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Abstract: Technologies that use renewable energy sources (RES) are crucial to achieving decarboniza-
tion goals, but a significant number of studies show their relatively high environmental impact during
the production phase. Therefore, technologies need to be compared in terms of their life-cycle envi-
ronmental impact. The life cycle analysis (LCA) methodology is well known and widely employed.
However, problems related to the methodological choices prevent taking full advantage of the LCA,
as the results of numerous studies are often incomparable. The presented review aims to critically
compare the impact of different energy generation technologies—RES (as well as non-RES) energy
generators and co-generators. The numeric results are structured and analyzed in terms of the global
warming potential (GWP) and non-RES primary energy consumption. The results show that RES
technologies are superior compared to conventional fossil-fuel-based systems in most cases, and
the high impact during the production and installation phases is compensated in the operational
phase. The high variations in GWP from similar technologies result from different methodological
choices, but they also show that the wrong choice of the technology in a certain location might cause
serious environmental drawbacks when the impact of the RES technology exceeds the impact of fossil
fuel-based technologies. Cogeneration technologies using waste as a fuel may even have a negative
GWP impact, thus showing even higher potential for decarbonization than RES technologies.

Keywords: LCA; review; energy transformation; renewable; cogeneration

1. Introduction

Energy generation is considered a major challenge throughout the industrial evolution,
especially as the global population is exponentially increasing [1]. Despite international
commitments, energy-related CO2 emissions have risen by 1% per year on average since
2010 [2], and secure, environmentally friendly, and efficient energy sources are needed now
more than ever to solve the global problem of climate change. To limit the effects of the
energy sector on climate change, significant reductions in CO2 emissions can be achieved
by using the appropriate technologies and policies [3], e.g., performing an energy transition
of the global energy sector. Policymakers and scientists see technologies that use renewable
energy sources (RES) as one of the main solutions on the road to a decarbonized energy
sector. It is estimated that renewable energy and energy efficiency measures can potentially
achieve 90% of the required carbon reductions by 2050 [4]. The estimates are based on the
impacts of the energy conversion phase, but a significant number of studies show that the
environmental impact of RES technologies during the production phase can be relatively
high and cannot be neglected. Thus, to reach the deep decarbonization goals, the choice
of the technology cannot be based only on the operational phase, ignoring the impacts
related to the other life cycle phases of the technology. Energy conversion technologies
need to be compared in terms of their life cycle environmental impacts, e.g., employing the
well-known methodology of Life Cycle Analysis (LCA).

LCA is applied for two purposes: to quantify/assess the environmental performance
of a product or process “from cradle to grave”, and to provide general information for
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evaluating potential improvements of a product and/or a system. The standard method-
ological framework for performing the LCA consists of four main phases [5]: (1) goal and
scope definition, (2) inventory analysis, (3) impact assessment, and (4) interpretation. How-
ever, the LCA detailed methodology can include several different methods, approaches,
applications, and software packages. The inventory analysis and impact assessment phases
are characterized by a number of methodological choices, such as system boundaries
(cradle-to-grave, cradle-to-gate, cradle-to-use, etc.), impact assessment (midpoint and/or
endpoint), allocation methods, and impact category indicators [6].

Although LCA methodology is widely employed in many studies analyzing energy
conversion systems’ life cycle impacts, problems related to methodological issues prevent
taking full advantage of this method when making decisions related to the choice of cleaner
energy conversion technologies. A transparent and homogeneous comparison is often not
possible to make because of differences in authors’ choices related to LCA methodology,
software, databases, boundaries, indicators, functional units, etc. This problem was also
noted by [7]. In addition, results can differ because of regional specifics, such as climate.

