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Abstract: In recent years, the penetration of renewable power generations into the electrical grid has
substantially increased. Continuous deployment of power electronic-based distributed generations
and the reduction of traditional synchronous machines with their essential dynamics in modern
power networks are very critical in this change. The use of power electronic inverters leads to the
dissociation of sources and loads and lowering the power system inertia. Under power imbalance,
this drop causes an elevated rate of change in frequency and frequency divergences, which has a
notable impact on the system’s frequency stability. As a result, enhanced control techniques for
grid-tied electronic converters are required to secure the power system’s stability and support. The
virtual-synchronous generator (VSG) control is used to mimic the dynamics of a rotating synchronous
generator and improve the power system’s stability. In this article, the problems of such low-inertia
power systems, as well as the VSG technologies, are explored. This research also looks at different
control orders and strategies for virtual-synchronous generators (VSG). In addition, the utilization of
energy storage and critical matters in VSG and further research recommendations are explained.

Keywords: renewable energy sources; virtual inertia; virtual-synchronous machine; power electronic
coveters; VSM topologies; VSM control

1. Introduction

The proportion of renewable energy sources (RES) to power generation has expanded
dramatically in recent years, as evidenced by strict environmental regulations, limited fossil
fuel accessibility, and the need to meet the rising worldwide power demand. In 2021, global
renewable energy capacity increased to about 3146 GW [1], where solar photovoltaics (PV)
and wind power accounted for 90% of the new renewable capacity [1]. The unpredictability
and uncertainty of RES, such as solar and wind energy, may be a substantial concern to
the operation of power systems [2,3]. Aside from their intermittency, they are integrated
via power conditioning circuits that detach them from the power grid [4,5]. Using power
electronic converters, RES and loads are incorporated into the grid in a future power system,
as depicted in Figure 1 [6]. Consequently, when conventional generators are changed with
renewable energy sources, the effective inertia of the electrical grid is reduced. When
a large quantity of power electronic inverters is used to restore a classic synchronous
generator (SG), stability, efficiency, and quality are all improved. Power management along
with different sources, on the other hand, is a significant problem in system design and
monitoring. Furthermore, integrating RES into the grid on a large scale causes frequency
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stability concerns [4,7,8]. This is one of the most significant disadvantages of incorporating
a significant number of non-synchronous generators into the grid [4,6,9]. The use of
power electronic inverters allows sources and loads to be decoupled, resulting in a decline
in power network inertia. Under a power imbalance, this drop leads to a rapid shift
in frequency and frequency deviations, which also significantly influences the system’s
frequency stability [6,9].
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Figure 1. Integration of power electronic interface distributed generation into the future
power system [6,10].

Low inertia of the system is linked to a quicker rate of change of frequency (ROCOF)
and a higher frequency divergence over a short duration of time [4,11]. The ROCOF
is a metric for how rapidly the frequency varies after an unexpected generation–load
imbalance. The ROCOF and frequency nadir in the power network are affected when
inertia decreases [12]. The ROCOF is the initial slope of the system frequency with time [13].
In a combined system of an SG and RES-based power generation, the frequency change
is large, where the RES has no contribution to the system inertia, as can be seen from
Figure 2 [6,14]. The producing station may trip if the frequency deviation rises over a
specific level, increasing the ROCOF, and finally causing a system chain breakdown [14,15].

Challenges that come with changes to new power systems are as follows:

1. Traditional power electronics control approaches of dc–ac converters have quick dy-
namics. However, the synchronous machine (SM) has slow dynamics and significant
inertia. At a substantial distributed energy resources (DER) penetration, the grid’s
equivalent rotational inertia will greatly decrease. The frequency stability will suffer
as a result of this [5].

2. The intermittent power supplied by DERs will be quickly provided to the grid using
the fast-response feature of dc–ac converters. Instability in frequency, angle, and
voltage will result from these interactions [16]. Similarly, large-size dc microgrids
and parallel inverters are challenging to explore, particularly when the DERs and
DC-ACconverters have comparable dynamics. DERs, on the other hand, are normally
controlled by maximum power point tracking (MPPT) and hence are not dispatchable.
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As a result, these DC-ACconverters are unable to offer sufficient up-reserve to sustain
grid frequency [16,17].
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Figure 2. Effect of inertia on frequency [6].

To overpower the challenges caused by grid-connected renewable power generation,
virtual inertia (VI) is being developed and intensively explored in traditional inverters. VI
uses pulse width modulation (PWM) to mathematically simulate the inertia response of
a typical synchronous machine (SM) [10]. The concept of a VI-based inverter is shown
in Figure 3, where, to emulate the inertia of a traditional power system, a mix of control
algorithms, RESs, energy storage system (ESSs), and power electronics is used.
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Figure 3. Concept of virtual inertia [18].

The focus of this review article is on inertia difficulties in power systems with a large
level of renewable energy penetration. This article investigates and analyzes the potential
of VI for every usage in the electricity grid, considering the increased demand for inertia
to better frequency management as the penetration of RES rises. The paper’s main focus
is to provide a helpful understanding of how modern VI applications may regulate and
stabilize the quality of RES-dominated power grids. In addition, this research examines
current inertia emulation topologies. Moreover, the use of various control mechanisms
and proposed research approaches is reviewed. A comparison of the various topologies
used to implement VI is presented in this research. Therefore, researchers will find it easier
to choose the proper VI-based inverter topology in accordance with the desired design.
The rest of this paper is structured as follows: Section 2 explores the current virtual inertia
topologies. The basics of inertia emulation and control orders are covered in Section 3.
Section 4 discusses multiple inertia emulation operating controls. Section 5 discusses inertia
emulation control strategies for inverters. Application of energy storages for virtual inertia
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emulation is discussed in Section 6. Section 7 outlines recommendations and future research
directions, and Section 8 concludes the paper.

2. Current Virtual Inertia Topologies

The ROCOF in a power system network grows as the system inertia decreases, result-
ing in a bigger fluctuation in the frequency of the system. As new RESs are incorporated
into the power system, the system will require greater inertia [11]. In 2007, Beck and
Hesse presented the virtual-synchronous machine (VSM) technique [19], which uses power
electronics to mimic some of the properties of synchronous generation and provides power
system assistance. The VSM control approach has so far been established to regulate power
converters to mimic the inertia and other features of the synchronous machine, in light of the
growth in renewable production and the resulting reduction in power system inertia [20].
VSM can emulate the inertia of a conventional power network by an integrated approach of
control algorithms, power electronics, RES, and energy storage devices [10,21,22]. Although
the principle of modeling virtual inertia is similar for various topologies, the execution
of each topological model is different. Some topologies use mathematical equations to
emulate synchronous machine behavior, whereas a few topologies utilize swing equations
to simulate the synchronous generator behavior [23]. Distributed generation (DG) units
react to utility grid system frequency variations in a few topologies. This section covers a
number of prominent VSM topologies. In the literature, many key topologies of VSM have
been proposed, as shown in Figure 4 [6,23–25].
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2.1. Topology Based on Synchronous Generator Model
2.1.1. Synchronverters

Synchronverters perform as an equivalent to a combination of an SG and a small-
capacitor bank. Synchronverters control inverter-based DG units as SGs, which, from
the grid’s perspective, depict the same dynamics. Synchronverters may be used as grid-
forming units without making substantial modifications to their operating structure and
are particularly well-suitable for inertia imitation from DGs that are not linked to the
grid [26,27]. A frequency droop control algorithm regulates the inverter output power since
the frequency derivative is not necessary when using this topology and there is less noise
in the system. Furthermore, the moment of inertia and the damping factor may need to
change to satisfy certain needs [6]. The overall schematic of the synchronverters is shown
in Figure 5.
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A synchronverter is made up of two parts: a power component, which is similar to
the typical power electronic converter shown in Figure 6, and an electronic part, shown
in Figure 7, which includes the sensing, protection, and control circuits, where Dp is a
damping factor, Te and Tm are the electromagnetic and mechanical torques, and J is the
moment of inertia [27].

