transmission line parameters, bus voltages, and
power generation constraints [4]. The OPF problem can be solved as a single-objective
or multi-objective function optimization problem [5]. Due to environmental protection
considerations and the consequent changes in the structure of energy provision, there is
a growing integration of renewable energy sources (RESs) with electrical power systems.
RESs assure superiority in carbon emissions reduction. In addition, they are considered
sustainable energy sources compared to conventional thermal power stations [6]. In the
past, the OPF problem in its classical formulation was solved by deterministic methods [7,8].
After that, many classical optimization methods were introduced to solve the classical OPF
problem [9]. However, the classical type of OPF problem did not include RES in the problem
formulation [10]. Recently, the formulation of the OPF problem has been developed to
consider RES in the power system [11]. The inclusion of RES in the OPF problem model led
to uncertainties [12]. The uncertainties in the power systems need probabilistic models to
deal with them [13,14]. Therefore, the probabilistic optimal power flow (POPF) problem
appears [15,16]. The difference between the OPF and the POPF problems is that the POPF
solution is determined based on probabilistic models instead of deterministic ones [17].
Therefore, this paper addresses the uncertainties of wind speed and solar irradiance by
proposing statistical models to determine the generated power from such inserted RESs
accurately [18,19].

The solutions available to the POPF problem can be classified as analytical [20,21],
approximate [22], numerical [23], and heuristic approaches [24]. Error! Reference source
not found.For example, the authors of [25] treat the POPF problem as a probabilistic
inference model using Bayesian inference. Elsewhere, the authors of [26] provide a novel
POPF model that copes with uncertainties, considering electrical power generation from
a wind turbine. Another study [27] introduces a new POPF problem solution approach
for electrical power networks, including wind energy sources, using an approach that
adopts sampling to determine the probability density functions (PDF). The authors of [28]
provide a new method for the POPF solution of large power networks, including Pearson
correlated uncertainty sources, using a technique that enhances the efficiency from each
aspect. Finally, reference [29] presents the incorporation of optimal DG allocation and
network reconfiguration to improve voltage stability and reduce distribution network
losses while considering probability in terms of loads at different power factors, using a
modified version of the whale optimization method.

In this paper, the application of a novel algorithm, called the circle search algorithm
(CSA) optimization method, for solving the POPF problem is introduced for the first time, to
reach a global solution proficiently without becoming trapped in local minima, compared to
other existing algorithms. The CSA algorithm was first introduced in 2022 by Mohammed
H. Qais et al. [30]. The CSA optimization algorithm is classified as a geometry-based
and metaheuristic optimization method. The category of geometry-based optimization
methods also includes the sine-cosine optimization method. The sine-cosine optimization
method simulates sinusoidal waveforms [31,32]. The inspiration for the CSA comes from
the geometrical features of the circle. Geometry studies the features of the figures in space.
The circle is a geometric shape that has a diameter, center, and circumference, as well
as tangential lines. The radius length, divided by the tangent line length, represents the
orthogonal function of the angle that opposes the orthogonal radius. Such an angle is
vital to explore new search agents and is also important for the exploitation process of the
proposed optimization algorithm. A small change in angle leads to a significant difference
in orthogonal function. This can help accelerate the exploration behavior.

The significant contributions of the current article can be summarized as follows:

• We are introducing a newly developed CSA to solve the OPF problem, as well as the
POPF one.
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• We have reformulated the CSA optimization method for integrating RESs apart from
fuel generators, with different scenarios and conditions reflecting system demands.

• We have developed statistical models for the RESs, depending on actual historical
measurements. The provided models can help to accurately determine the amount of
electrical power that is generated, while solving the POPF problem.

• We have evaluated the efficiency of the CSA optimization method using MATLAB
software, applied to the IEEE 57-bus test system and the 118-bus system. The intro-
duced method is further validated with the commonly used algorithms of Genetic
Algorithm (GA), and the Particle Swarm Optimization (PSO).

The remainder of the article is divided as follows: Section 2 introduces the objective
mathematical formulation; Section 3 presents the modeling of the WT and PV; the CSA
is provided in Section 4. Section 5 shows the results and analysis; Section 6 offers the
authors’ conclusions.

