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Abstract: In the manuscript, a probability distribution of the queue length is studied in a model
with group Markov arrivals, arbitrarily distributed service times and finite waiting room. After
the period of suspension of service due to lack of packets, each new busy period is preceded by a
random setup time. Integral equations for time-dependent queue-length distribution are derived by
identifying renewal moments in the operation of the system and by applying total probability law. The
representation for the solution of the system is found in terms of Laplace transforms. Computational
examples illustrating the impact of system parameters on the queue-length distribution are included.
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1. Introduction

Queuing systems that employ a mechanism for temporarily shutting down service
stations are currently being intensively researched because of their use in modeling real-life
processing systems. Particularly important here are models with finite buffers, which can
naturally describe systems with losses or untypical delays of different nature due to buffer
overflows. Such models are widely used in the analysis and optimization of the operation
of network switches, in which incoming data packets are naturally buffered.

One of the key problems of wireless data transmission is the problem of reducing
energy consumption. Many systems, therefore, use periodic deactivation of the service
station if the buffer for storing incoming messages is empty. The restart of the service station
is associated with the arrival of the first packet to be sent after the period of inactivity. Such
a mechanism is used, for example, in GSM systems, in which the node is reactivated just
before the transmission of the identification frame by a base station.

Most often, it takes a random amount of time, called setup time, for the service station
to be fully operational and packet processing. During setup time, transmission is still
suspended, so there is an accumulation of incoming packets in the buffer.

The analysis of the M/M/1-type system in steady state with threshold strategies of
server waking up and setup times can be found in [1]. A kind of a threshold mechanism
in the stationary state of the system with setups is investigated in [2] (see also [3]). In [4]
a steady-state behavior of a single batch-arrival queue with random setup times and a
vacation period was investigated. This concept was extended to many types of vacations
in [5]. The stationary queue-size distribution in the MX/G/1-type queuing system with
vacation time under single vacation policy is derived in [6]. The article [7] contains the
steady-state analysis of the queue-size distribution in an infinite-buffer model with batch
arrivals, multiple vacations, setup times, N-policy and closedown times. In [8], a recursive
method based on the supplementary variable technique is used for development of the
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steady-state queue-size distribution in the GI/M/1-type model with finite buffer capacity.
A Markovian-type model with machine setups being initialized every time a message
arrives into the empty system is studied in [9]. The optimization problem of scheduling
in a model of a manufacturing system with finite-sized magazine and the scheme of
setup/closedown times is investigated in [10]. One can find some new analytical results
for queuing models with N-policy and working breakdowns, and with feedback, balking
and maintaining of reneged customers in [11,12], respectively. In [13], a model with active
queue management is considered.

Application of setup times in WSNs operation is derived in [14,15]. In particular,
in [15], the functioning of the IEEE 802.15.4 is modelled. In [16], queuing systems are used
to model the IMS session re-setup delay in WiMAX/LTE heterogeneous networks. Efficient
link scheduling based on estimation of the queue size is proposed in [17] for industrial
wireless sensor networks. In [18], a queueing model with Poisson arrivals, arbitrarily
distributed services, server vacations and setups is proposed for modeling base station
operation. In [19], a model of data center with servers restarting the processing with using
setups is investigated. In [20], the issue of optimal scheduling strategy is investigated
via a queuing model of central air-conditioners. Non-steady analysis of queuing systems
with more complex discipline limiting the access to the service station can be found,
e.g., in [21,22].

In the paper, we study non-steady operation of the M/G/1/K model in which the
service station leaves each idle period by a setup time being a generally distributed random
variable. During setup time, packet service is suspended and the service station becomes
fully operational.

Transient (time-dependent) analysis is often desired or even necessary, e.g., in the
case of low traffic intensity (that is symptomatic for some WSNs), or in the case of the
analysis of the system just after implementation of a new control mechanism. Additionally,
in practice, the statistical behavior of the system may be destabilized by phenomena
such as, e.g., fade-out or interference. New analytical formulae for queuing systems with
Poisson input streams and generally distributed service times in the non-stationary case
can be found, e.g., in [23,24]. The transient behavior of the M/G/1 model with group job
arrivals, threshold-type policy and setups is analyzed in [25] (see also [26,27]). In [28], the
previous model is extended by “adding” a multiple vacation policy. In [29], the closed-form
representation for the queue-size distribution in the model with Poisson arrivals and setup
and close-down times is obtained. In [30,31], an auto-correlated input flow is considered in
a finite-buffer model.