The breakthrough in the efficiency of energy conversion from burning fuel is un-
doubtedly linked to cogeneration. The combined production of electricity and heat not
only increases the efficiency of energy transformation but at the same time contributes
to reducing the negative impact on the environment. Most of the world’s electricity is
generated by burning fossil fuels (61% in total): coal (35%), natural gas (23%), and oil
(3%). The rest is produced using nuclear energy (10%), hydropower (16%), and renew-
able energy (12%), the share of which is constantly growing, as well as other resources
(about 1%) [8]. Burning renewable fuels in combined heat and power production plants
further expands the environmental performance of such systems, making an overview
of their LCA performance no less important than other RES technologies. The presented
review aims to identify opportunities for a sustainable energy transition path, critically
comparing the different energy conversion technologies on the basis of the results of the
LCAs performed. Moreover, the authors aim to confirm the hypothesis that renewable
energy-using technologies are not always superb in terms of their life cycle impact.

The paper consists of the following sections: (1) Introduction: a short presentation
of the background of the paper and goal definition; (2) Materials and Methods: a presen-
tation of the choices related to the reviewed energy technologies, data systematization
criteria, and used functional units; (3) Results, which is divided into subsections: a re-
view of the methodological choices used and the different energy sources technologies,
comparing collected numerical values for impact categories; (4) Discussion: a critical dis-
cussion on individual technologies; and (5) Conclusions. Appendix A features a table
(Table A1) with a detailed collection of data related to the methodological aspects of the
LCA studies reviewed.

2. Materials and Methods

The review includes (Figure 1) literature related to renewable energy conversion
systems classifying them as thermal energy generators, electrical energy generators, and
co-generators (electrical + thermal), both RES and non-RES.

The review focuses on studies written in English and published in or after 2010 (with
some exceptions). The literature is classified according to the energy source type: hydro,
wind, solar (both PV and thermal), geothermal, waste, and cogeneration. Each source of
energy is discussed in a separate section.

Methodological LCA choices, such as software, environmental impact assessment
method, system boundaries, and environmental impact categories were analyzed. More-
over, the region (country) that was applied in the assessment was taken into account.
Methodological choices were analyzed for all energy conversion technologies to find the
tendencies, and the numeric results were systemized and analyzed for different technolo-
gies separately in terms of GWP (gCO2 eq/kWh) emissions and non-renewable primary
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energy consumption (MJ/kWh). The overall number of literature sources used in the paper
was 120; the number of source studies for the data collected and systemized here was 95.
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3. Results of the Review
3.1. Methodological Aspects of the Studies Reviewed

As was already mentioned, different methodological choices make it difficult to trans-
parently and correctly compare the results of the LCA studies on energy technologies. The
methodological aspects of the studies are systemized in detail in Appendix A (Table A1),
and Figure 2 summarizes the general aspects of the choices related to the impact assessment
methodologies used by the authors, the boundaries of the studies, the LCA software used,
and the impact categories. The choices related to functional units were not analyzed in
the study. The most commonly used functional unit according to a review performed by
Muteri et al. [9] is kWh of produced electricity, and it was further used in this review. As
seen from the figure (Figure 2a), most studies used CML methods, yet the ReCiPe method
is popular as well. In general, it is obvious that there is not one strongly dominant method.
Figure 2b shows boundaries used in the LCA studies and here, the boundaries that are
used most commonly are from cradle-to-grave (full life cycle of the system) and from
cradle-to-gate. The leading software used in the reviewed studies is SimaPro (Figure 2c);
in terms of impact assessment, the most popular category, which is also compared in this
study, is still global warming (Figure 2d).

The least unification in LCA methodology is related to the impact assessment methods.
Each of them uses different assumptions, thus causing additional uncertainties of the
results, and comparison becomes merely indicative. A higher degree of unification in the
LCA methodology of energy using systems would be beneficial.
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3.2. Hydro Energy

Electricity generated in hydropower stations accounts for the largest share of the
world’s renewable energy conversion. In 2019, this share was 60% [10]. It is widely agreed
that this technology is among the “greenest” used for power generation. In addition to the
papers’ aim to compare GHG emissions for different energy conversion technologies, it
also merits to compare results within the same technologies provided by different studies.
As expected, the results showed a high level of variation. The widest dispersions can
be found in review papers, e.g., in [11,12], and this is logical, taking into account the
nature of such papers.