2. Problem Formulation

In the first stage, the CSA optimization method is used to get the solution to the
classical case of the OPF problem. The fitness function in this stage minimizes the cost of
the power generated from conventional generators. In the second stage, the CSA is adapted
to solve the POPF problem, considering the randomness of both the irradiance and the
wind speed, which correspondingly affects the output of power generated from the solar
PV panels and WTs.

2.1. The Classical Optimal Power Flow Problem

This section introduces the solution to the OPF problem of the IEEE 57-bus and IEEE
118-bus test systems, assuming constant loads and that the power generation comes only
from conventional generation methods [33]. The cost of power generation, which represents
the objective function, is described mathematically in the following subsections [34].

2.1.1. The Cost Function

The calculation of the total generation cost is shown in Equation (1). As seen, the total
cost is calculated by summing the generation costs of the generators. The equation of the
cost of such generation is shown in Equation (2). The cost of the power per generator is
mathematically defined as a quadratic equation of the real power [35]:

Minimize J =
24

∑
h=1

NG

∑
i=1

Ci,h(PGi,h) (1)

Ci,h(PGi,h) = ai ∗ P2
Gi,h + bi ∗ PGi,h + ci (2)

where J is the total cost, NG is the number of generators, and PGi,h is the real power
generated at location ‘i’ at hour ‘h’. In the second part of the study, where the POPF
problem is performed, the cost function is recalculated independently at each hour.

2.1.2. The Optimization Problem Constraints

The proposed optimization problem’s limitations can be divided into equality and
inequality constraints. The equality constraints are constraints on the active and reactive
powers. There are also equality constraints on the power transmitted through the OHTLs,
due to thermal considerations. The equality constraints are mathematically represented
in Equations (3), (4) and (8). Conversely, inequality limitations represent the constraints
on the active and reactive power of the generators. Moreover, there are minimum and
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maximum restrictions on the bus voltages. The inequality constraints are mathematically
represented by Equations (5)–(7) [36]:

Pinjk,h −Vk,h

N

∑
l=1

Vl,h ∗ [Gkl ∗ cos(δk,h − δl,h) + Bkl ∗ sin(δk,h − δl,h)] = 0 (3)

Qinjk,h −Vk,h

N

∑
l=1

Vl,h ∗ [Gkl ∗ sin(δk,h − δl,h)− Bkl ∗ cos(δk,h − δl,h)] = 0 (4)

where Pinjk,h and Qinjk,h are the active and reactive powers at bus ‘k’. Vk,h and Vl,h are
the bus voltages at hour ‘h’. Gkl is the conductance, Bkl is the susceptance, and δl,h is the
voltage angle:

PGmin ≤ PGi,h ≤ PGmax , i = 1, 2, . . . , NG and h = 1, 2, . . . , 24 (5)

QGmin ≤ QGi,h ≤ QGmax , i = 1, 2, . . . , NG and h = 1, 2, . . . , 24 (6)

Vimin ≤ Vi,h ≤ Vimax , i = 1, 2, . . . , NG and h = 1, 2, . . . , 24 (7)∣∣Vk,h ∗Vl,h ∗ [Gkl ∗ cos(δl,h − δk,h) + Bkl ∗ sin(δl,h − δk,h)]
∣∣ ≤ Plimkl , k, l = 1, 2, . . . , N (8)

where PGmin and QGmin are the minimum power of the generator, PGmax and QGmax are the
maximum power of the generator, and Plimkl is the maximum power of the OHTL between
buses ‘k’ and ‘l’.

The newly developed CSA optimization method suggests candidate populations that
satisfy the constraints stated in Equation (5). The objective function of Equation (2) is
modified by adding terms as penalty factors, to force the solutions to remain within their
limits. The penalties are mathematically expressed as follows:

Penalties = Kv∑N
i=1

[
max(0, Vi −Vmax

i ) + max
(

0, Vmin
i −Vi

)]
+Kl∑nbr

j=1

[
max

(
0, Saj − Sarated

j

)]
(9)

where Kv and Kl are constants equal to 9× 1015 and 9× 1013. Sa is the power through
branch ‘j’, and Sarated

j represents its limit.
MATLAB software was used to perform the optimization problem of this study,

including the MATPOWER library for power systems. The CPU specification used in this
study is “up to 8th Generation Intel® Quad Core i7-8550U”.