Energies 2022, 15, x FOR PEER REVIEW 5 of 28 
 

 

2.1. Topology Based on Synchronous Generator Model 
2.1.1. Synchronverters 

Synchronverters perform as an equivalent to a combination of an SG and a small-
capacitor bank. Synchronverters control inverter-based DG units as SGs, which, from the 
grid’s perspective, depict the same dynamics. Synchronverters may be used as grid-form-
ing units without making substantial modifications to their operating structure and are 
particularly well-suitable for inertia imitation from DGs that are not linked to the grid 
[26,27]. A frequency droop control algorithm regulates the inverter output power since 
the frequency derivative is not necessary when using this topology and there is less noise 
in the system. Furthermore, the moment of inertia and the damping factor may need to 
change to satisfy certain needs [6]. The overall schematic of the synchronverters is shown 
in Figure 5. 

 
Figure 5. Synchronverter topology overall schematic showing the operating principle [18]. 

A synchronverter is made up of two parts: a power component, which is similar to 
the typical power electronic converter shown in Figure 6, and an electronic part, shown in 
Figure 7, which includes the sensing, protection, and control circuits, where 𝐷  is a 
damping factor, 𝑇 and 𝑇 are the electromagnetic and mechanical torques, and 𝐽 is the 
moment of inertia [27]. 

 
Figure 6. Power stage component of a synchronverter [26]. 

Grid

Inverter

Vo
lta

ge
 a

nd
 

cu
rre

nt
 fe

ed
ba

ck

Model of 
Synchronous 

Generator  
PWM

+

C

Figure 6. Power stage component of a synchronverter [26].



Energies 2022, 15, 8406 6 of 27Energies 2022, 15, x FOR PEER REVIEW 6 of 28 
 

 

 
Figure 7. The components of a synchronverter: controller [26]. 

The synchronverter uses the following equations to model SG behavior, as expressed 
in [6,18]: 

Te=Mfifi,sin θ෫  (1) 

e=θሶ Mfif sin θ෫  (2) 

Q=-θሶ Mfifi,cos θ෫  (3) 

where, 𝑀 represents the size of the mutual inductance between the stator coil and the 
field coil, 𝑖 represents the field excitation current, 𝜃 represents the angle between one of 
the phases of the stator winding and the rotor axis, 𝑒 represents the no-load voltage gen-
erated, and 𝑄 represents the reactive power produced [18]. 

A three-phase cylindrical-rotor synchronous machine’s mathematical model is at the 
heart of the controller of a three-phase synchronverter, as illustrated in Figure 7. The back 
electromotive force, 𝑒, estimated using the mathematical model, is sent into a PWM gen-
erating block, which generates PWM pulses to operate the power semiconductors, as 
shown in Figure 6. The currents that flow out of the power stage’s inductors are counted 
as the stator current 𝑖 and return into the mathematical model representation [6,23,26,27]. 
The synchronverter’s power part is the circuit to the left of the three capacitors, along with 
the capacitors. If we ignore the ripple, this section of the circuit will operate as an SG with 
the identical capacitors linked in parallel. Although the 𝐿 inductors are not part of the 
synchronverter, they are important for synchronization and power regulation. It is essen-
tial to include energy storage on the side of the dc bus because the power consumption 
from the dc bus reflects the power received from the fictitious prime mover and the inertia 
of the spinning component of the hypothetical SG. The latter component of electricity may 
arrive in large bursts, proportionate to the grid frequency’s derivative [27]. The synchron-
verter can reproduce the precise dynamics of an SG, yet the intricacy of the underlying 
differential equations might lead to numerical instabilities. Additionally, a voltage-source 
technique may need additional protection mechanisms for safe operation since it lacks 
inherent safety against powerful grid transients. This might be performed without making 
significant modifications to the operation’s structure [18]. 

2.1.2. Kawasaki Heavy Industries (KHI) 
Instead of employing a complete dynamic model representation of the SG, the KHI 

topology implements an analogous model of a governor and automatic voltage regulator 
(AVR) in a discrete controller to produce the virtual machine’s voltage amplitude and 
phase reference. These references are employed to generate reference currents using the 

Modeling 
Equations

To PWM 
Generator 

Figure 7. The components of a synchronverter: controller [26].

The synchronverter uses the following equations to model SG behavior, as expressed in [6,18]:

Te= M f i f i,s̃in θ (1)

e=
.
θM f i f s̃in θ (2)

Q= −
.
θM f i f i, c̃os θ (3)

where, M f represents the size of the mutual inductance between the stator coil and the field
coil, i f represents the field excitation current, θ represents the angle between one of the
phases of the stator winding and the rotor axis, e represents the no-load voltage generated,
and Q represents the reactive power produced [18].

A three-phase cylindrical-rotor synchronous machine’s mathematical model is at the
heart of the controller of a three-phase synchronverter, as illustrated in Figure 7. The
back electromotive force, e, estimated using the mathematical model, is sent into a PWM
generating block, which generates PWM pulses to operate the power semiconductors, as
shown in Figure 6. The currents that flow out of the power stage’s inductors are counted
as the stator current i and return into the mathematical model representation [6,23,26,27].
The synchronverter’s power part is the circuit to the left of the three capacitors, along with
the capacitors. If we ignore the ripple, this section of the circuit will operate as an SG with
the identical capacitors linked in parallel. Although the Lg inductors are not part of the
synchronverter, they are important for synchronization and power regulation. It is essential
to include energy storage on the side of the dc bus because the power consumption from
the dc bus reflects the power received from the fictitious prime mover and the inertia of the
spinning component of the hypothetical SG. The latter component of electricity may arrive
in large bursts, proportionate to the grid frequency’s derivative [27]. The synchronverter
can reproduce the precise dynamics of an SG, yet the intricacy of the underlying differential
equations might lead to numerical instabilities. Additionally, a voltage-source technique
may need additional protection mechanisms for safe operation since it lacks inherent safety
against powerful grid transients. This might be performed without making significant
modifications to the operation’s structure [18].

2.1.2. Kawasaki Heavy Industries (KHI)

Instead of employing a complete dynamic model representation of the SG, the KHI
topology implements an analogous model of a governor and automatic voltage regulator
(AVR) in a discrete controller to produce the virtual machine’s voltage amplitude and
phase reference. These references are employed to generate reference currents using
the algebraic phasor representation approach for a synchronous generator, as shown in
Figure 8 [18,28,29].
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2.1.3. VISMA and IEPE Topologies

The virtual synchronous machine (VISMA) and Institute of Electrical Power Engineer-
ing (IEPE) approaches are two more topologies and techniques that have been introduced
in various research works [23,30]. For all topologies, the basic principle of simulating an
inertia response is the same. In the research effort of [30], the VISMA approach simulates
the SG using d− q based architecture. When this architectural design is implemented using
a digital control unit of a power converter, the dynamics of a synchronous generator are
replicated. However, it has been suggested in the literature that the VISMA approach is
unstable due to the use of numerical data. Using a three-phase model, a strategy is created
to boost the strength. For asymmetrical loads and abrupt fluctuations in the utility grid,
this novel approach is quite effective.