In the article, as the main analytical result, a formula for the LT (=Laplace transform) of
the non-stationary queue-size distribution is obtained. Theoretical apparatus is based on the
technique of embedded Markov chains, renewal-theory approach and some auxiliary linear
algebraic facts. Applicability of theoretical formulae is illustrated on numerical results.

The rest of the article is organized as follows. In Section 2, we define the consid-
ered queuing model mathematically and attach some supplementary algebraic results.
In Section 3, we formulate a system of integral equations for non-steady queue-size distri-
bution conditioned by the initial buffer state. Section 4 contains the main analytical result,
namely, the representation for the LT of the queue-size distribution. Section 5 is devoted to
numerical analysis, while in the last Section 6 one can find a conclusion of the paper.

2. Queuing Model and Preliminaries

In the manuscript, we study a single-machine queuing model with finite waiting-room
capacity in that messages (jobs, customers, etc.) enter in groups and are processed one
by one, according to FIFO algorithm. Inter-arrival times are exponentially distributed
random variables with mean λ−1, while service times have general distribution with a
CDF (=cumulative distribution function) F(·). Sizes of arriving groups of messages have
general discrete-type distribution described by the sequence (pk), where pk stands for the
probability that an arriving group consists of k messages, ∑∞

k=1 pk = 1. The total system
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capacity equals K, i.e., we have K− 1 places in the accumulating buffer (waiting room) and
one place “in server”. In consequence, jobs occurring during the buffer overflow period,
when the buffer is saturated and the service station is busy with processing (i.e., the number
of jobs present equals K), are being lost.

In the considered system, we accept the PBAS (Partial Batch Acceptance Strategy)
mechanism: according to the instantaneous number of free places in the buffer, some jobs
of the arriving batch can be buffered and some can be lost. Moreover, we assume that,
in general, the system may be non-empty before its start, i.e., the waiting room can contain
at least one job before t = 0. When a job arrives into the empty system, the server leaves the
idle time with a generally distributed setup time with a CDF G(·). During the setup time,
the processing of messages is still stopped and the service station becomes fully operational.
We assume independence of all inter-arrival, processing and setup times, and sizes of the
arriving batches in the system operation.

Let us assume that X(t) stands for the number of jobs (messages) present in the
system at time t. We define the conditional non-stationary queue-size distribution in the
following way:

Qn(t, m) = P{X(t) = m |X(0) = n}, t > 0, 0 ≤ m, n ≤ K. (1)

The main goal is to represent in a compact form the LT of Qn(t, m), so the
following function:

qn(s, m) =
∫ ∞

0
e−stQn(t, m)dt, Re(s) > 0. (2)

In the next section, indicating renewal (Markovian) moments in the operation of
the studied queuing system, we construct a system of integral equations for Qn(t, m),
0 ≤ n ≤ K. In order to solve a corresponding system written for LTs, we use the following
supplementary result from [32]:

Lemma 1. Let (ak), k ≥ 0, and (ψk), k ≥ 1, be two given number sequences, where a0 6= 0. Every
solution of the following system of linear equations with respect to xn, n ≥ 0 :

n

∑
k=−1

ak+1xn−k − xn = φn, n ≥ 0, (3)

can be stated as

xn = CRn+1 +
n

∑
k=0

Rn−kφk, n ≥ 0, (4)

where C is a constant and (Rk) is the so-called potential defined by the sequence (ak) as follows:

∞

∑
k=0

θkRk =
1

Pa(θ)− 1
, (5)

where

Pa(θ) =
∞

∑
k=−1

θkak+1, |θ| < 1. (6)

Additionally, successive terms of the sequence
(

Rn
)

can be found recursively as follows:

R0 = 0, R1 = a−1
0 ,

Rk+1 = a−1
0

(
Rk −

k

∑
i=0

ai+1Rk−i

)
, k ≥ 1. (7)
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Let us close this section by introducing some necessary notation. In the article, we

use the short form G(x)
de f
= 1− G(x) and the nomenclature I{A} for the indicator of the

random event A. Moreover, let

f (s)
de f
=
∫ ∞

0
e−stdF(t), (8)

g(s)
de f
=
∫ ∞

0
e−stdG(t), (9)

where Re(s) > 0.
Finally, pj∗

i stands for the ith term of the j-fold convolution of the sequence
(

pk
)∞

k=1
with itself defined as

p0∗
0 = 1, pj∗

i =
i

∑
r=0

p(j−1)∗
r pi−r, j ≥ 1. (10)

3. Integral Equations for Conditional Queue-Size Distribution

In this section, we identify renewal (Markovian) moments in the operation of the
system to write a system of integral equations for conditional non-steady queue-length
distribution Qn(t, m), for 0 ≤ n ≤ K and for given 0 ≤ m ≤ K. In the second step, we
obtain from the original equations the system for LTs.

Firstly, let us look at the case in which the waiting room does not contain any job
before the start moment. As a consequence, the setup period begins simultaneously with
the entering of the first group of jobs. Note that the following three mutually exclusive
cases (events) can be distinguished for given t:

(1) The first group of messages arrives before t and the setup time also completes before t
(we denote this event by E1(t));

(2) The first group of messages enters before t but the setup time ends after t (E2(t));
(3) The first group of messages arrives after t (E3(t)).

Let us introduce the following notation:

Q(i)
0 (t, m) = P{

(
X(t) = m

)
∩ Ei(t) |X(0) = 0}, (11)

where t > 0, 0 ≤ m ≤ K and i = 1, 2, 3. Thus, e.g., Q(1)
0 (t, m) represents the probability that

there are exactly m jobs present in the system at time t and the first setup time ends before
this moment, on the condition that the buffer is primarily empty. The following equality is
a consequence of the formula of total probability:

Q0(t, m) = P{X(t) = m |X(0) = 0} =
3

∑
i=1

Q(i)
0 (t, m). (12)

Let us note that for Q(1)
0 (t, m) we have the following representation:

Q(1)
0 (t, m) =

∫ t

x=0
λe−λx

∫ t−x

y=0

{
K−1

∑
i=1

pi

K−i−1

∑
j=0

(λy)j

j!
e−λy

×
K−i−1

∑
r=j

pj∗
r Qi+r(t− x− y, m) + QK(t− x− y, m)

[
K−1

∑
i=1

pi

(
K−i−1

∑
j=0

(λy)j

j!
e−λy (13)

×
∞

∑
r=K−i

pj∗
r +

∞

∑
j=K−i

(λy)j

j!
e−λy

)
+

∞

∑
i=K

pi

]}
dG(y)dx.
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Indeed, the first summand on the right side of (13) describes the situation in which
the size of the first arriving batch does not exceed the maximal system capacity K and,
moreover, during the setup time, the buffer does not become saturated. Thus, at the
completion epoch of the setup time (at time x + y), the service station begins the processing
with 1 ≤ i + r ≤ K− 1 jobs present, where i denotes the size of the first batch and r is the
total number of jobs occurring during the setup time. The second summand in (13) presents
the case in which before the setup time completion epoch the buffer becomes saturated, so
the service process begins with the maximal number K of jobs present.

For Q(2)
0 (t, m), we obtain, similarly, the following formula:

Q(2)
0 (t, m) =

∫ t

0
λe−λxG(t− x)

{
I{1 ≤ m ≤ K− 1}

m

∑
i=1

pi

m−i

∑
j=0

pj∗
m−i

(
λ(t− x)

)j

j!

× e−λ(t−x) + I{m = K}
[

K−1

∑
i=1

pi

(
K−i−1

∑
j=0

∞

∑
r=K−i

pj∗
r

(
λ(t− x)

)j

j!
e−λ(t−x) (14)

+
∞

∑
j=K−i

(
λ(t− x)

)j

j!
e−λ(t−x)

)
+

∞

∑
i=K

pi

]}
dx.

Let us comment on (14) briefly. If the first setup time completes after t and the queue
size measured at t equals 1 ≤ m ≤ K − 1, then, if the setup begins at time 0 < x < t
with the arrival of 1 ≤ i ≤ m jobs in the first batch, during t− x, exactly m− i jobs must
enter (the first summand on the right side of (14)). If m = K, then the buffer must become
saturated during time period (0, t) (the second summand in (14)).

