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Abstract: This work focuses on the possibility of using a tuned inductor in electric power systems
with adaptive features. The presented idea of inductor operation, using an interaction of the magnetic
fluxes, is a new approach to designing such devices. Examples of power adaptive systems are devices
for improving the quality of electricity. Therefore, various types of ‘compensators’ of reactive power
(or both reactive and distortion power) are used in electrical systems as a preventive measure. The
tuned inductor, presented in this work, offers wider possibilities for power compensation in electric
systems, compared to the classic solutions of compensators based on fixed inductors. Another possible
implementation of such an inductor solution is in static power electronic devices, installed in AC
transmission grids to increase power transfer capability, stability, and controllability, through a series
and/or shunt compensation. Nevertheless, the use of the proposed device in the aforementioned
electric systems is only one example of the possible implementations in the power electronics area. In
this work, the following issues are presented: exemplary solutions of compensators with the adaptive
features, rules of the tuned inductor operation, test results of the 3D field model of the inductor, and
test results of the laboratory model of the electric system with this device.

Keywords: adaptive compensator; converter control; quality of electricity; tunable inductive filter

1. Introduction

This work focuses on the idea of the operation, and possible implementation, of a
tuned inductor (TI) in power electronics systems with adaptive features. The first large
group of such devices comprises systems for improving the quality of electrical energy [1–4].
The second possible area of implementation of the tuned inductor solution is static power-
electronic systems installed in AC transmission grids, to increase their power transfer
capability, stability, and controllability, through series and/or shunt compensation, known
as the Flexible AC Transmission Systems (FACTS) [1,5,6]. The third area concerns AC/DC
and DC/DC converters, allowing shaping of the frequency characteristics of these de-
vices [7–10]. Nevertheless, this work focuses on the application of the tuned inductor in the
first group of aforementioned power systems.

The negative effect of non-linear loads on the operation of the power line, result-
ing in lowering the desired values of parameters of electric energy [11], is a widely
known and well-documented phenomenon. Therefore, various types of ‘compensators’,
mainly different kinds of power filters, are used in the electrical systems as a preventive
measure [1,12–14]. The main task of these devices is appropriate matching of the current’s
shape at its input to the shape of a current, drawn from the same grid node by other loads.
As a result of such a ‘compensation process’, the current, flowing from the power line to
the load, should have both suitable shape and right phase relation with the voltage in the
power line node. This process depends on the chosen compensation strategy, relative to
only reactive power or also the distortion power [2,15–17].

The presented idea of the tuned inductor operation is a new approach to the design of
power devices with the adaptive compensation feature. However, in relation to this work,
the operation of the adaptive compensator, as a whole, is not related to any specific power
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theory. Moreover, using the inductor in such devices is only one example of its possible
implementations in the field of electric power systems.

This paper contains five sections, which cover the following issues: exemplary topol-
ogy of the adaptive compensator in a passive and active version, basics of operation of the
tuned inductor, investigations of the inductor magnetic simulation model, test results of
the laboratory prototype of the electric power system with the inductor, and conclusions.

2. Adaptive Devices for Improving the Quality of Electricity
2.1. Passive Compensator

The fixed parameters compensator improves the power factor of a supply source when
its load also has fixed parameters. When these parameters are not constant, the effectiveness
of a such compensator operation is lost [1,3,13,18], so an adaptive compensator is needed
instead. A reactive compensator has adaptive properties if it can be adjusted to changes
in the load power. This can be carried out by switches or by using reactive elements with
controllable parameters. Adaptive compensators can be built as reactive compensators
with semi-controlled devices, such as thyristors, or as switching compensators, commonly
known as active power filters (APF), which use different types of transistors in the com-
pensator’s power stage. When the load powers are very high, as this is common for large
manufacturing plants, the APFs are not usually sufficient in such applications, however.

A block diagram of an exemplary electric system with a generalised passive compen-
sator (PC) [1,3,13] is shown in Figure 1a.
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Figure 1. Block diagram of the passive adaptive compensator (a) and the diagram of its single branch (b).