The IEPE topology is a topology that is similar to VISMA, but the main distinction
is that IEPE uses the output current of a DG to provide a reference voltage for virtual
machines. In the grid-linked mode of IEPE, dealing with transient currents during the
synchronization phase is difficult. The IEPE approach, on the other hand, is best-suited for
islanded mode [31].

2.2. A Swing Equation-Based Topology
2.2.1. Ise Lab’s Topology

This architecture resolves the power- and frequency-based swing equation in each
control step to simulate inertia rather than needing a fully detailed description of the
synchronous generator [18,32]. Figure 9 depicts a simplified example of this topology. From
the common connection point, the frequency and power measuring equipment collects
the voltage and determines the output current of the inverter. It makes an estimate of the
utility grid frequency and the inverter’s active output power. The control algorithm unit
receives prime mover input power as well as two computed values [23,32,33]. The control
technique may be implemented without the need of a frequency derivative, much like a
synchronverter. This is very beneficial since frequency derivatives are established to add
disturbance into the system, making it challenging to control. This topology may also be
utilized to run DG as grid-forming systems. However, there are still issues with numerical
instability, which when combined with incorrect setting of the parameters J and Dp, can
cause oscillatory behavior of the system [18,33].
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A SG’s typical swing equation is:

Pin−Pout= Jωm

(
dωm

dt
) + Dp∆ω (4)

∆ω = ωm−ωg (5)

where, Pin and Pout are the input and output powers (W), J is the moment of inertia (Kg·m2),
ωm is the virtual angular frequency (rad/s), Dp is the damping factor (Kg·m2/s), and ωg
is the reference value of the angular frequency (rad/s) [18,33]. The input power, Pin, is
calculated using the governor model, as illustrated in Figure 10, where, P0 is the DG
unit’s continuous power reference. With gain K and a time constant Td, the governor is
characterized as a lag element of the first order. However, as a result of the governor
model’s delay, ROCOF is increased, which raises frequency nadirs [18].
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2.2.2. Synchronous Power Controller (SPC)

The SPC, as presented in Figure 11, is another common topology for implementing
virtual inertia. The control algorithm’s general structure is similar to that presented in the
Ise lab’s architecture, nonetheless, the converter is not operated as a voltage- or current-
controlled system; rather, with an inner current and outer voltage control loops, it uses a
virtual admittance to build a cascaded control system [34–36]. In general, during severe
transient operating circumstances, such system control offers intrinsic over-current pro-
tection. This feature is absent from other open-loop methods, including synchronverters
and Ise Lab. SPC also eliminates the discontinuities that occur while solving mathematical
models, resulting in a system that is more resistant to numerical instabilities.

The nested loop structure, on the other hand, makes setting the control system pa-
rameters more difficult. Furthermore, with an over-damped response, a second-order
representation is provided as an alternative to employing the swing equation for inertia
emulation. This helps to minimize the system’s oscillations [36]. The authors of [37] offered
improved versions of this second-order model.
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2.3. Inducverters

Another type of inertia simulation control technology is the inducverter. The in-
ducverter’s principle is established mostly on an induction machine’s inertial characteris-
tics. A self-starting and soft-starting induction machine is available. It has the ability to
synchronize with the utility grid and follow changes to the utility grid. The inducverter
uses the same principles to simulate inertia. An inducverter’s active power and frequency
can be altered using power electronic inverter-based virtual rotor inertia [6,38]. An inverter
with a filter makes up the electrical portion of the inducverter, along with a control portion
that makes the inverter behave as an induction machine by generating the voltage signals,
as illustrated in Figure 12. This approach offers the benefit of automatic synchronization
without a phase-locked loop (PLL).
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2.4. Virtual Oscillator Control (VOC)

Another VSM topology is the virtual oscillator controller (VOC), which synchronizes
DG units devoid of any kind of communication by implementing a non-linear oscillator
inside the controller rather than simulating SG or induction generators. This strategy is
especially advantageous in a grid controlled by DGs, because the controller is capable of
maintaining synchronism and sharing the overall system load [18,39].

2.5. Frequency–Power Response-Based Topologies

The easiest method of simulating inertia is to use a frequency–power response-based ar-
chitecture [18]. This architecture is not incorporated into any synchronous generator modeling.
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Virtual-Synchronous Generators (VSG)

The inertial responding properties of an SG in a DG network, particularly its capacity
to adapt to frequency variations, are mimicked by virtual-synchronous generators (VSG).
This simulates the kinetic energy’s production or absorbing in the same way as an SG
does, allowing the DG units to be dispatched. The VSG technique, in contrast to classic
droop controllers that simply allow frequency regulation, may offer frequency control.
This control is based on the frequency measurement’s derivative and is similar to an SG’s
inertial power generation or absorption in a power imbalance. As a result, the VSG, then, is
a dispatchable distributed generation that adjusts its output in response to variations in
system frequency. Since it does not include all the complicated equations needed in an SG,
VSG is among the easiest ways to apply virtual inertia. Using several DG units as current
sources, on the other hand, is known to cause instability. Equation (6) is used to adjust the
VSG converter’s output power:

PVSG= KD∆ω + K I

(
d∆ω

dt

)
(6)

where, ∆ω is the change in angular frequency, d∆ω
dt is rate-of-change in angular frequency,

KD is the damping constant, and KI is the inertial constant. The ROCOF is stopped by the
inertial constant, and this, based on the frequency derivative, provides a quick dynamic fre-
quency response. In an isolated grid, this functionality is particularly critical, given that the
initial ROCOF might be quite large, causing protective relays to be unnecessarily triggered.
Figure 13 depicts the structure of the VSG. The system frequency change and ROCOF are
measured using a PLL. For the inverter, the active power reference is then calculated using
Equation (6). On this basis, references for the current controller are created [40].
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The architecture shown here uses a direct and quadrature axis d− q current control
method, although any alternative current control method can be employed. The d-axis
current reference for d− q control may be computed as:

I∗d =
2
3

(
VdPVSG−VqQ

Vd
2+Vq2

)
(7)

where Vd and Vq are the dq parts of the observed grid voltage, v, respectively. As the active
power is regulated only, the q-axis current reference, Iq, and the reactive power, Q, are both
set to zero. The gate signals to operate the inverter are produced by the current controller,
which is established on grid current feedback. As a result, the inverter functions as a
voltage source inverter with current control.
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Another sort of VSG used to simulate the inertial features of an SG is the VSYNCH’s
VSG. It can respond to variations in frequency. The block diagram of the VSYNCH’s VSG is
presented in Figure 14. In the inertial response, the control method creates a control signal
to add, from the storage device, the needed quantity of power. The VSG acts as a current
control source, simulating inertia. The PLL is built in such a way so that it produces the
ROCOF and ∆ω in this case [6].
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2.6. Droop-Based Approaches

To increase inertial responsiveness of inverter-dominated power systems, the tech-
niques reported until now attempt to emulate or simulate the SG’s performance. For the
autonomous functioning of isolated microgrid systems, frequency droop-based controllers
have been created [18], which differ from existing strategies. The frequency droop is
accomplished as follows, assuming that the grid’s impedance is inductive:

ωg= ω∗ − mp(P out − Pin
)

(8)

where Pin represents the active power reference, Pout represents the DG unit output mea-
sured active power, mp represents the active power droop, ω∗ represents the reference
frequency, and ωg represents the local grid frequency. The voltage droop is implemented
in the same way:

vg= v∗ − mq(Q out − Qin
)

(9)

where, v∗ represents the reference voltage, vg represents the grid voltage, Qin represents
the reference reactive power, Qout represents the DG unit output measured reactive power,
and mq represents the reactive power droop. Figure 15 depicts the architecture of the
method based on Equation (8). To measure the inverter output power and to attenuate
high-frequency parts from the inverter output, a low-pass filter with a time constant Tf is
frequently employed [18]. The filters employed in these controllers for power measure-
ments create a delay that is mathematically comparable to the virtual inertia, whereas the
droop gain is comparable to damping. Conventional droop-based systems, such as those
explained in (8) and (9), are known to possess a delayed transient reaction. There have been
suggestions for ways to enhance droop controllers, by employing virtual output impedance
or increasing the dynamic performance of the droop structure.