2.2. The POPF Problem

In this subsection, the problem is modified to include the stochastic nature of the
RESs in the system [37–39]. In addition, the power systems’ loads are considered variable
throughout the day [40]. This section investigates the effect of inserting the RESs into the
system and how the generation costs are affected. Four scenarios depicting the optimization
problem are studied in this section. In scenario 1, the loads of the power systems are
changed throughout the daylight hours, while there are no RESs inserted. The POPF is
solved every hour independently. In scenario 2, the power generation from PV panels, with
their probabilistic models of solar irradiance, is added to the systems to investigate the effect
on the generation costs of the fuel generators. The POPF problem is then solved hourly. In
scenario 3, the power generated from the wind turbine is added to the systems, to share the
burden of the conventional generators and to reduce the overall power production costs.
The POPF is then repeated independently. In scenario 4, the POPF is solved, considering
the stochastic nature of the power generated from both types of RESs (solar PV and WT).
The integration of the RESs with their probabilistic models makes the optimization problem
more complex. The probabilistic model of power generated from the wind turbine is
constructed, based on six readings of wind speed per hour. Similarly, the probabilistic
model of power generated from the PV panels is built based on sixty readings of solar
irradiance per hour.
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3. Modeling of Renewable Energy Uncertainty

Electrical power generation from PV array and WT farm is highly uncertain and is
affected by solar irradiance and wind speeds [41–44]. Accordingly, the accurate modeling
of the generators of the PV panels and the wind turbine is essential. The following sections
present further details about such models.

Solar PV Power Generator

Depending on the solar irradiance (S), the electrical power generated from the PV
array is mathematically represented as in Equation (10) [45]:

PPV(S) =

 Ppvn
S2

SstcRc
f or S < Rc

Ppvn
S

Sstc
f or S ≥ Rc

. (10)

where Ppvn is the nominal power, Sstc is the standard conditions for irradiance, and Rc is a
certain irradiance point.

The Beta probability density function f s(S) is used to model the irradiance. Thus, it is
mathematically expressed in Equation (11):

fs(S) =

{
Γ(α+β)

Γ(α)Γ(β)
× S(α+1) × (1− S)(β−1), f or 0 ≤ S ≤ 1, α ≥ 0, β ≥ 0

0, otherwise
. (11)

The unit of ‘S’ is kW/m2. ‘α’ and ‘β’ are the shape parameters of the used probability
density function. ‘Γ’ denotes the Gamma function. The ‘α’ and ‘β’ are determined during a
time period, ‘h’, as in Equations (12) and (13):

βh =
(

1− µh
s

)
×

µh
s

(
1 + µh

s

)
(
σh

s
)2 − 1

 (12)

αh =
µh

s × βh(
1− µh

s
) . (13)

The number of samples for the Beta function Ns. The power generated is forecasted
and calculated as shown in Equation (14).

PPV =
∑Ns

g=1 PPVg × fs

(
Sh

g

)
∑Ns

g=1 fs

(
Sh

g

) (14)

where Sh
g is the solar irradiance, and fs

(
Sh

g

)
is its probability.

According to the wind blow, the power generated is a function of wind speed, and it
is calculated as shown in Equation (15) [45]:

PWT(v) =


0 v ≤ vci

v−vci
vn−vci

× Pwtn vci < v ≤ vn

Pwtn vn < v ≤ vco
0 v ≥ vco

(15)

where Pwtn is the nominal WT power, vn is the nominal wind speed, vci is the cut-in wind
speed, and vco is the cut-off wind speed. The modeling of the wind speed follows the
Weibull PDF fv(v), which is calculated, as shown in Equation (16):

fv(v) =
k
C
×
( v

C

)k−1
× e−(

v
C )k

(16)
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where C and k are the scale parameter and shape parameter of the Weibull probability
density function. r is a uniform random number, the range of which is [0, 1]. The parameters,
C, and k, are obtained from