The PC contains P individual branches (BRi : i = 1, 2, . . . , P) that can be connected
in a different manner, e.g., in parallel, as shown in Figure 1a. The exemplary topology of the
single branch, using the tuned inductors, is shown in Figure 1b. As a result, the impedance
of this circuit can vary:

Zx,i =
UL,x

IL,x
= var : x = 1, 2, 3, (1)

where x is the phase number in the power line.
However, it should be stated that this device is not, formally, a fully passive compen-

sator, as it follows from its scheme, because the ‘passive’ compensator also contains power
electronics components. These devices are necessary for controlling the tuned inductor;
their role in this system is explained in Section 3.

2.2. Shunt Active Power Filter

The topology of the 1-phase electric system, containing a shunt active power filter
(SAPF), is shown in Figure 2. The SAPF is included between the power line and the
nonlinear load (NL).

A typical filter of this type consists of the following, basic elements [1–3]:

• Voltage source inverter (VSI), with the inductive filter (LCS), included at its output;
• Reference signal generator (RSG);
• Current transducers (CT1 and CT2).
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The VSI and inductive filter made up the power electronics voltage-controlled current
source (VCCS). Respecting the assumed functions of the VCCS in the SAPF, the role of
the inductive filter is twofold; it increases the output impedance of the current source and
minimises the magnitude of its input (or output) current component, associated with PWM
(or other kinds of pulse modulation) [1]. Taking into account the SAPF topology [1–3], the
VCCS has the highest dynamics (i.e., the ‘frequency response’) when the instantaneous
value of the power line voltage passes through zero, whereas when this voltage reaches the
maximum value, the value of dynamics is lowest. Since both the value of the power line
voltage and the voltage in the DC link of the VSI are set in advance, the most important
treatment that can enlarge the ‘frequency response’ of the current source is lowering the
value of the inductive filter inductance. Unfortunately, this will result also in an increase in
the magnitude of the pulse modulation carrier component in the SAPF input (i.e., power
line) current (iL). Hence, in order to increase the dynamics of the VCCS, the use of an
inductive filter (reactor) with a variable inductance value was proposed. This solution
allowed for a better approximation of the waveform (i.e., its shape) of the SAPF input
current to the reference signal (uref) waveform, in situations of highly dynamic changes in
the nonlinear load current (iNL), compared to a VCCS using a fixed filter. At the same time,
in the steady states of operation of the SAPF, the magnitude of the PWM carrier component
in its input current stays at the minimum assumed level. The details of the concept of
such VCCS operating, filter design procedure (in its preliminary version), and results of its
laboratory model tests, were presented in the previous work [19].

3. Idea of Operation of the Tuned Inductor

For the implementation of an inductor with a variable inductance feature, a circuit
with magnetically coupled coils (forming a kind of transformer) was used, see Figure 3.
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Figure 3. Principle of operation of the tuned inductor.

The circuit consists of two main elements. The first of these is the aforementioned
transformer (TI block), equipped with an air-gap in the magnetic core; the width of the
air-gap influences the value of the magnetic coupling factor (k). The second element is
the differential power electronics amplifier, with a gain factor about equal to g, which
powers the secondary coil of the transformer. The resultant magnetic flux in the core of the
transformer can be amplified or weakened, which also results in a change in the equivalent
impedance (ZTI = RTI + jXTI) of this circuit when seen from the power source (u1) side. The
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value of this impedance depends on the values of the parameters in the circuit, especially k
and g factors.