Obviously, we also have the following representation:

Q(3)
0 (t, m) = I{m = 0}e−λt. (15)

Let us consider now the case of the system being non-empty at the opening (i.e.,
1 ≤ n ≤ K). Since successive departure epochs are Markov (renewal) moments in the
evolution of the MX/G/1-type system (see, e.g., [33]), then, applying the continuous
version of the formula of total probability with respect to the first arrival epoch after t = 0,
we obtain the following system of integral equations:

Qn(t, m) =
∫ t

0

[
K−n−1

∑
i=0

Ai(x)Qn+i−1(t− x, m)

+ QK−1(t− x, m)
∞

∑
i=K−n

Ai(x)

]
dF(x) (16)

+ F(t)

[
I{n ≤ m ≤ K− 1}Am−n(t) + I{m = K}

∞

∑
i=K−n

Ai(t)

]
,

where 1 ≤ n ≤ K and the functional sequence
(

Ai(x)
)∞

i=0 describes the number of jobs
entering into the system in the time period (0, x) (some of them may be lost due to the
buffer saturation), so we have

Ai(x) =
i

∑
j=0

pj∗
i
(λx)j

j!
e−λx, i ≥ 0. (17)

Let us clarify the meaning of successive components of the sum in (16). The first
component relates to the case in which the waiting room does not become saturated before
the first output occurring at 0 < x < t. The second component represents the situation in
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which all places in the waiting room are occupied before the moment t. Finally, in the last
component on the right side of (16), the first job leaves the service station after time t.

We define the following functionals:

αj(s)
de f
=
∫ ∞

0
e−(λ+s)t (λt)j

j!
dG(t), (18)

β j(s, m)
de f
=
∫ ∞

0
e−stF(t)

[
I{j ≤ m ≤ K− 1}Am−j(t)

+ I{m = K}
∞

∑
i=K−j

Ai(t)

]
dt, (19)

γi,r(s)
de f
=

λpi
λ + s

r

∑
j=0

pj∗
r αj(s), (20)

δ(s)
de f
=

λ

λ + s

[
K−1

∑
i=1

pi

(
K−i−1

∑
j=0

αj(s)
∞

∑
r=K−i

pj∗
r +

∞

∑
j=K−i

αj(s)

)
+ g(s)

∞

∑
i=K

pi

]
(21)

and

η(s, m)
de f
=
∫ ∞

0
e−stQ(2)

0 (t, m)dt+I{m = 0} 1
λ + s

. (22)

Since (compare (13))

∫ ∞

t=0
e−stdt

∫ t

x=0
λe−λxdx

∫ t−x

y=0

(λy)j

j!
e−λyQi+r(t− x− y, m)dG(y)

=
λ

λ + s
αj(s)qi+r(s, m), (23)

then, from (12)–(15), (18) and (20)–(22), we obtain

q0(s, m) =
K−1

∑
i=1

K−i−1

∑
r=0

γi,r(s)qi+r(s, m) + δ(s)qK(s, m) + η(s, m). (24)

Similarly, referring to (16) and (19), we obtain

qn(s, m) =
K−n−1

∑
i=0

ai(s)qn+i−1(s, m) + qK−1(s, m)
∞

∑
i=K−n

ai(s) + βn(s, m), (25)

where 1 ≤ n ≤ K and

ai(s)
de f
=
∫ ∞

0
e−st Ai(t)dF(t), s > 0. (26)

Let us apply to equations of the system (24) and (25) the following substitution:

un(s, m)
de f
= qK−n(s, m), 0 ≤ n ≤ K. (27)

Now, from (25), we obtain the following system:

n

∑
i=−1

ai+1(s)un−i(s, m)− un(s, m) = φn(s, m), (28)
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where 0 ≤ n ≤ K− 1, and the functionals φn(s, m) are defined as follows:

φn(s, m)
de f
= an+1(s)u0(s, m)− u1(s, m)

∞

∑
i=n+1

ai(s)− βK−n(s, m). (29)

Quite similarly, inserting (27) into (24), we obtain:

uK(s, m) =
K−1

∑
i=1

K−i−1

∑
r=0

γi,r(s)uK−i−r(s, m) + δ(s)u0(s, m) + η(s, m). (30)

4. Main Results for Transforms

In this section, we find the closed-form solution of the system (28) and (30), applying
Lemma 1. Observe that (28) has the same form as (3), but with functional coefficients an(s)
and φn(s, m), n ≥ 0. Hence, it is possible to solve (28) by utilizing result (4). Moreover,
since the number of equations in (28) is finite compared to (3), the formula for C = C(s, m)
can be found explicitly, applying the last Equation (30).