Table 1 summarizes the results obtained from different studies on hydro energy life
cycle impact in terms of GHG emissions (a visual representation of the results is provided
in Figure 3, together with other reviewed technologies). Looking at the hydropower results
on the chart (see Figure 3), three relative zones can be distinguished: “upper”, “middle”,
and “bottom”. The clear “upper” zone (3 points over 100 gCO2 eq/kWh.e) corresponded
to [11–13] (in a descending order of GHG emissions). The highest values (237, 160, and
152 gCO2 eq/kWh.e) referred to the cases with high dams and large reservoirs. The dams
were constructed using very large amounts of concrete and steel with a high rate of em-
bodied energy and, consequently, emissions. The reservoirs in this case usually are large,
flooded land areas, with biomass decaying under the water and releasing GHG (CO2 and
CH4) for the years. Moreover, this share of emissions is even more important because
it contributes to such a large dispersion of results, as is shown in [12]. This paper also
emphasizes the need to distinguish between “net” and “gross” emissions from flooded land
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because natural ponds (such as lakes and rivers) also emit some amount of GHG into the at-
mosphere. Emissions from flooded land presented in [13] as “biogenic” are in line with [12],
and they were approximately equal to 160 gCO2 eq/kWh.e (85 gCO2 + 3 gCH4 × 25) with
“a multiplicative uncertainty factor of 2”.
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The “bottom” zone in Figure 3 (points with values below 20 gCO2 eq/kWh.e) corre-
sponded to the results of [14–17], as well as the lower parts of [11,12]. All these sources,
except for [17], refer to the “run-off-river” cases or reservoir cases excluding emissions
from flooded land. In the “run-off-river” cases, the height of dams; reservoir sizes; flooded
land areas; and, consequently, biogenic GHG emissions usually are much smaller, and
this could explain the large differences between the “upper” and the “bottom” parts
of hydropower results (see Figure 3). In this logical sequence, the results of [17] stand
out strongly compared to other results referring to the cases with high dams and large
reservoirs. Some circumstances, such as the immense capacity of power stations and the
pre-impoundment clearance of reservoir areas, could explain this gap, but this case still
requires more attention.

Table 1. LCA impact of the hydropower.

Source Country, Comments gCO2 eq/kWh.e

[11] review 3.7–237
[13] bGHG only 160
[12] review, incl. dams 4.5–152
[18] Thailand, micro 52.7
[19] Myanmar, large scale, ROR 31.17–39.23
[12] review, ROR 0.3–13
[12] review, not incl. dams avg. 2.9 (0.2–11.2)
[17] China, mega scale 7.6–9.12
[16] China 3.1–3.7
[14] Peru, Andes, ROR 2.06–2.42
[15] Europe, alpine non-alpine 0.107–1.41
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The “middle” zone also contained two atypical cases. Both cases were drastically
different in terms of power generation capacity, although both fell into the “run-off-river”
category. Pascale et al. [18] presented a 3 kW community hydroelectric system located
in rural Thailand, and this “micro” scale probably is the main cause of higher emissions.
Aung et al. [19] presents the results of five large-scale hydropower stations with a capacity
of 120 to 790 MW. These stations also appear unusual because of the combination of
“run-off-river” type with large dams and reservoirs.

3.3. Wind Energy

The amount of global wind energy conversion takes second place among renewable en-
ergy sources, standing at about 20% [10]. Like hydropower, wind energy is also considered
as one of the “greenest”.

Among the results presented in Table 2 (also see the visual presentation of results in
Figure 3), [20] is a clear exception with approximately 10 times the values of other sources,
ranging from 295.2 to 468 gCO2 eq/kWh.e. It seems that there is a problem with the
conversion of units because these figures are not in line even with the data in the review
part of this source. The second highest value of 123.7 gCO2 eq/kWh.e is presented in [11],
although there are no details provided other than a reference to the source itself. The
next two points in descending order represent upper parts of quite large intervals. The
55.4 gCO2 eq/kWh.e value [12] refers to a small turbine (30 kW) with a capacity factor of
between 0 and 15%. The 42.75 gCO2 eq/kWh.e value [21] represents the worst case of six
scenarios with different life-spans, capacity factors, replacement rates of parts, transport
routes, and waste management options.