The calculation of the value of the equivalent impedance is based on the analysis,
using the basic properties of magnetically coupled circuits. The initial assumptions made
do not take into account the nonlinearity of the magnetic core, on which the coils are wound,
and the voltage’s excitation (u1) was sinusoidal. The equations, describing the voltage and
current relations in this circuit, are as follows:

U1 = R1 I1 + jX1 I1 + jXM I2, (2)

U2 = R2 I2 + jX2 I2 + jXM I1, (3)

where: X1, X2, and XM are the self and mutual reactance of the coils, respectively.
Taking U2 = gU1 into account (where 0 ≤ g ≤ 1), as a result of the transformations

of Equations (2) and (3), the following formula was obtained, defining the value of the
equivalent impedance of the circuit:

ZTI =
U1

I1
=

R1 + jX1 +
X2

M
R2+jX2

1− jg X2
M

R2+jX2

, (4)

in which:
XM = k

√
X1X2, (5)

where 0 ≤ k ≤ 1.
Considering Equations (4) and (5), the equation making the value of ZTI dependent

on the other parameters of the circuit is as follows:

ZTI =
U1

I1
=

R1 + jX1 + k2 X1X2
R2+jX2

1− jgk
√

X1X2
R2+jX2

. (6)

For the extraction of the XTI component of Equation (6), both resistances were omitted.
In such a case, Equation (6) takes the following form:

XTI =
1− k2

1− gk
√

X1
X2

X1. (7)

Assuming then the equality of both of the reactances (i.e., X1 = X2 = X), Equation (7)
takes the final form:

XTI =
1− k2

1− gk
X. (8)

Based on Equation (8), by changing the value of the gain factor (g), it is possible to
achieve the value of XTI, in the range:(

1− k2
)

X ≤ XTI ≤ (1 + k)X. (9)

The graphic visualisation of Equation (8), as a value of XTI, in relation to X, vs. g,
while k = const, is shown in Figure 4.

This relationship, for small gain factor values, is almost flat. Changes in the value of
XTI become more visible for the gain’s value greater than 0.6.
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4. Inductor’s Field Simulation Model Studies

The aim of this research was to obtain the technical details of the inductor, necessary
for the design of a laboratory prototype. The simulation studies of the tuned inductor field
model were conducted using optimisation software and the Maxwell Environment [20].
This study found that, to achieve the assumed value of the inductance of the TI, a sophisti-
cated design of its magnetic circuit is necessary. As a result, the three-column magnetic core
was selected for the transformer. The primary coil was wound on the central column of the
device, while the secondary coil was divided and wound on the two external columns. In
order to achieve the assumed effect of the transformer operation, through the possibility of
changing the equivalent inductance, the secondary coils should be properly interconnected.
To simplify the modelling process, it was also assumed that the number of turns of all three
coils would be equal to each other, i.e., z1 = z21 = z22. The results of these preliminary tests
led to the design of the tuned inductor, as shown in Figure 5.
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Taking into account the potential fields of application of the tuned inductor based on
previous work [19,21], it was assumed that: X = 4.50 mH and k = 0.80.

For the purpose of modeling the inductor, its 3D-field model was employed. In this
model, the characteristics of the ferrite E-shapes (OT49928EC), made of T-type ferrite
material (manufactured by MAGNETICS Inc. [22]), were used. The model of the core was
composed of four E-shapes.

In order to obtain the desired parameter values (i.e., the air-gap width as well as the
number of turns) in the first stage of the design process, authored software was imple-
mented, using the Particle Swarm Optimisation (PSO) algorithm [23,24], coupled with
the Magnetic Equivalent Circuit (MEC) method [25,26]. The initial optimisation of the
inductor structure was carried out with the use of the MEC model. The results of these
calculations, obtained for the first stage of the design process, were then used to select the
solutions for which the calculated values of inductance were in the area of the expected
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values. Then, as part of the second stage, the verification calculations were carried out
for the values of the parameters obtained from the first stage using a 3D field model. A
more in-depth optimisation of the construction of the inductor was also carried out. This
time, the calculations were made in the area of selected decision variables, obtained in the
first stage.

In the second stage of the design process, the Interval Search Method was used [27],
implemented in the optimisation module of Maxwell Software, using the Finite Element
Method (FEM). Details of the whole research procedure, as well as its results, were pre-
sented in the previous works [19,21].

A short summary of the basic parameters for the tuned inductor, achieved as a result
of 3D-field simulation model studies, is as follows:

• Air gap width: g = 2.0 mm;
• Number of turns: z1= z21= z22= 80.