Referring to (4), we obtain for n ≥ 0 the following formula:

un(s, m) = C(s, m)Rn+1(s) +
n

∑
i=0

Rn−i(s)φi(s, m), (31)

where now (compare (7))

R0(s) = 0, R1(s) = a−1
0 (s),

Rn+1(s) = R1(s)
(

Rn(s)−
n

∑
i=0

ai+1(s)Rn−i(s)
)

, (32)

where n ≥ 1.
Taking n = 0 in (31), we obtain

u0(s, m) = C(s, m)R1(s). (33)

Next, substituting n = 1 in (31) and using (29) and (33), we obtain

u1(s, m) =C(s, m)R2(s) + R1(s)φ0(s, m) = C(s, m)R2(s) + R1(s)
(

a1(s)R1(s)C(s, m)

− u1(s, m)
∞

∑
i=1

ai(s)− βK(s, m)
)

, (34)

and hence, we derive

u1(s, m) = ξ(s)
[
C(s, m)

(
R2(s) + a1(s)R2

1(s)
)
− R1(s)βK(s, m)

]
, (35)

where

ξ(s)
de f
=

1
1 + R1(s)∑∞

i=1 ai(s)
=

f (λ + s)
f (s)

. (36)

Due to the fact that, having (33) and (35), the functionals φn(s, m), n ≥ 0, can be
expressed from (29) explicitly if only the representation for C(s, m) is known, the main goal
at this stage is to find the formula for C(s, m).
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Utilizing the representations (29) and (31), we can rewrite (30) in the following form:

uK(s, m) =
K−1

∑
i=1

K−i−1

∑
r=0

γi,r(s)uK−i−r(s) + δ(s)u0(s, m) + η(s, m)

=
K−1

∑
i=1

K−i−1

∑
r=0

γi,r(s)

[
C(s, m)RK−i−r+1(s) +

K−i−r

∑
j=0

RK−i−r−j(s)φj(s, m)

]

+ δ(s)R1(s)C(s, m) + η(s, m) =
K−1

∑
i=1

K−i−1

∑
r=0

γi,r(s)

{
C(s, m)RK−i−r+1(s)

+
K−i−r

∑
j=0

RK−i−r−j(s)

[
aj+1(s)R1(s)C(s, m)− ξ(s)

[
C(s, m)

(
R2(s) (37)

+ a1(s)R2
1(s)

)
− R1(s)βK(s, m)

] ∞

∑
z=j+1

az(s)− βK−j(s, m)

]}
+ δ(s)R1(s)C(s, m) + η(s, m) = Θ1(s)C(s, m) + Ω1(s, m),

where we denote

Θ1(s)
de f
=

K−1

∑
i=1

K−i−1

∑
r=0

γi,r(s)

{
RK−i−r+1(s) +

K−i−r

∑
j=0

RK−i−r−j(s)

×
[

aj+1(s)R1(s)− ξ(s)
(

R2(s) + a1(s)R2
1(s)

) ∞

∑
z=j+1

az(s)

]}
(38)

+ δ(s)R1(s)

and

Ω1(s, m)
de f
=

K−1

∑
i=1

K−i−1

∑
r=0

γi,r(s)
K−i−r

∑
j=0

RK−i−r−j(s)

×
[

ξ(s)R1(s)βK(s, m)
∞

∑
z=j+1

az(s)− βK−j(s, m)

]
+η(s, m). (39)

Similarly, let us substitute n = K into (31) and use the formulae (29), (33) and (35).
As a consequence, we obtain

uK(s, m) = C(s, m)RK+1(s) +
K

∑
i=0

RK−i(s)

{
ai+1(s)R1(s)C(s, m)− ξ(s)

×
[
C(s, m)

(
R2(s) + a1(s)R2

1(s)
)
− R1(s)βK(s, m)

] ∞

∑
j=i+1

aj(s)− βK−i(s, m)