(
µh

v

)
, and

(
σh

v

)
.
(

µh
v

)
and

(
σh

v

)
are the mean and the standard

deviation of the speeds. They are calculated as shown in Equations (17) and (18):

kh =

(
σh

v
µh

v

)−1.086

(17)

Ch =
µh

v

Γ
(

1 + 1
kh

) . (18)

Nv is the number of samples of the Weibull distribution function. The corresponding
probabilistic speeds are used to determine the forecasted generated powers. The predicted
power generated from the WT is mathematically represented, as in Equation (19):

PWT =
∑Nv

g=1 PWTg × fv

(
vh

g

)
∑Nv

g=1 fv

(
vh

g

) (19)

where vh
g is the wind speed and fv

(
vh

g

)
is its probability.

4. Proposed Solution Method

A novel competitive optimization algorithm, CSA, is introduced in this manuscript
for the POPF simulation.

4.1. Background

A circle is a closed path featured by an equal distance from any point to its center. The
diameter of the circle is measured as the distance between any two points on the circle and
passes through its center (xc). The radius (R) of the circle is the distance from a point on the
circle to its center. A tangent to the circle is defined as a line that intersects the circle at a
single point (xt) at which the radius and the tangent are perpendicular.

4.2. The Circle Search Algorithm Formulation

The CSA optimization algorithm explores the optimal solution within random circles.
Targeting the circle center, the angle θ decreases upon reaching the circle’s center. Figure 1
shows the decrease in the angle θ.
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Figure 1. The decrease in the angle for exploitation in the CSA.

To prevent trapping at a local minimum, the angle θ is changed randomly. Figure 2
is provided for more clarity. Point xt defines the population of the CSA optimization
algorithm. Meanwhile, xc defines the optimal solution of the CSA. The CSA optimization
algorithm updates the population corresponding to moving xt in the direction of xc.
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The main procedures of the CSA optimization algorithm are explained as follows:

(1) Initialize the first population randomly between the upper and lower limits of the
design variables.

(2) Step 2: Update the population (Xt) based on the calculated Xc as presented mathe-
matically in Equation (20):

Xt = Xc + (Xc − Xt)× tan(θ). (20)

The angle θ has a significant effect on the exploration and exploitation phases. The
calculation of the angle θ is mathematically represented as follows:

θ =

{
w× rand Iter > (c×Maxiter) (escape f rom local stagnation)
w× p otherwise

(21)

w = w× rand− w (22)

a = π − π ×
(

Iter
Maxiter

)2
(23)

p = 1− 0.9×
(

Iter
Maxiter

)0.5
(24)

where the range of ‘rand’ is [0, 1]. Iter is the number of the current iteration, and ‘c’ is
a constant where the range is [0, 1] and refers to the percentage of maximum iterations.
‘w’ moves from −π to 0 upon the increase in the iteration number. ‘a’ moves from π
toward 0, depending on Equation (23). ‘p’ changes from 1 to 0, based on Equation (24).
Consequently, the angle θ moves from −π towards 0. When the iteration number is greater
than (c×Maxiter), the angle θ equals w× rand. The exploration phase is then improved.
On the other hand, when the iteration is less than (c×Maxiter), the angle θ equals w× p.
Accordingly, the exploitation phase is improved. The populations of the CSA are further
improved by applying the levy function [46], which can be represented as follows:

LF(γ) = 0.01× u×σ
|v|

1
γ

,

σ =

 Γ(1+γ)×sin( πγ
2 )

Γ
(

1+γ
2

)
×γ×2(

γ−1
2 )

 1
γ (25)

where v and u are random numbers in the range of [0, 1]. ‘LF’ is the levy function factor.
Figure 3 provides the flowchart for solving the OPF/POPF problems using the pro-

posed improved CSA.
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5. Analysis of the Simulation Results

The discussion and analysis of the simulation results are presented in this section.
First, the simulation results of the classical OPF optimization problem are shown, com-
pared, and analyzed. The classical OPF optimization problem itself is a well-established
optimization problem, but in this paper, the performance of the newly developed and
enhanced CSA method is evaluated by solving the OPF problem in its classical formulation.
The comparisons and analyses of the simulation results are used in other optimization
algorithms. Some of these optimization algorithms are well established, such as the GA
and the PSO. Other recently published optimization algorithms are included in results com-
parisons, such as hybrid machine learning with transient search optimization (ML-TSO).
These comparisons are presented to test how competitive the CSA algorithm is in solving
such optimization problems. For more validation of the enhanced CSA method, more than
one standard test system is used in the test, such as the IEEE 57-bus system and the IEEE
118-bus system.