Finally, Table 1 summarizes the key features of each VSM topology. The summary
highlights the key information of each topology. Virtual inertia models built on synchronous
generators have the advantage of being an exact copy of synchronous generator dynamics.
In a synchronous generator-based approach, PLL is used for phase synchronization and
frequency derivatives are not necessary. These topologies lack over-current protection and
have numerical instability as drawbacks. In contrast to SG-based models, swing equation-
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based models are easier to understand. PLL is only utilized for phase synchronization
in these topologies, and frequency derivatives are not necessary. Power and frequency
fluctuations as well as a lack of over-current safety are some of these topologies’ drawbacks.
The construction of the frequency–power approach-based model, on the other hand, is
simple since it uses a standard current-source implementation and includes built-in over-
current protection. Due to PLL, these topologies are insecure, most often in weak grids.
The frequency–power method is a model that is subject to noise.
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may be used as
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• Frequency droop
algorithm controls
output power.

• Adjustable moment
inertia and
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• It is capable of
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voltage regulator
(AVR) model are
used instead of a
full dynamic model
of the SG.

• Highly efficient for
asymmetrical loads
and sharp changes
in the utility grid.

V
IS

M
A

an
d

IE
PE

to
po

lo
gi

es

Synchronous
Generator

Model-
Based

Topology

[23,30,31]

• The VISMA
approach uses d-q
-based architecture
to simulate the
synchronous
generator.

• IEPE uses the
output current of a
DG to provide a
reference voltage for
virtual machines.

VISMA:

• Accurate replication
of SG dynamics.

• Automated
power-sharing and
syncing capabilities.

• Standalone and
microgrid operation.

• Conceptually
straightforward.

IEPE:

• Best-suited for
islanded mode.

VISMA:

• Unstable due to the
use of numerical
data.

• Implementation of a
PLL that is difficult.

IEPE:

• It is challenging to
cope with transient
currents in the
synchronization
period in a
grid-connected case.

Required
for initial
synchro-
nization
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Table 1. Cont.

Topologies Type Ref. Features Strength Weaknesses PLL

Is
e

La
bs

To
po

lo
gy

A Swing
Equation-

Based
Topology

[18,32,33]

• To simulate inertia,
this architecture
solves the
power–frequency
swing equation per
control cycle.

• It estimates the
active output power
of the inverter as
well as the utility
grid frequency.

• Imitates SG
behavior.

• Designed for the
self-contained
functioning of
isolated systems.

• There is less noise in
the system since the
frequency derivative
is not required to
execute the
control procedure.

• Problems related to
numerical
instability.

• System oscillation
might result from
incorrect parameter
tuning.

• As a result of the
governor model’s
delay, greater
ROCOF and
therefore larger
frequency
nadirs result.

Required
for initial
synchro-
nization

Sy
nc

hr
on

ou
s

Po
w

er
C

on
tr

ol
le

r
(S

PC
) A Swing

Equation-
Based

Topology

[6,34–37]

• A cascaded control
system is
implemented using
a virtual admittance,
with an inner
current and an outer
voltage control loop.

• A cascaded control
system offers
intrinsic
over-current
protection.

• Eliminates the
discontinuities that
occur while solving
mathematical
models, resulting in
a system that is
more resistant to
numerical instabilities.

• The nested loop
structure makes
setting the control
system parameters
more difficult.

In
du

cv
er

te
rs

[6,38]

• Inducverter’s
principle is
established mostly
on the induction
machine inertial
characteristics.

• Offers the benefit of
automatic
synchronization
without the need of
a PLL.

• Able to share total
system load.

V
ir

tu
al

O
sc

ill
at

or
C

on
tr

ol
(V

O
C

)

[18,39]

• Synchronizes DG
units devoid of any
kind of
communication by
implementing a
non-linear oscillator
inside the controller
rather than
simulating SG or
induction generators.

• This strategy is
especially
advantageous in a
grid controlled
by DGs.

• The controller is
capable of
maintaining
synchronism and
sharing the overall
system load.

• Offers better
voltage regulation.
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Table 1. Cont.

Topologies Type Ref. Features Strength Weaknesses PLL

V
SY

N
C

V
SG

To
po

lo
gy

Frequency–
Power

Response-
Based

[6,18,40]

• It is established on
the frequency
measurement’s
derivative.

• Simulates the
inertial reaction to
frequency variation.

• Uses virtual inertia
in DG systems
because it does not
include all the SG’s
precise equations.

• The easiest method
of simulating inertia
is to use a
frequency–power
response-based
architecture.

• Allows load sharing
amongst
parallel-connected
devices.

• Inherent
over-current
protection.

• Quick reaction in
tracking steady-state
frequency.

• A successful
operation
necessitates the use
of a powerful and
sophisticated PLL.

• Noise-sensitive,
which might lead to
unsteady
functioning.

• In grid-connected
mode.

• Reacts to changes in
frequency rather
than voltage.

• Execution time is
lengthy.

• Under AC weak
grids, a PLL has a
negative impact on
control performance.

Needed

D
ro

op
-B

as
ed

A
pp

ro
ac

he
s

[18]

• For the autonomous
functioning of
standalone
microgrid systems,
frequency
droop-based
controllers have
been established.

• Traditional droop
control in SGs is
similar to the
concepts employed.

• The delay created by
the filters employed
in these controllers
for power
measurements is
mathematically
comparable to
virtual inertia.

• Traditional
droop-based
systems are known
to have a delayed
transient reaction.

Needed

3. Virtual-Synchronous Generator (VSG) Principles and Control Orders

VSG has a basic and very simple construction [23], as illustrated in Figure 16, which
contains a filter circuit, DG system, storage unit, DC/AC converter, governor, and a grid. If
the input torque of the prime mover is considered the power of the DG unit and energy
storage device, and it is presumed that the electromechanical energy transfer between the
rotor and stator is the DC/AC converter. The electromotive force of the VSG is represented
by the fundamental component of midpoint voltage. The stator winding impedance is
represented by the filter’s inductance and resistance [23,41].

The voltage and current on the AC side of the inverter, displayed in Figure 16, are vabc
and iabc, respectively. The filter voltage and current are voabc and ioabc, respectively. The
grid voltage is vgabc, while R, L f , and C f are the resistance, inductance, and capacitance of
the filter, respectively. The gridline inductance is Lg, the VSG internal voltage amplitude is
E, the phase difference is δ, the voltage magnitude and phase of VSG terminal are V and
θ, and the active and reactive power output by VSG are Pe, Pm and Qe, Qm, respectively.
The higher-order and lower-order VSG control techniques may be established by making
minimal changes to the voltage source controller’s control structure. Despite that both
types of VSG strategies regulate active and reactive power, every approach has its own
control structure. Furthermore, numerous VSG control algorithms have been devised for
a power electronic converter to replicate the properties of an SG [23,42,43]. Furthermore,
models of VSG can be split according to the need for an additional component, such as
energy storage; hence, Figure 17 summarizes the distinctions between VSG models at
various phases, as discovered in the literature [42].
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Figure 17. VSG classification according to model order [42].