}

= C(s, m)

{
RK+1(s) +

K

∑
i=0

RK−i(s)

[
ai+1(s)R1(s) (40)

− ξ(s)
(

R2(s) + a1(s)R2
1(s)

) ∞

∑
j=i+1

aj(s)

]}
+

K

∑
i=0

RK−i(s)

×
(

ξ(s)R1(s)βK(s, m)
∞

∑
j=i+1

aj(s)− βK−i(s, m)

)
= Θ2(s)C(s, m) + Ω2(s, m),
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where

Θ2(s)
de f
= RK+1(s) +

K

∑
i=0

RK−i(s)
[

ai+1(s)R1(s)

− ξ(s)
(

R2(s) + a1(s)R2
1(s)

) ∞

∑
j=i+1

aj(s)
]

(41)

and

Ω2(s, m)
de f
=

K

∑
i=0

RK−i(s)

(
ξ(s)R1(s)βK(s, m)

∞

∑
j=i+1

aj(s)− βK−i(s, m)

)
. (42)

By equating the right sides of the Equations (37) and (40), we eliminate C(s, m)
as follows:

C(s, m) =
Ω2(s, m)−Ω1(s, m)

Θ1(s)−Θ2(s)
. (43)

Now, the formulae (27), (29), (31), (33), (35) and (43) lead to the following main theorem:

Theorem 1. The representation for the LT of the conditional transient queue-size distribution
in the MX/G/1/K-type model with batched arrivals and generally distributed setup times is
the following:

qn(s, m) =
∫ ∞

0
e−stP{X(t) = m |X(0) = n}dt =

Ω2(s, m)−Ω1(s, m)

Θ1(s)−Θ2(s)

×
{

RK−n+1(s) +
K−n

∑
i=0

RK−n−i(s)
[

ai+1(s)R1(s)− ξ(s)
(

R2(s) + a1(s)R2
1(s)

)
(44)

×
∞

∑
j=i+1

aj(s)
]}

+
K−n

∑
i=0

RK−n−i(s)

(
ξ(s)R1(s)βK(s, m)

∞

∑
j=i+1

aj(s)− βK−i(s, m)

)
,

where the formulae for βi(s, m), ai(s), Ri(s), ξ(s), Θ1(s), Ω1(s, m), Θ2(s) and Ω2(s, m) are given
in (19), (26), (32), (36), (38), (39), (41) and (42), respectively.

As a corollary from Theorem 1, let us note that from the formula (44) the stationary
queue-size distribution

πm
de f
= P{X(∞) = m} = lim

t→∞
P{X(t) = m}, (45)

where m = 0, ..., K, can be found by using the Tauberian theorem.
Indeed, we have

πm = lim
s↓0

s · qn(s, m) = lim
s↓0

s ·
∫ ∞

0
e−stP{X(t) = m |X(0) = n}dt, (46)

where n can be chosen arbitrarily from {0, ..., K} as the stationary queue-size distribution
does not depend on the initial number of jobs present in the system.

In practice, for larger values of the constant K, instead of evaluating successive terms
of the functional sequence (Rk(s)) via recursive formulae (32), we can apply the following
approach. Observe that

∞

∑
k=0

µkRk(s) =
1

M(µ, s)− 1
, (47)
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where

M(µ, s)
de f
=

∞

∑
k=−1

µkak+1(s), |µ| < 1. (48)

In consequence, the representation (47) can be utilized to find successive terms of the
sequence (Rk(s)). Using Maclaurin’s expansion, we obtain

Rk(s) =
1
k!

∂

∂µ

( 1
M(µ, s)− 1

)∣∣∣
µ=0

. (49)

5. Numerical Examples

As an illustrating example, let us consider the stream of packets of average sizes 250 B
arriving into the node of a wireless network. Assume that the incoming process is modeled
via a compound Poisson process with intensity 360 Kbps and let K = 6.

Let us study two different batch size distributions:

• P1 : p1 = 0.8, p2 = 0.2, pk = 0, k > 2,
• P2 : p1 = p2 = 0.5, pk = 0, k > 2,

which give arrival rate parameters λ1 = 150 and λ2 = 120, respectively. In relation to batch
distributions, in practice, P1 can be used as a model of the situation in which packets of size
250 B make 80 percent of incoming traffic while packets of size 500 are “responsible” for
20 percent only. Similarly, in the case of P2, the incoming flow consists of packets of sizes
250 B and 500 B which appear with equal frequencies.