The POPF problem simulation results are presented and discussed In the second
section, where the PV array and the WT farm are inserted into the studied system in
different scenarios, considering their stochastic nature. In this part of the study, the loads
on the systems are also time-varying. The increasing penetration of the RESs made it
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important to consider the model of the photovoltaic systems and the wind energy systems
with their stochastic nature in the OPF problem, to achieve optimal operating conditions in
the electrical power systems. Integrating the RESs into the studied systems significantly
affected the generation costs. This is also shown in detail in Sections 5.1.2 and 5.2.2.

At the end of the Section 5, statistical analysis and the numerical results of the classical
OPF problem are provided. The statistical analysis measures how robust the CSA model
is. The essential data regarding the specification of the two standard systems used in the
study are provided in Table 1.

Table 1. The significant specifications of the studied systems.

Studied System 57-Bus System [47] 118-Bus System [47]

Number of Buses 57 118
Number of Generations 7 54
Number of Branches 80 186
Number of Transformers 17 9
Connected loads in MVA 1250.0 + j 336.4 4242 + j 1438
Plosses in MVA 16.00 + j 72.97 132.86 + j 783.79

The mutation operator of the GA optimization method is selected as 10%, while
the crossover operator is selected as 65%. A conventional GA is used, which is based
on uniform distribution selection. The search agents’ size is 15. Conversely, the inertia
coefficient of the PSO algorithm is chosen as ‘1’. The inertia coefficient damping ratio equals
0.99. Meanwhile, the personal and social acceleration coefficients equal 2. The population
size is 15. In the case of the CSA, the population size is 40.

5.1. First Test System: The IEEE 57-Bus Test Network
5.1.1. The Classical OPF Results

To verify the simulation results achieved by the proposed CSA algorithm, the same
optimization problem was tackled using the GA, ML-TSO algorithm and the PSO. The
stopping criterion of the compared optimization methods’ simulation process is 600 iter-
ations. The simulation results of the classical are then compared and shown in Table 2.
The design variables are also included in the tables. The control parameters are the active
power generated by fuel generators. Figure 4 offers a more graphical comparison between
the convergence performance of the CSA, the GA, the ML-TSO, and the PSO in the IEEE
57-bus test system. In this figure, a focus in the last three iterations is also shown.

Table 2. Minimum objective and optimal design variables in the case of the 57-bus system.

Pgen (MW) at Bus No. CSA GA [47] ML-TSO [16] PSO [47]

1 144.6298487 151.43944 144.8275 153.41
2 93.42298511 85.65515 93.20434 0
3 45.14687798 47.31662 45.21921 47.07
6 68.55744627 63.81441 68.20659 61.09
8 456.659418 471.1291 456.9922 550
9 95.63065218 75.26832 95.84497 89.58
12 366.1451562 375.58131 365.9111 374.31

Simulation time (s) 112.86 673.58 133.28 142.92
Minimum cost (USD/h) 41,872.91695 41,891.3742 41,872.9 42,262.61

It can be seen from the previous figure that the CSA reached its best solution at the end
of the iterations. The CSA needed fewer than 100 iterations to gain a better solution than the
GA and the PSO. After 600 iterations, the proposed CSA optimization algorithm achieved
superior simulation results than the GA, by 0.044079%, and outstanding simulation results
compared to the PSO results, by 0.9306%. Comparing the ML-TSO with the proposed CSA,
it is clear that they reached almost the same optimization results.
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5.1.2. The POPF with RESs Uncertainties and Load Demand Variation