5. Laboratory Tests and Discussion
5.1. Tests of the Prototype of the Tuned Inductor

The general view of the laboratory setup is shown in Figure 6. In the power stage of
the tested circuit, the P3-5-550MFE LABINVERTER [28] was implemented. This universal
device was designed for applications in advanced R&D electronic power systems. The
control module of the inverter comprised an ALS-G3-1369 Evaluation Board [28] with an
Analog Devices Inc., ADSP-21369 SHARC® digital signal processor (DSP). This board is
specialised for such electronic power applications that require, among others, the high
computation power of a CPU and a precision, high resolution PWM pattern.
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The aim of the first part of the research was to confirm the parameters achieved for
the laboratory prototype of this device in relation to the inductor’s field model. The view
of the inductor laboratory model is shown in Figure 7.

The inductance measurement methodology depended on the observation of voltage
and current waveforms in the circuit with the tuned inductor, as shown in Figure 8. These
waveforms then formed the basis for calculating the inductor inductance.

The general formula describing voltage and current waveforms in this circuit, in the
time-domain, is as follows:

u1(t) = RTIi1(t) + LTI
di1(t)

dt
. (10)
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Disregarding the circuit’s resistance for practical purposes, the formula defining the
relationship of current and voltage takes the following form:

i1(t) =
1

LTI

∫
t

u1(t)dt. (11)

Assuming that a supply voltage is a rectangular function of time, the current waveform
will be a linear function of time, i.e., a first-order polynomial. As a result, the value of
equivalent inductance of the TI can be calculated, based on the formula:

LTI =
∆u1

∆i1
∆t, (12)

where: ∆u1, ∆i1, and ∆t are the growth in the voltage, current, and time value, respectively.
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The graphic visualisation of the measurement methodology, based on Equation (12), is
shown in Figure 9, where Tt is the period of voltage supply.
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The assumption was made that omitting the TI resistance does not result in a signif-
icant value of error when calculating the inductance value, under the condition that the
measurement time (∆t) is much shorter than the circuit time constant, i.e.:

∆t <<
LTI

RTI
. (13)

The laboratory setup consisted of the following elements: tested inductor (TI), DC
power supply, power electronics inverter (VSI), operating as the generator of the measure-
ment circuit supply voltage, and inverter control system. As the VSI, the aforementioned
laboratory inverter (P3-5.0/550MFE) was used, with an ALS-G3-1369 Evaluation Board as
the control module.

The measurement methodology was based on supplying the primary coil of TI with
the voltage (u1) around a rectangular shape. Then, this voltage and primary current (i1)
were observed and registered with the aid of a TDS3054 oscilloscope. This methodology
allowed for the use of a large current in this circuit. As a result, observation of the saturation
state of the core was also possible. However, the inductance measurements were related
to the quasi-linear operating range of the core. During testing, the voltage and current
waveforms were periodic signals; the value of fundamental frequency u1 was fixed and set
at 500 Hz.

Figure 10 presents the characteristic waveforms in the measurement circuit during the
laboratory tests.
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As a result of laboratory investigations, the following values of the inductor parameters
were obtained:

• Number of turns: z1 = z21= z22= 80;
• Air gap width: g = 2.0 mm;
• Inductance (in the quasi-linear range of the magnetic core operation), secondary coil

open: LTI= 4.3 mH;
• Inductance (in the quasi-linear range of the magnetic core operation), secondary coil

closed: LTI = 1.6 mH;
• Coil resistance: R1 = 110 mΩ, R2 = 220 mΩ.
• Thus, taking into account all of the aforementioned assumptions related to the tuned

inductor model and taking into account the test results, the calculated value of the
coupling factor k = 0.79.

5.2. Tests of the Electric System with a Tuned Inductor

The block scheme of the circuit, used for testing the tuned inductor operation, is shown
in Figure 11.
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Figure 11. Block scheme of the circuit, used for testing the tuned inductor.

This circuit consisted of the following main blocks:

• Isolated power line, equipped with an EMI filter at the input;
• Auto-transformer (ATR) and transformer (TR);
• Tested inductor (TI);
• Voltage source inverter (VSI);
• LCL filter (FLT), included at the output of the VSI;
• Inverter control module (CM);
• Voltage and current, isolated transducers (VT and CT);
• Regulated DC power supply (PSP).