Table 2. LCA impact of wind energy.

Source Country, Comments gCO2 eq/kWh.e

[20] onshore 295.2–468
[11] review 9.7–123.7
[12] review 4.6–55.4
[21] Ethiopia 33.6 (15.72–42.75)
[16] China 25.4–31.8
[22] China, onshore 16.4–28.2
[23] China 31.36
[24] USA, onshore 14.45
[25] Colombia, Higher wind speed 12.93
[26] China, onshore 3.9

The remaining points lie (also see Figure 3) in the relatively compact zone between 3.9
and 31.8 gCO2 eq/kWh.e. A closer look at this zone revealed some differences; however,
there was no clear trend. These results confirm some already known facts that larger wind
farms with larger turbines and especially with greater capacity factor values produce lower
GHG emissions per energy unit generated. Another obvious fact that is mentioned in
almost all of the sources reviewed is that the main part of GHG emissions is generated
during the manufacturing phase of wind farms.

3.4. Solar Energy

Solar energy is used to generate electricity and thermal energy. Therefore, these
technologies are further discussed separately as photovoltaics and solar thermal collectors.

3.4.1. Photovoltaics

Over the decades, solar PV has been one of the most rapidly developing, mature,
and cost-competitive renewable energy technologies [27]. The total cumulative installed
capacity for PV at the end of 2020 reached at least 760.4 GW [28]. Solar PV is seen as
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the second most promising source after wind, and it has 21% of the total CO2 emission
reduction potential from renewables and energy efficiency measures by 2050.

Over the last four decades, a range of viable PV technologies has been proposed,
spanning from conventional single-crystal (s-Si) and multi-crystalline silicon (m-Si) to
second-generation panels such as amorphous silicon (a-Si), cadmium telluride (CdTe),
and cadmium indium gallium selenium (CIGS). More recently, much research and de-
velopment have gone into third-generation PV technologies including dye-sensitized
(DSC), perovskite, quantum dot (QD), and organic (OPV) cells, for instance [29], and
a variety of technologies are expected to continue to characterize the PV technology port-
folio. First-generation technologies still account for the majority of global annual produc-
tion [30]. Newer technologies still have barriers that need to be addressed and overcome
(durability, price).

Different environmental impact categories of the PV technology strongly vary because
of the different component materials, module efficiencies, manufacturing methods, loca-
tions, and modes of disposal used in their life cycle. The environmental impacts of some
technologies from different generations are compared in [31], where the second-generation
a-Si PV technology seems to be among the most sustainable, taking into account the overall
effect in nine different impact categories. The thin-film technologies seem more environ-
mentally efficient, and Bergesen et al. [32] estimates that they have the potential to reach
GWP values of 6–7 gCO2 eq/kWh.e. A study by Krebs-Moberg et al. [33] also confirms that
m-Si has the highest environmental impacts and that organic thin-film panels have the best
life cycle environmental performance.

The concerns about air pollution stemming from PV-system components in all the life
cycle stages of the system must be treated with caution [34]; however, most of the CO2
emissions are attributable to the manufacturing processes of the PV modules [35,36], and
multi-Si production is the most contributing phase in terms of the energy demand and
environmental impacts [37,38].

The life cycle impact of a photovoltaic installation is strongly related to the geograph-
ical features of the location where it is installed. Both solar radiation levels and outside
temperatures play a role in the efficient electricity generation of the module, and there
are multiple studies to prove it. In cold climate zones, solar radiation is lower, but at the
same time, the efficiency of PV panels increases due to the lower ambient temperature [39].
Parisi et al. [40] have demonstrated how irradiation influences GWP for different PV tech-
nologies at different radiation levels. Low radiation levels, e.g., for North Europe, may
have almost twice the impact compared to Southern countries. Akinyele et al. [41] found
even three times higher GWP values for locations with the lowest solar radiation levels.
The results of a comparative LCA depend also on the local electricity mix used in the life
cycle stages of the assessed products [42].