The CSA optimization method is used to perform the POPF. The system used in this
subsection is the IEEE 57-bus system, with modifications. The PV and WT generators
are inserted into the test system at specified buses. The PV array is connected to bus 37.
Meanwhile, the WT farm is connected to bus 12. The loads are assumed to change hourly,
as shown in Figure 5 [47]. The one-line diagram of the standard 57-bus test network can be
found in Figure A1, in Appendix A. The location of the PV array is marked with red in the
single-line diagram, while the location of the wind turbine is marked in green.
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The generated power of the RESs changes based on the irradiance, as well as with
wind speed [48,49]. Accordingly, the stochastic nature of the RESs [40] should be taken into
consideration to properly forecast the generated power from the solar and wind systems.
In this subsection, various conditions of POPF are investigated. First, the OPF problem is
tested on both test networks, using changing loads. No RESs are inserted into the grids. In
the second and third tests, the POPF problem is studied using the 57-bus system, including
only one type of RES in the system. In the fourth case, the POPF is tackled by integrating
the two kinds of RESs into the 57-bus test system.

The nominal wind speed, allowable cut-in, and cut-off speeds of wind to operate the
WT are set to 15, 2.7, and 25 m/s, respectively. The solar irradiance is set to 1000 W/m2 in
standard conditions. The certain irradiance point (Rc) is set to 120 W/m2. This subsection
aims to show the effect of integrating the RESs with the uncertain nature of the system
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and the reflection of this integration on the generation costs of the fuel generators. The
installation costs of the RESs are not included in the cost function of this study. The POPF is
performed independently at each hour of the day. The measurements of wind speeds used
for this study were performed in Zafarana in Egypt on 6 March 2015. The Natural Energy
Laboratory of Hawaii Authority (NELHA) provided the solar irradiance measurements on
13 June 2022. The readings of solar irradiance and the wind speeds were plotted, as shown
in Figures 6 and 7.
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Moreover, the PDFs of the solar irradiance and the wind speed at hour 18 are provided
in Figures 8 and 9 as examples of the PDFs of solar irradiance and wind speeds at any hour
through the day. The forecasted power generation of the RESs can then be determined, as
mathematically shown in Equations (15) and (19).

After the simulation is complete and the POPF results are obtained in the four men-
tioned cases, using the proposed CSA optimization algorithm, the comparisons of the fuel
costs of the conventional generators in the four cases can be graphically illustrated, as
shown in Figure 10 for the 57-bus test network. The effect of the power generated from
the PV systems is observed between hours 6 and 19. This is when solar irradiance is more
effective in generating electrical power. The PV cannot be used to generate power beyond
this period. On the other hand, the second type of RES connected to the systems, the wind
turbine, can generate power at any time, as long as the actual wind speed is within the
range of the cut-in and cut-off speeds. The cost reduction due to the integration of the WT
can be observed throughout a typical day.
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5.1.3. Statistical Investigation of the Classical OPF Results

The statistical analysis aims to investigate how robust the proposed CSA optimization
algorithm is when solving the classical OPF optimization problem. The robustness is
measured by repeating the simulation 20 times, independently. Repeated runs were also
performed with the PSO and the GA. The statistical analysis was performed with the
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IEEE 57-bus system. The simulation results of the repeated runs of the three optimization
methods are observed and compared, as shown in Table 3. Comparing the results verified
the robustness of the introduced CSA optimization method.

Table 3. The CSA, GA, and PSO statistical analysis results for the 57-bus test network.

Optimization Algorithm Min. Max. Mean Median Std. Dev.

CSA 41,872.9 41,873.2 41,873.02 41,873.004 0.076665636
PSO 42 × 103 42,404.4 42,133.54 42,172.2 162.012
GA 41,891.4 42,037.4 41,938.62 41,932.7 41.01491

ML-TSO 41,872.9 41,872.9 41,872.9 41,872.9 0.00203

The final test to be performed was Wilcoxon’s rank-sum test. These test results were
compared among the three presented optimization methods. These comparisons are
provided in Table 4. The level of significance was set at 5%. It can be seen from the test
results that the h-values were equal to ‘1’. The results of Wilcoxon’s rank-sum confirmed
the superiority of the proposed CSA optimization method over the PSO algorithm, the GA,
and the ML-TSO in optimizing the OPF optimization problem solution.

Table 4. Wilcoxon’s rank-sum test for the 57-bus test network.