3.1. VSM Model with High Order

By including effective inertia and damping ability into the VSC control algorithm
and utilizing the mathematical model of SM, it is possible to emulate the characteristics
of SM inertia [42]. The reference values are calculated using the SM’s high-order model.
It is worth noting that SM’s mathematical model includes both electrical and mechanical
components. The mechanical portion is in charge of creating the swing equation. There are
two versions of the high-order VSG control method. The first configuration is a voltage-
to-current one, and it is based mostly on detecting the point of common coupling of AC
voltages. The second configuration is a current-to-voltage model with energy storage. As
shown in Figure 18a, the voltage-to-current model offers set point values of current to
manage the VSC, whereas the current-to-voltage model gives reference voltage values, as
illustrated in Figure 18b [42,44]. In [44], an evaluation of both VISMA high-order models
was conducted during typical operating conditions using distinct switching strategies.
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Figure 18. High-order VSG models: (a) voltage-to-current model, and (b) current-to-voltage model [42,44].

3.2. Model of Low-Order VSM

The features of the high-order VSM model outlined earlier are similar to those of SM.
The low-order VSM control technique, on the other hand, is comparable to the traditional
droop technique, which is based on the swing equation, as illustrated in Figure 19. The
replication of the inertia and damping behavior of SMs may be obtained by employing
the swing equation because the major goal behind adding VSM is to emulate SM behavior.
As a result, torque parameters are used to express the general version of the SM swing
equation based on Newton’s law, and it may also be represented in terms of real power in a
situation of executing VSM control [42].
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Figure 19. Model of low-order VSM.

The major distinction between the high- and low-order VSM control methods is the
regulated topology of the VSC. Despite that both low-order and high-order VSM algorithms
provide real and reactive power regulation separately, and each of them has a unique control
framework, both control orders in VSM algorithms undoubtedly imitate the inertia and
damping behavior of SM since the swing equation is presented in the control approach.
It is still unclear which of the control order options is the most efficient. As a result, the
work in [42] provides a complete comparison of VSM order control methods to provide
unambiguous advice on which VSM method to choose [42]. The authors found that the
low-order VSM control method is clearly extra dependable compare to the high-order VSM
control method. Furthermore, utilizing a high-order model to regulate VSC and simulate
inertia may cause numerical issues because of the use of AC voltage measurements, which
is not optimal. An unstable AC voltage was used to test the stability of both control methods.
Clearly, the most promising method is the low-order VSM based on a frequency–power
droop technique controller since it also stays stable when electrical distribution systems
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are subjected to aberrant conditions. Moreover, the low-order VSM’s cascaded voltage and
current management protects the converter against overloading difficulties, and it features
a function that may limit the direction of power flow [42].

4. VSG Operation Control

The appropriate operating mechanism of the inverter at its interface allows VSG
to control its input/output. Typical control approaches include real and reactive power
control, voltage and frequency control, and a droop controller. The deployment of the
control strategy into the system is often dependent on the power system’s operational mode.
The sole difference between a regular inverter and a VSG is that the VSG replicates the
features of an SG through its control algorithm. VSG’s control algorithm may be separated
into two types, which are detailed as follows [23,41].

4.1. Active and Reactive Power Controls

The outermost power loop and the inner current loop make dispersed generators’
output a constant scheduling power through real and reactive power control. This control
mechanism is generally employed in grid-connected VSG units. In the power system, the
converter’s active and reactive power control work as control buses. The majority of the
buses in the power grid system are control buses. Active and reactive control buses are
the most prevalent storage devices for electric cars. When the active and reactive power
techniques are used in grid-linked mode, active power can closely follow the governor
unit’s dispatch instruction. However, the reactive power controller does not properly
follow the dispatch instruction and fails to supply the system with the requisite reactive
power. VSG’s active power control is a duplicate of SG’s governor unit. Figure 20 shows
the control diagram, with Pe and Pm representing the VSG real power and reference active
power, respectively [23,41,45,46].

Energies 2022, 15, x FOR PEER REVIEW 18 of 28 
 

 

buses in the power grid system are control buses. Active and reactive control buses are 
the most prevalent storage devices for electric cars. When the active and reactive power 
techniques are used in grid-linked mode, active power can closely follow the governor 
unit’s dispatch instruction. However, the reactive power controller does not properly fol-
low the dispatch instruction and fails to supply the system with the requisite reactive 
power. VSG’s active power control is a duplicate of SG’s governor unit. Figure 20 shows 
the control diagram, with 𝑃 and 𝑃 representing the VSG real power and reference ac-
tive power, respectively [23,41,45,46]. 

 
Figure 20. VSG control approach using real and reactive power. 

Due to its simplicity, most VSG control systems now employ the active and reactive 
power control method. Work in [47] presents a new frequency control technique for elec-
tric vehicles (EVs) to support in main and secondary microgrid frequency management. 
A virtual-synchronous generator with AC/DC control is utilized to introduce effective in-
ertia and damping characteristics. As a result, the charging/discharging device possesses 
inertia and damping characteristics comparable to an SG. A fuzzy controller based on the 
VSG architecture to attenuate disturbance throughout transients by enhancing the sys-
tem’s inertia is proposed in [48]. The suggested fuzzy control boosts the system inertia 
during transients by adding a corrective term to the output power of the governor. On a 
VSG platform, the difference between the suggested fuzzy-based control approaches and 
the cost function-employed optimization for inertia and damping coefficients are per-
formed to compare the improvement of the inertial response. Compared to other time-
consuming strategies, online measurement-based adaptive systems offer a greater inertial 
response. In [49], according to a comparison of standard droop control and VSG control, 
a general droop control (GDC) for a grid-forming inverter is presented in this study. More-
over, in [50], an enhanced droop control technique integrating coupling compensation 
and virtual impedance is suggested to increase the microgrid’s efficiency and stability.  

4.2. Voltage and Frequency Control 
In this control technique, the current inner loop and the voltage outer loop of the 

voltage and frequency control may output constant voltage and frequency. This is a com-
mon control method in islanding VSG units. During the islanding operation, the primary 
control unit provides voltage and frequency assistance for the passive unit as a slack bus, 
employing active and reactive power regulation. This technology has a high-speed feature 
that makes it excellent for use in solar and wind energy-generating and storage systems. 
By mimicking the SG’s function excitation regulator, the VSG’s voltage control unit ac-
complishes the voltage amplitude. In general, the voltage control adjusts the output volt-
age according to the amplitude deviation of the VSG output voltage and utilizes the volt-
age adjustment coefficient, 𝐾, to characterize the VSG’s voltage regulation capabilities. 
Figure 21 depicts the principal control framework for voltage control and reactive power 
regulation. In Figure 21, 𝑉 and 𝑉 represent the actual and reference voltages, respec-
tively. The computed reactive power is 𝑄 and the set point reactive power is 𝑄. The 
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Due to its simplicity, most VSG control systems now employ the active and reactive
power control method. Work in [47] presents a new frequency control technique for electric
vehicles (EVs) to support in main and secondary microgrid frequency management. A
virtual-synchronous generator with AC/DC control is utilized to introduce effective inertia
and damping characteristics. As a result, the charging/discharging device possesses inertia
and damping characteristics comparable to an SG. A fuzzy controller based on the VSG
architecture to attenuate disturbance throughout transients by enhancing the system’s
inertia is proposed in [48]. The suggested fuzzy control boosts the system inertia during
transients by adding a corrective term to the output power of the governor. On a VSG
platform, the difference between the suggested fuzzy-based control approaches and the
cost function-employed optimization for inertia and damping coefficients are performed to
compare the improvement of the inertial response. Compared to other time-consuming
strategies, online measurement-based adaptive systems offer a greater inertial response.
In [49], according to a comparison of standard droop control and VSG control, a general
droop control (GDC) for a grid-forming inverter is presented in this study. Moreover,
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in [50], an enhanced droop control technique integrating coupling compensation and
virtual impedance is suggested to increase the microgrid’s efficiency and stability.