Muteri et al. [9] reviewed 39 LCA studies relating to the different types of grid-
connected PV systems (from first to third generation) and have provided a summary of
information and critical analysis. The review showed that, even when similar modules are
examined, it is difficult to compare different studies because of different methodological
approaches, as well as factors such as different configurations of the modules, installations,
and efficiencies. Therefore, following the aim of the review, we purposefully searched
life cycle assessment results—GWP and non-RES PE of the PV technologies, wherein the
functional unit is kWh.e. The results are summarised in Table 3.

As is seen from the table, most of the PV technologies have very low environmental
impacts compared to traditional fossil fuel sources (see Figure 3). Perovskite solar cells
show extreme variations in the GWP impact category, but the value of 5867 gCO2 eq/kWh.e
suggests that it should not be treated as a bad technology because the authors [49] only
performed a sensitivity analysis assuming different lifetimes and solar radiation levels, and
this is the result of the worst case scenario. In general, Perovskite cells are seen as a new
and promising technology, offering superior technical performance at a low cost.
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Table 3. LCA impact of the PV technologies.

Source Technology Country gCO2 eq/kWh.e MJ/kWh.e

[35] Silicon solar modules China 60–87
[36] Sc-Si and mc-Si with power conditioning system and BOS Korea 25–41.8 0.35–0.56
[43] CIGS/Si, CZTS/Si, and AZTS/Si tandem solar modules n/a 25–29
[44] Concentrated solar power plant China 35 0.514
[45] Sc-Si PV Brazil 14.54–18.68
[34] Poly-Si, a-Si, CdTe, CuInSe2 (CIS) Greece 12.28–58.81
[37] mc-Si China 51 0.041–0.87
[46] Mono-Si, Poly-Si; Fin films: a:Si, CdTe, CIGS, Zn3P2, CZTS United States 18–38
[32] Thin-film PV technologies: CIGS and CdTe United States 20–22

[40] DSSC system North/Central/South
Europe 30–125

[47] Perovskite USA 99–147
[48] Perovskite South Europe 35–37 3.98–4.15
[49] Perovskite Europe, USA 187–5867
[50] OPV Germany, South Europe 5.8–8.2

PV systems might also be efficiently integrated with other systems, e.g., Yan et al. [51]
presented parametric LCA for the tri-generation system—a combined cooling, heating, and
power system with renewable energy and energy storage. They compared the influence of
various sizes of solar PV arrays and batteries in such a system and discovered a potential
decrease in GWP of up to 46%.

It is obvious from the above that solar technologies impact varies, but it can be
minimized with proper selection of the technology, taking into account location specifics,
with proper selection of elements and with efficient integration with other systems.

3.4.2. Solar Thermal Collectors

Solar thermal technologies are used in all regions of the world to provide low- and
medium-temperature heat, especially when used in domestic applications, but it is still a
niche market for industrial processes [52]. Solar systems are considered to be attractive
investments, due to their long lifetime of more than 25 years and relatively small main-
tenance cost. However, the real potential of solar technologies lies in the improvement
of their efficiency so that they can achieve satisfactory environmental performance when
compared to other renewable energy systems [53].

Compared to what is needed to achieve the Paris Agreement goals, the installation
speeds of solar thermal collectors are inadequate. For instance, IRENA’s 1.5 ◦C pathway
requires the global solar thermal capacity to increase from around 4 GW in 2018 to 890 GW
in 2030 and 1290 GW in 2050 [10]. In this way, solar thermal technologies—and their
applications—are thus far at the stage of development.

The literature review of solar thermal technologies demonstrated that even though
the publications covered vacuum and flat-type solar collectors, the focus mainly lay on the
latter [52,54,55]. Vacuum tube collectors show higher efficiency and are much less affected
by variation in the ambient temperature, but as the price is almost 45% higher, it is the
flat-type collectors that are the principal option in southern climates [56].