Opt. Algorithm/Test CSA vs. PSO CSA vs. GA CSA vs. ML-TSO

p-value (Wilcoxon test) 8.8575 × 10−5 8.8575 × 10−5 8.8575 × 10−5

5.2. Second Test System: The IEEE 118-Bus Test Network
5.2.1. The Classical OPF Results

The same optimization problem was tackled by the GA, ML-TSO, and PSO algorithms
to verify the simulation results achieved by the proposed CSA algorithm. The stopping
criterion of the compared optimization methods’ simulation process was 600 iterations.
The simulation results of the classical model were then compared and the results are shown
in Table 5. The design variables are also included in the tables. The design variables are
the power generated by conventional generators. Figure 11 provides a more graphical
comparison between the convergence performance of the CSA, the GA, the ML-TSO, and
the PSO in the IEEE 118-bus test system. In this figure, a focus on the last three iterations is
also shown.
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Table 5. Min. objective and optimal design variables in the case of the 118-bus system.

Pgen (MW) at Bus No. CSA GA [47] ML-TSO [16] PSO [47]

1 5.222955584 42.80843 25.97244 69.35736
4 6.340310929 40.46726 19.28938 53.66406
6 23.20747459 55.63989 2.39 × 10−25 62.17215
8 1.88901 × 10−8 43.75528 32.98503 48.57892
10 420.0099369 263.00824 383.22181 0
12 78.17937085 73.46125 84.56449 91.82476
15 3.79901 × 10−11 71.50087 1.48 × 10−106 54.09869
18 5.447550708 40.50725 5.59 × 10−73 100
19 13.57546433 30.79849 0.000000893 0
24 0.148762612 51.10298 11.7 0
25 187.026271 156.85387 185.51225 214.13416
26 274.4122218 136.87232 267.13453 0
27 15.78503797 39.63301 22.56968 28.14707
31 7.657886566 33.53374 3.24 × 10−9 7.45759
32 6.989732276 35.67988 29.4688 100
34 7.356281472 48.36991 41.13763 100
36 0.002991345 42.5987 26.71516 0
40 32.4183682 32.43324 42.7711 41.61653
42 49.9162028 34.42893 49.50048 100
46 17.56671835 33.19389 19.22089 19.08021
49 201.4539222 143.29835 190.13596 192.63884
54 47.40375131 64.86753 49.89554 0
55 25.59521301 40.89349 46.5737 22.03011
56 19.99902415 56.95884 39.51742 100
59 146.8280053 112.15389 148.63024 149.57239
61 146.2882516 104.61467 144.33423 148.24394
62 2.644624253 45.70804 0.000000231 0
65 353.3483046 243.956903 344.15355 352.49011
66 357.4056727 238.35467 341.4189 349.52639
69 452.2006709 241.92158 441.76801 451.7022
70 36.56654441 61.23232 1.15 × 10−17 0
72 37.13148193 42.53966 26.79066 100
73 11.62357491 36.76016 32.55518 0
74 25.29038597 36.59176 2.83 × 10−26 0
76 3.453949707 46.35949 1.75 × 10−65 0
77 0.000973044 58.62085 4.33 × 10−18 0
80 428.947876 232.95281 426.39416 431.30982
85 0.022030304 30.97517 0 0
87 3.961919504 19.63158 5.40192 0
89 499.6523936 385.11713 492.9325 491.72528
90 8.04573 × 10−7 60.10343 11.14157 0.48624
91 6.24685 × 10−11 54.58481 0.00000024 0
92 1.19861 × 10−5 41.33189 2.24 × 10−35 0
99 0.052829768 64.40857 18.99236 0.15028
100 226.524279 136.28236 234.616704 226.41352
103 33.4100126 58.18509 42.16049 37.66295
104 16.71547095 41.52387 1.21 × 10−23 100
105 20.82399356 41.38775 2.59 × 10−9 0
107 0.000307827 52.22079 1.05 × 10−58 13.81565
110 6.603020979 35.3362 15.62658 0
111 28.97560902 48.42831 40.10389 36.33637
112 35.11271504 46.51878 1.2 × 10−23 0
113 17.73381653 35.75126 4.83 × 10−60 23.31851
116 0.067529765 44.71488 0 0