4.2. Voltage and Frequency Control

In this control technique, the current inner loop and the voltage outer loop of the
voltage and frequency control may output constant voltage and frequency. This is a
common control method in islanding VSG units. During the islanding operation, the
primary control unit provides voltage and frequency assistance for the passive unit as a
slack bus, employing active and reactive power regulation. This technology has a high-
speed feature that makes it excellent for use in solar and wind energy-generating and
storage systems. By mimicking the SG’s function excitation regulator, the VSG’s voltage
control unit accomplishes the voltage amplitude. In general, the voltage control adjusts
the output voltage according to the amplitude deviation of the VSG output voltage and
utilizes the voltage adjustment coefficient, Kq, to characterize the VSG’s voltage regulation
capabilities. Figure 21 depicts the principal control framework for voltage control and
reactive power regulation. In Figure 21, Vo and Vr represent the actual and reference
voltages, respectively. The computed reactive power is Qe and the set point reactive power
is Qm. The reactive voltage droop coefficient and the integral coefficient are Kq and KE,
respectively. Er is the amount of the reference output voltage. To make a VSG voltage
reference, the amplitude of the reference output voltage is paired with the angle of active
frequency control [23,41,46].

Energies 2022, 15, x FOR PEER REVIEW 19 of 28 
 

 

reactive voltage droop coefficient and the integral coefficient are 𝐾 and 𝐾ா, respectively. 𝐸 is the amount of the reference output voltage. To make a VSG voltage reference, the 
amplitude of the reference output voltage is paired with the angle of active frequency 
control [23,41,46]. 

 
Figure 21. VSG control of voltage and frequency. 

Voltage and frequency control using an interleaving method provides self-adaptive 
inertia and damping to increase the stability of the frequency [50]. The suggested 
method’s efficiency is demonstrated by tests on the MATLAB/Simulink VSG model. In 
[43], under unbalanced voltage situations, a comprehensive VSG control approach is pro-
vided. Experimental and simulation results are utilized to confirm the validity and effi-
cacy of the suggested control approach. Self-adaptive VSG is a relatively recent frequency 
support control technology for VSG power systems. The inertia of a non-adaptive VSG-
based power network is constant, and the use of different inertia values has a considerable 
effect on the stability of the frequency. The self-adaptive VSG approach is presented in 
order to suppress these difficulties [51,52]. In [52], a fuzzy-based, self-adaptive, virtual 
inertia controller is developed to ensure steady stability of frequency. This control ap-
proach updates the virtual inertia constant based on real power injection from renewable 
energy sources and system frequency changes, thus preventing inappropriate selection, 
and affording a speedy inertia response. The simulation findings demonstrate that apply-
ing self-adapting VSG significantly improves frequency stability; nonetheless, the article 
lacks experimental results. As a result, simulation findings are only reported for a single 
islanded microgrid, with no discussion of outcomes for several VSG-based islanded mi-
crogrids. 

Furthermore, in [53], virtual inertia enhancement using a novel, optimum, robust 
control technique is developed to improve the modern power systems’ frequency stability 
while taking into account impacts of frequency measurement, nonlinearities, and renew-
able intermittencies. To collect the estimated system frequency information, a PLL is 
needed when using the virtual inertia control approach [53]. 

5. Virtual Inertia (VI) Control Strategies 
Various VI-based inverter control approaches have been constructed and developed 

to enhance power quality, tracking of inverter output voltage or current, and disturbance 
rejection. Different types of controllers can be used to build grid-following and grid-form-
ing inverters. The controller optimizes and manipulates the voltage or current to create 
inverter PWM. The most prevalent control approach for VI-based inverters is inner-loop 
voltage and current control. Based on the peculiarities of inverter architectures, several 
established control mechanisms are applied. Straightforward approaches to complicated 
mathematical procedures are used to construct control systems. In general, the most often 
utilized control approach is a proportional integral derivative (PID). However, it has a 
number of serious flaws, including performance decrease during the disruption [10]. 

Recent work on approaches for controlling virtual inertia in islanded microgrids is 
discussed in [54]. Some of the methodologies examined included the coefficient diagram 

Figure 21. VSG control of voltage and frequency.

Voltage and frequency control using an interleaving method provides self-adaptive
inertia and damping to increase the stability of the frequency [50]. The suggested method’s
efficiency is demonstrated by tests on the MATLAB/Simulink VSG model. In [43], under
unbalanced voltage situations, a comprehensive VSG control approach is provided. Ex-
perimental and simulation results are utilized to confirm the validity and efficacy of the
suggested control approach. Self-adaptive VSG is a relatively recent frequency support
control technology for VSG power systems. The inertia of a non-adaptive VSG-based power
network is constant, and the use of different inertia values has a considerable effect on
the stability of the frequency. The self-adaptive VSG approach is presented in order to
suppress these difficulties [51,52]. In [52], a fuzzy-based, self-adaptive, virtual inertia con-
troller is developed to ensure steady stability of frequency. This control approach updates
the virtual inertia constant based on real power injection from renewable energy sources
and system frequency changes, thus preventing inappropriate selection, and affording a
speedy inertia response. The simulation findings demonstrate that applying self-adapting
VSG significantly improves frequency stability; nonetheless, the article lacks experimental
results. As a result, simulation findings are only reported for a single islanded microgrid,
with no discussion of outcomes for several VSG-based islanded microgrids.

Furthermore, in [53], virtual inertia enhancement using a novel, optimum, robust
control technique is developed to improve the modern power systems’ frequency stability
while taking into account impacts of frequency measurement, nonlinearities, and renewable
intermittencies. To collect the estimated system frequency information, a PLL is needed
when using the virtual inertia control approach [53].
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5. Virtual Inertia (VI) Control Strategies

Various VI-based inverter control approaches have been constructed and developed
to enhance power quality, tracking of inverter output voltage or current, and disturbance
rejection. Different types of controllers can be used to build grid-following and grid-forming
inverters. The controller optimizes and manipulates the voltage or current to create inverter
PWM. The most prevalent control approach for VI-based inverters is inner-loop voltage
and current control. Based on the peculiarities of inverter architectures, several established
control mechanisms are applied. Straightforward approaches to complicated mathematical
procedures are used to construct control systems. In general, the most often utilized control
approach is a proportional integral derivative (PID). However, it has a number of serious
flaws, including performance decrease during the disruption [10].

Recent work on approaches for controlling virtual inertia in islanded microgrids is dis-
cussed in [54]. Some of the methodologies examined included the coefficient diagram tech-
niques, particle-swarm-based techniques, fuzzy-logic-based techniques, H-infinity-based
techniques, model-predictive controllers, and reinforcement learning-based techniques,
and these methodologies are shown in Table 2 [54].

Table 2. Islanded microgrids VI control approaches [54].