During the last few years, these solar thermal technologies have been taking a large
leap towards the improvement of energy efficiency, the minimization of materials used in
the production stage, recycling, and the reduction of environmental burdens [57].

In contrast to the widely discussed solar PV technologies, there have been a limited
number of life cycle analyses looking specifically at solar thermal technologies [56], with
most research papers concentrating on economic analysis [58].

The results of certain LCA studies show that almost all of the environmental impact of
solar thermal technologies is produced during the production phase, while in the operation
stage, the emissions were negligible [56,57,59].
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Moreover, solar thermal systems show their weaknesses in the acidification and
eutrophication impact categories, mainly due to the metals used to produce their main
components: collector, tank, and copper tubes [59].

In summary, as there was a limited number of publications on solar thermal tech-
nologies, and Table 4 presents life cycle assessment results—GWP of the solar thermal
technologies for three cases. In all of them, the analysis was covered in southern climates,
and thus the variation of the results was moderate (Figure 3). No results for functional unit
non-RES PE were found by us.

Table 4. LCA impact of the solar thermal technologies.

Source Technology Country gCO2 eq/kWh.t

[56] PV and solar thermal (flat and vacuum collectors) Greece 22.2–23.8
[59] Flat-plate solar collectors for DHW Spain 92.4
[55] Flat-plate collectors for space heating and DHW Greece 8–16

Nevertheless, a review by Kylili et al. [52] proved that the geographical location
has a decisive impact on GWP. Life cycle assessment results for various European cities
(Athens, Barcelona, Milan, Frankfurt, Copenhagen, Oslo) presented a significant differ-
ence, with higher latitude locations showing more than twice the GWP values compared
to lower latitudes.

3.5. Geothermal Energy

Geothermal energy is an important energy resource, largely contributing to limiting
the use of fossil fuels. It can be employed for both electricity and direct uses [60]. Geother-
mal energy can be directly utilized for space heating and cooling, greenhouse heating,
aquaculture, bathing, district heating, and industrial uses. The direct utilization of geother-
mal energy by countries worldwide is reviewed in detail in the study of [61]. Indirect
utilization is when geothermal energy is converted into electricity by using different tech-
nologies. Geothermal plants tend both to run trouble-free at nearly full capacity for most of
their lifetimes and to serve the baseload power demand well [62]. In 2020, the volume of
generating energy from geothermal technologies was 94 TWh. Nevertheless, geothermal
technology is still not on track to reach the required annual 13% increase in generation over
2021–2030, corresponding to ≈3.6 GW of average annual capacity additions [63]. Different
technologies, such as dry steam; binary cycle; and single flash, double flash, and triple flash
enhanced geothermal systems, are employed to generate heat from geothermal sources.
The energy conversion technology used for exploiting geothermal systems depends on
different aspects, such as the reservoir properties (e.g., geological, geophysical, geochem-
ical, physicochemical, and thermodynamic) [64]. In terms of this technology, geological
areas with very high geothermal gradients hold the greatest appeal [65]. At sites with less
favorable conditions, only certain plant designs can make up for the energy and material
input to exploit the energy potential provided by geothermal reservoir [66,67]. Moreover,
the type of technology and the characteristics of the wells must be treated with caution [67].

With some exceptions, geothermal systems are considered one of the least GHG-
emitting renewable technologies [62]. The authors compared the energy conversion impact
from different energy sources using the GREET (Greenhouse Gases, Regulated Emissions,
and Energy Use in Transportation) model. The results show that the biggest impact in
geothermal power plants is made during the construction phase. Comparisons of three
different types of plants are presented in Figure 4, where EGS is the enhanced geothermal
system, and HT–Binary and HT–Flash are hydrothermal binary and hydrothermal flash
plants, respectively.
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The authors of the review [64] on different geothermal technologies’ life cycle impact
results have concluded that most of the LCA studies report global warming, which is mostly
caused by the fuel consumption in the construction and operation stages. The results from
this study show that the available information about geothermal power production’s life
cycle environmental impacts is still scarce.