The VSI, configured as the H-bridge, and FLT block made up the power electronics
voltage-controlled voltage source (VCVS) that powered the secondary coil of the transformer.

A set of tests were conducted on the inductor using HIL (HIL—‘hardware-in-the-loop’)
modelling. Most of the achieved waveforms were obtained using the ‘PLOT’ function of the
VisualDSP++® environment [29]. This function allows for the easy graphic visualisation of
numerical data (typically representing waveforms) stored in the objects of the C-Language,
such as arrays. The compiler of the C-Language is a component part of VisualDSP++®.

Taking into account the value of the magnetic coupling coefficient achieved, the family
of curves shown in Figure 4 took the form shown in Figure 12.

In Figure 12, the characteristic values of the reactance of the TI are also marked, i.e.,
for: g = 0.0, g = k = 0.79, and g = 1.0.

In turn, Figures 13–15 present characteristic waveforms of the voltages and currents
(u1, i1, u2, and i2). During tests, the RMS value of the power supply (u1) was set at 18 V.

In turn, the system response to a step change in the value of gain factor of the power
amplifier (in the range 0.05 ÷ 0.95) is shown in Figure 16.
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Figure 16. System response to a step change in the value of g.

5.3. Discussion of the Test Results

As the test results show, the current amplitude in the primary and secondary circuits
of the transformer changes with the change in value of the gain coefficient. However, the
actual values of the equivalent inductance of TI differ from the theoretical assumptions,
given by Equation (6); they are affected by an error in the range 7.8 ÷ 14.3%. The error
value increases as the gain factor decreases, which results in a decrease in the equivalent
reactance of the TI. This error is the result of factors such as: the presence of resistance
in the real circuit, the difference between the theoretical and actual voltage value in the
secondary circuit of the transformer (caused by the gain error of the power amplifier), and
the presence of a ripple component in this voltage, caused by the pulse-width modulation
(PWM) used to control the inverter (VSI). Furthermore, the phase relationship of the
primary and secondary currents also changes. The primary current phase shift from the
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supply voltage is less than desired (i.e., 90◦) because the circuit contains the aforementioned
‘parasitic’ resistances, including R1, and R2, etc. The value of this phase shift mainly results
from Equation (8). However, this equation does not take into account all elements which
were contained the real circuit (e.g., resistance and reactance of the power line).

Testing of the system’s impulse response to a step change in the gain value allowed for
the assessment of values of its dynamic parameters, which depended on the actual value
of reactance of the TI. In relation to Figure 16, the durations of the transient states in the
circuit were equal to approximately 35 ms, on average.

6. Conclusions

This work presents the principles of operation and the test results for the simulation
and laboratory models of an electric system with a variable inductance reactor. The
idea of the reactor operation was based on coupled fluxes, but without using the natural
nonlinearity of the magnetic circuit, as in most of the previous studies, e.g., ref. [30].
Instead, the interaction of two magnetic fluxes was implemented in the ferromagnetic
core. The investigation results confirmed the possibility of obtaining the inductance values
required in a smooth manner, as a result of controlling the flux in the inductor with three
coils (wound on the three-legged magnetic core) with relative error values in the range
7.8 ÷ 14.3%. In the author’s opinion, this value can be considered satisfactory, taking into
account the high complexity of both the magnetic circuit of the device and the entire system
with the reactor. An additional advantage of the presented circuit with a TI is that the
apparent power of the inverter supplying the secondary coil of the transformer can be an
average of k–times lower than the power of the primary circuit.

Whereas, in the current stage of this research, phenomena related to power loss in the
tuned reactor were not analysed.

In the author’s opinion, the device presented in this work can be an attractive solu-
tion, especially in electric power systems with adaptive features, including devices for
improving an energy quality and systems for energy transmission. However, these applica-
tions of the tuned inductor need further investigations, through simulation models and
laboratory prototypes.
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