Control Type Control Method Advantage Drawbacks Complexity Robustness

Classical

Robust H-infinity

n Robust frequency control.
n Strong overshoot
minimization.

n Notable rises
when connection
disruptions occur.
n Order reduction
is required.
n Robustness is insufficient.

Medium High

Coefficient
diagram method

n Robustness is high.
n Order reduction is
not required.

n Robustness is limited. Medium High

Advanced
algorithms

Fuzzy-logic-based
controller

n Flexible reaction.

n Manual optimization.
n Computing time is long.
n Fuzzy rules
adaption limitations.

High High

Reinforcement
learning-based

controller

n Rewarding system
for learning.
n Efficient system feedback.
n Superior robustness.

n There is a requirement for
sample data.
n Particularly to the
reward/penalty
optimization.

Very High High

Hybrid
algorithm

PI/PID and
particle-swarm

optimization

n Straightforward controller.
n Minimally complex
numeric.

n Global optimum solution
convergence is not assured.
n Lack of robustness.

Low Low

Model-predictive
control

n Superior robustness.
n Rapid response based
on prediction.
n Quick optimization.

n Required dataset for
prediction model.
n Complicated optimization.

High High

Furthermore, in [5,20,46,55–68], the use of various control strategies and their effects
on VI are investigated. In [55], a new control method for an isolated PV-Diesel hybrid
power plant using virtual synchronous generators is proposed for output voltages’ synchro-
nization with no need for a PLL, and meanwhile adjusting the starting position of the diesel
generator’s rotor and assuring that the two sources are sharing power in accordance with
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the specified power ratio. In [56], an energy storage system (ESS)-based new VSG using
model-predictive control (MPC) is developed to minimize irregularities and improve the
MG’s stability. During transient states, the suggested approach may offer inertia support
and improve the dynamic system voltage and frequency characteristics. The research in [57]
proposes a new VI control technique. An in-depth analysis on the lack of agreement be-
tween the VI concept and the energy storage control algorithm is performed in conjunction
with the potential inertia benefits of the VSG technique. To increase control precision, the
paper focuses on analyzing the frequency response properties of the alternating current
(AC) side. This research regulates the ac frequency more precisely and directly using the vir-
tual inertia produced by the ESS and the grid-connected inverter. The work in [58] provides
a unique VSG-based multi-loop control method for managing integrated inverter-based
renewable DGs in a plug-and-play way. In this multi-loop control approach, the virtual
flux-oriented controller is used to eliminate harmonic intrusion and make sure that the
voltage/current closed-loop feedback-based vector control system correctly manages the
vector orientation process. The VSG-based control is capable of obtaining a quick current
response and stable output voltage tracking control with no errors. A fast-responding
external energy reserve is employed in [59] to regulate the frequency of a microgrid under
transient situations. With a virtual synchronous machine, the weak grid properties are
researched and modeled. To connect the ESS to the grid, an inverter model is designed,
as well as a dual second-order generic integrator PLL that can synchronize the system
in inaccurate and imbalanced situations. A novel method for estimating the microgrid’s
frequency is described. Furthermore, the work in [60] focuses on the economics of resource
inertia as a grid service, with the goal of determining a low-cost commitment of fast-acting
storage devices to improve primary frequency responses. In [61], the inertia needed from ES
systems during a generation transition is calculated using an analytical approach. The work
in [62] introduced a new microgrid control approach that incorporates a model-predictive
control (MPC)-based virtual inertia technology to simulate virtual inertia in the microgrid
control loop, therefore steadying microgrid frequency. In [5], an intelligent and autonomous
connection strategy for DC microgrids into the established ac grid is presented based on
the VSM idea. In [46], a control technique of a VSG is provided to increase the system’s fre-
quency stability. For a microgrid, an enhanced bang-bang control strategy-based adaptive
virtual inertia control method is introduced. In [63], Gray-box system identification is used
to perform the equivalence between the VSM-based microgrid (VSMG) small-signal model
and a revised third-order model of SG, which is accomplished by alternately and repeatedly
estimating equivalent electrical parameters. Variable-speed wind turbines can use the
synchronverter and inertial control method in [64]. Furthermore, a complete evaluation
of frequency-based inertial control and synchronverter inertial controls was performed
using a model of a type 4 permanent magnet synchronous generator-based wind power
generation system. The work in [65] examined the effect of damping and moment of
inertia on the system, using a comparative relation between the synchronous machine
and three-phase inverter’s, as well as the rotor motion equation of the VSG. This study
also uses the small-signal model and root locus to perform stability analysis. Based on the
current control technique, a VSG cooperative control approach based on the ideal damping
ratio was developed. In [66], the research then proposed an adaptive control technique
according to the findings of the parameter evaluation. In another work, in order to increase
the dynamic performance and decrease the reactive power-sharing error in a low-inertia
microgrid, the study in [67] proposed enhanced VSG control algorithms. The frequency
response and stability of three parallel VSG-based photovoltaic systems combined with
battery energy storage are investigated in [20]. Furthermore, the best values of the droop
controller parameters utilized in VSG are obtained using an advanced genetic algorithm
optimization approach. In addition, two separate situations involving variations in the
system’s supply and load power are thoroughly examined. In order to simulate both
damping and inertia characteristics concurrently for the microgrid and improve frequency
stability and performance, the work in [69] proposed a unique analysis and design of VI
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control. To compute the frequency derivative for VI imitation, the suggested virtual inertia
control employs the derivative approach.

6. Energy Storage

Battery energy storage systems (BESSs) might be utilized to simulate the inertial
reaction of synchronous generators, such as the virtual-synchronous generators. Virtual
inertia refers to the idea of simulating inertia in which the reaction to disturbances in
the power grid is unconnected from the power generation. This can be carried out by
adding a second control to the power electronic interface that regulates power output
or installing an energy storage device to help supplement the power that is currently
being injected into the power system [70]. The energy required to manage the active
power output is provided by the storage [71–73]. For small power networks with low
inertia, ESS is vital and significant [73]. Work in [74] introduces several modes of BESS
management with varying grid consequences, such as correcting the inertia and main
frequency response’s performance. An energy storage system may be employed to enhance
power flow control. However, the amount of energy required for this service does not
necessitate the need of an energy storage device if the power plant only offers inertial
support. Furthermore, a battery storage system’s existence might be considered during
the VSG tuning phase by depending on the storage capacity, choosing the inertial constant.
The capacity of the storage system for main and secondary frequency control is determined
by the plant’s management strategy and any contractual agreements with the transmission
system operators (TSO) [75]. Energy support for inertia and main frequency regulation
of VSG can be provided by a variety of energy storage technologies, including batteries,
flywheels, supercapacitors, and superconducting magnetic energy storage [76]. Table 3
summarizes the essential properties of various energy storage systems.

Table 3. Key properties of various energy storage systems.

Energy Storage Type Efficiency (%) Power Capability (MW) Lifetime Response Time Charge Time

Lithium Batteries 90–95 0.015–50 3–15 k times <100 milliseconds Hours

Flywheels 85–96 0.1–20 >15 years <2 milliseconds Minutes

Supercapacitors 65–80 0.05–0.1 500 k times <1 milliseconds Seconds

Superconducting
magnetic >95 1–10 >30 years <2 milliseconds Seconds

When choosing energy storage units for an ESS, high-energy density units should
be utilized in conjunction with high-power density units to improve system operational
efficiency and/or lifetime while lowering system costs. The hybrid energy storage system
battery/ultracapacitor (HESS), as an example, uses the battery to compensate for low-
frequency power variations, while the ultracapacitor compensates for high-frequency
power fluctuations [77]. The master–slave and peer-to-peer control techniques of the active
power reserve, where the reserve power is employed as the inertia power and primary
frequency modulation (FM) power, are offered as different approaches to achieving the
maximum power point (MPP) of PV power plants in [78]. A general approach for optimally
dimensioning a BESS device utilized for frequency regulation in a standalone power system
was demonstrated in [79]. The ideal solution was achieved through the use of a dynamically
changeable state of charge restrictions and a suitable device size.