Simulation time (s) 223.66 776.04 272.3270796 290.02
Min. cost (USD/h) 130,404.016 138,991.2993 130,630.3451 133,976.07655089

It can be seen that the proposed CSA optimization algorithm reached the best solution
at the end of the iterations. The CSA needed no more than 200 iterations to gain a better
solution, compared to the GA and the PSO algorithms. After 600 iterations, the proposed
CSA optimization algorithm achieved better simulation results when solving the classical
OPF than the GA by 6.585%. Compared with the PSO algorithm, the proposed CSA
optimization algorithm obtained results with a 2.7392% improvement. Compared with
the ML-TSO algorithm, the proposed CSA optimization algorithm obtained results with
an 0.173% improvement. Generally, the objective in both the studied systems converged
rapidly and smoothly.

5.2.2. The POPF with RES Uncertainties and Changing Loads

The loads were assumed to change hourly, as shown in Figure 12 [47]. The PV panels
were connected to bus 4. Meanwhile, the WT was connected to bus 28. The one-line
diagram of the standard IEEE 118-bus system is provided in Figure A2 in the Appendix A.
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The location of the PV panels is marked in red in the single-line diagram, while the sites of
the WT are marked in green.
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After the simulation was performed and the POPF results were obtained in the four
previously mentioned cases, using the proposed CSA optimization algorithm, the compar-
isons of the fuel costs of the conventional generators in the four cases were established and
are graphically illustrated in Figure 13 for the 118-bus system.
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5.2.3. Statistical Investigation of the Classical OPF Results

The robustness of the model was measured by repeating the simulations 20 times,
independently. The repeated runs were also performed for the PSO, the GA, and the
ML-TSO models. The statistical analysis was performed with the IEEE 118-bus system. The
simulation results of the repeated runs of the three optimization methods were observed
and compared and are shown in Table 6. Comparing the results verified the robustness of
the introduced CSA optimization method.

Wilcoxon’s rank-sum test results were compared among the three presented opti-
mization methods. These comparisons are provided in Table 7. The level of significance
is set to 5%. It can be observed from the test results that the h-values are equal to ‘1’.
The results of Wilcoxon’s rank-sum test confirmed the superiority of the proposed CSA
optimization method over the PSO algorithm, the GA, and the ML-TSO in optimizing the
OPF optimization problem solution.
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Table 6. The CSA, GA, and PSO statistical analysis results for the 118-bus system.

Opt. Algorithm Min. Max. Mean Median Std. Dev.

CSA 130,404.02 132,765.11 130,741.43 130,529.99 577.1176976
PSO 132 × 103 136 × 103 133 × 103 133 × 103 1140
GA 136 × 103 140 × 103 139 × 103 139 × 103 856

ML-TSO 130,630.34 131,124.3 130,808.7 130,747.18 672.0761

Table 7. Wilcoxon’s rank-sum test for the 118-bus test network.

Optimization Method/Test CSA vs. PSO CSA vs. GA CSA vs. ML-TSO

p-value (Wilcoxon test) 8.8575 × 10−5 8.8575 × 10−5 8.8575 × 10−5

6. Conclusions

This paper presents a novel CSA optimization algorithm to address power system
optimization problems, specifically, the OPF and POPF problems. The CSA technique was
tested on the IEEE 57-bus test system and the IEEE 118-bus test system. The simulation
results and comparison with other well-known algorithms, GA and PSO, as well as the
metaheuristic, recently published algorithm, ML-TSO, confirmed the superiority and
robustness of the developed CSA technique. Using the proposed CSA to solve the OPF
problem led to a generation cost reduction from 0.044079% to 0.9306%, validated on a
57-bus system, and by 0.173% to 6.585% when testing on the 118-bus system. Furthermore,
the development of CSA enabled us to solve the POPF problem, addressing the intermittent
nature of the RESs and load variation throughout the day using distribution functions.
According to the simulation results, the generation costs have been sufficiently reduced
due to the insertion of the RESs into both test systems. Statistical analysis in comparison
with other algorithms is also provided to discuss the results further and to support the
evaluation of the proposed optimization algorithm. For future work, it is recommended that
researchers should apply the CSA optimization algorithm to other optimization problems
within the scope of renewable energy systems.
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