Furthermore, let packets be transmitted with speeds 480 Kbps and 360 Kbps, respec-
tively, according to exponential service time distribution. That corresponds to parameters
µ1 = 240, µ2 = 180 of the service time distribution, respectively. Having given arrival and
serving rates, we obtain the utilization factor ρ of the considered system equal to 0.75 or 1,
respectively. Additionally, let us implement an energy saving mechanism: the first arrival
after an idle period restarts the server and, simultaneously, initializes a setup time with
exponential distribution with mean 2 ms or 20 ms.

The probabilities P{X(t) = m|X(0) = 0} for factors ρ = 0.75, ρ = 1, batch size
distributions P1, P2 and mean setup times equal 2 ms and 20 ms are presented in Table 1
(for the stationary state, t→ ∞) and in Figures 1–8 (for the transient case), respectively.

Table 1. Stationary distributions πm for utilization factors ρ = 0.75, ρ = 1, batch size distributions
P1, P2 and mean setup times equal 2 and 20 ms.

πm = P{X(∞) = m|X(0) = 0}
ρ = 0.75 ρ = 1

m P1 P2 P1 P2

Mean setup time equals 2 ms

1 0.193688 0.157534 0.134491 0.118967
3 0.136140 0.130957 0.146078 0.141245
5 0.085300 0.089495 0.147105 0.144444

Mean setup time equals 20 ms

1 0.115951 0.106959 0.088952 0.085723
3 0.134825 0.135847 0.136159 0.136760
5 0.121891 0.128069 0.164976 0.166223



Energies 2022, 15, 8471 11 of 15

0.00 0.02 0.04 0.06 0.08 0.10
t [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
{X

(t
)

=
m
|X

(0
)

=
0}

m = 1
m = 3
m = 5

Figure 1. Transient probabilities P{X(t) = m|X(0) = 0} for P1, ρ = 0.75 and mean setup time
equal 2 ms.
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Figure 2. Transient probabilities P{X(t) = m|X(0) = 0} for P2, ρ = 0.75 and mean setup time
equal 2 ms.
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Figure 3. Transient probabilities P{X(t) = m|X(0) = 0} for P1, ρ = 0.75 and mean setup time
equal 20 ms.
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Figure 4. Transient probabilities P{X(t) = m|X(0) = 0} for P2, ρ = 0.75 and mean setup time equal
20 ms.
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Figure 5. Transient probabilities P{X(t) = m|X(0) = 0} for P1, ρ = 1 and mean setup time
equal 2 ms.
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Figure 6. Transient probabilities P{X(t) = m|X(0) = 0} for P2, ρ = 1 and mean setup time
equal 2 ms.
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Figure 7. Transient probabilities P{X(t) = m|X(0) = 0} for P1, ρ = 1 and mean setup time
equal 20 ms.
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Figure 8. Transient probabilities P{X(t) = m|X(0) = 0} for P2, ρ = 1 and mean setup time
equal 20 ms.

As one can observe, in Figures 1–8, essential dependence of the transient queue-size
distribution on the utilization factor (occupation rate) is visible. In fact, the greater the
value of ρ, the longer the process of “stabilization” of the characteristic about the stationary
value. Moreover, the dependence on the type of probability distribution of the batch size
is shown. Finally, the impact of the mean setup time duration on the convergence rate of
the transient characteristic to the stationary one can be noticed: the longer the setup time
duration, the lower the corresponding convergence rate.

6. Conclusions

In the paper, a queuing system in which entering messages occur in groups according
to a compound Poisson process and are served individually with arbitrary service time
distribution is studied. It is assumed that a setup time with a general-type distribution
function precedes the first processing in a new busy period. The investigated model has
potential applications in the analysis of the transmission process, e.g., in nodes of WSNs,
in which an energy saving mechanism is implemented. A system of integral equations for
conditional non-steady queue-size distribution is found and next solved explicitly in terms
of LTs. From the representation of the solution, the stationary queue-size distribution can



Energies 2022, 15, 8471 14 of 15

be derived simply by using the Tauberian theorem. Illustrative numerical computations
are presented.
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