7. Future Research Scope

RESs are rapidly expanding and integrating. Therefore, in the past years, there has
been a major advancement in VSG regulation and associated techniques. The creation of
VSG offers a practical and affordable way to use renewable energy sources and expands
the opportunities for their use. Furthermore, the rising integration of VSG into the power
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system indicates that a sizable portion of the future power system will include both tra-
ditional SGs and a large number of VSGs. As a result, more research needs to be carried
out on coordinated control between VSGs and traditional SGs during different operational
modes and fault conditions.

The best distribution of renewable energy resources may be achieved by ensuring that
VSG and SG effectively interact. As a relatively new technology, the VI inverter has a lot of
space for development and advancement. Moreover, regarding the VSG control methods,
due to its conventional design and slower transient response, the traditional controller is
anticipated to be replaced within the next few years by a new generation of VI inverters
with an improved controller. The algorithm is changing from a traditional controller to
an intelligent and adaptive one, such as model-predictive control (MPC) and artificial
intelligence (AI) control, including fuzzy-logic controllers. Digital stochastic control is a
robust control approach that has been studied for power system applications [76]. This
control approach can be investigated for virtual inertia emulation for stochastically varying
renewable energy sources. Therefore, more studies on the VSG control design techniques
employing intelligent controllers are required to achieve efficient and improved power
sharing among the inverter-interfaced VSG.

High penetration of renewables using VSG mandates to investigate the reliability,
energy security, and system stability from a utility point of view. Multilevel power electronic
converters with appropriate control techniques can be investigated to maintain a minimum
level of harmonic injection and other grid codes provided by the TSO [80]. This also triggers
to examine the appropriate size of the VSG required for a power system network to ensure
inertia support for a particular duration. Various optimization techniques can be utilized
to determine inertia support duration for a given size of the VSG. In addition, economic
aspects of this technique to tackle the rate of change of frequency issues in modern power
systems need to be investigated.

Performance of VSG highly depends on the measurement, detection, and computing
algorithms. Advanced computing algorithms, and accurate and fast detection and mea-
surement of the rate of change in frequency, are essential for a wide range of uses of VSG.
Therefore, massive research can be conducted using different signal processing techniques,
such as wavelet theory, and machine learning techniques to attain optimal performance of
the VSG deployment [81]. In addition, a high penetration level of VSG requires revisiting
the system modeling for performance analysis and reliability and stability studies.

Although deregulation policies are in place, policies regarding reserve margin and
technology to be deployed are yet to be developed in case of high levels of VSG penetra-
tion. Hybridization of energy storage can provide high-energy density and fast response
solutions, which are required for virtual inertia applications. Therefore, further investi-
gation into energy storage units is also required to obtain novel solutions to respond to
the demands of virtual inertia in future power networks. Table 4 provides a summary
of potential hybridization of various energy storage technologies in order to mitigate
different issues [82].

Table 4. Energy storage hybridization opportunities to mitigate various issues while deploying large-
scale VSGs. X shows no opportunity,

√
provides a significant potential, and * shows a possibility

of hybridization.

Issues/Functionalities Pumped Hydro-
Storage—Alone

Pumped Hydro-
Storage—Flywheel

Energy Stoarge

Pumped Hydro-
Stoarge—
Battery

Pumped Hydro-
Storage—Fuel

Cell

Pumped Hydro-Storage—
Superconducting

Magnetic Energy Storage

Pumped
Hydro-Storage—
Supercapacitor

Power quality X
√ √

*
√ √

Energy
management

√ √ √ √ √ √

Intermittency
mitigation X

√ √
* *

√
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Table 4. Cont.

Issues/Functionalities Pumped Hydro-
Storage—Alone

Pumped Hydro-
Storage—Flywheel

Energy Stoarge

Pumped Hydro-
Stoarge—
Battery

Pumped Hydro-
Storage—Fuel

Cell

Pumped Hydro-Storage—
Superconducting

Magnetic Energy Storage

Pumped
Hydro-Storage—
Supercapacitor

Back-up for renewable
power integration

√ √ √ √
*

√

Back-up for
emergency X

√
* * * *

Load following
and ramping X *

√
*

√
*

Time shifting
√ √ √ √ √ √

Peak shaving
√ √ √ √ √ √

Load leveling
√ √ √ √ √ √

Seasonal energy
storage * * *

√
* *

Low-voltage
ride through X

√ √
* *

√

Black start * *
√ √

* *

Voltage control
and regulation X *

√
* *

√

Grid fluctuation
mitigation X

√ √
*

√ √

Spinning reserve X *
√

* * X

Uninterruptible
power supply X

√ √
* *

√

Transmission system
upgrade deferral

√ √ √ √
*

√

Standing reserve * *
√ √

* *

8. Conclusions

The mismatch of converter-based non-dispatchable renewable energy production
affects grid frequency stability as RES has been integrated more and more over time. Thus,
VI-based inverters are created to provide an inertial response through the imitation of SM,
thereby regulating the frequency of future power systems. Under conditions of substantial
RES penetration, grid support via power converters is required.

This study presented an insightful description of the VSG structure and an overview
of several topologies for virtual inertia. The overview drew attention to the essential details
of each topology. At the same time, synchronous generator-based virtual inertia models
have the benefit of being a precise replica of synchronous generator dynamics. On the other
hand, the disadvantages of the synchronous generator-based technique include a lack of
over-current protection and numerical instability. Swing equation-based models are more
straightforward to understand than SG-based models. These topologies’ shortcomings
include power and frequency variations and a lack of over-current protection. On the
other hand, the frequency–power approach-based model employs a conventional current-
source implementation and has built-in over-current protection, making its construction
straightforward. These topologies are unsafe due to PLL, mostly in weak grids. The
frequency–power approach is also a noisy modeling technique.

Additionally, a detailed explanation of VSG control was provided, including active
and reactive power regulation as well as voltage and frequency control. According to
the desired design, the appropriate VI-based inverter topology may often be chosen. The
parameters for selection depend on whether a current source or voltage source is being
used, as well as the amount of equation order that is required to accurately simulate SG
behavior.

High-level penetration of renewable power involves multi-energy units and multi-
functional power conditioning stages. To achieve stable, reliable, uninterruptable, and
efficient power delivery in the network, coordinated control and monitoring are critical.
Such an issue can be solved using advanced techniques, such as machine learning and
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blockchain technologies, and advanced power electronic topologies, such as multilevel
modular power converters.
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ESS Energy storage system
FM Frequency modulation
GDC Generalized droop control
HESS Hybrid energy storage system
IEPE Institute of Electrical Power Engineering
KHI Kawasaki Heavy Industries
MPC Model predictive control
MPPT Maximum power point tracking
PCC Point of common coupling
PLL Phase-locked loop
PV Photovoltaics
PWM Pulse width modulation
RES Renewable energy sources
ROCOF Rate of change of frequency
SG Synchronous generator
SM Synchronous machine (SM)
SOC State of charge
SPC Synchronous power controller
TSO Transmission system operators
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VSG Virtual-synchronous generator
VSM Virtual synchronous machine
VSMG VSM-based microgrid
VOC Virtual oscillator controller
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