Geothermal plants’ contribution to global warming also depends on whether an
emission treatment system and substitution of natural emissions are applied or not. Ba-
sosi et al. [60] calculated that an existing plant with an AMIS® emissions treatment system
emits approx. 0.47 kg CO2 eq/kWh, and without an emission treatment system, slightly
less. Meanwhile, when an emission treatment system is applied together with a 40%
substitution of natural emissions, GWP is only 0.3 kg CO2 eq/kWh.e.

It is also estimated by some studies that the plants that provide electrical power have
larger impacts across all impact categories analyzed, compared to plants that provide both
power and heat [66,68]. However, [69] notes that this also highly depends on the heat and
electricity mix in the region. Meanwhile, [66] emphasizes that for net power and district
heat production, the main aspects of environmentally sound plants are the enhancement of
the reservoir productivity, reliable design of the deep wells, and an efficient utilization of
the geothermal fluid. It must be also noted that there are allocation difficulties related to
impacts associated with joint production processes for electricity and heat [70]; therefore,
most of the authors of the studies reviewed only addressed the impacts of producing
electricity, despite the fact that the plant also generates heat.

The results of different LCA studies show that the construction phase of the plant is
largely responsible for the environmental impacts of the geothermal plant [69,70]. How-
ever, Ruzzenenti et al. [68] concluded that the materials and energy used for the drilling,
cementation, casing, and development of the wells almost offset the benefits provided by
the use of non-fossil resources.

Most of the studies reviewed (Table 5) show low GWP impact results compared to
conventional fossil-fuel systems, despite the fact that there have been high variations and
values found, depending on the region. As a case in point, for power plants analyzed
by [68,69], located in Italy, GWP reaches impacts that are similar to the fossil fuel power
plants. Moreover, in some cases and depending on the configuration of the plant, there are
high variations of the GWP, such as in a power plant located in Germany [66]. Very high
environmental performance is noticed in a geothermal plant located in Iceland [70–72],
where in some cases it can also be achieved by employing a carbon capture and storage
technology [70]. Icelandic rocks are primarily igneous and contain lower amounts of
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carbonates [73]; this does not only mean lower greenhouse gas emissions, but also enables
permanent disposal through mineralization of captured CO2, as demonstrated by the
CarbFix project [74]. Enhanced geothermal systems (EGS) also show considerably better
GWP results for different regions, namely, the U.S., Germany, and Iceland, as presented
in [62,69,72,75,76]; they also showed that using refrigerants with low global warming
potential ensures minimal effects.

Table 5. LCA impact of geothermal technologies.

Source Technology Country gCO2 eq/kWh.e gCO2 eq/kWh.t MJ/kWh.e

[62] EGS, geothermal flash, hydrothermal binary U.S. 5.7–103
[60] Plant with AMIS® emissions treatment system Italy 470

[67] Four plants: 1 single flash and 3 steam with
entrained water separated at the wellhead Italy 380–1045

[68] Small combined geothermal heat and power plant Italy 309–921
[66] Binary plants Germany 7–750 7–650
[76] Hydrothermal binary plant Germany 38.2 0.185

[77] Binary power plants: various geothermal ORC
power plant concepts and working fluids Germany 13.2–130.1

[69] Enhanced geothermal systems (EGS) Germany 29.5–54.9 2.7–9.2

[75] Enhanced geothermal systems (EGS) Germany,
Switzerland 16.9–49.8

[70] Double flash combined heat and power with and
without CCS (carbon capture and storage) Iceland 11.2–15.9

[72] Enhanced geothermal systems (EGS) Iceland 1.6–17.4
[71] Double-flash combined heat and power plant Iceland 15–24

However, there are studies, such as [67], that prove that CO2 emissions from geother-
mal energy may be of the same order of magnitude as those from fossil power plants and
that demonstrate that geothermal electricity conversion is not exempt from environmental
drawbacks. Thus, geothermal systems must be designed carefully with environmental con-
sideration throughout the whole life cycle of the system. For this purpose, even a simplified
life cycle assessment (LCA) method to assess the environmental impacts of deep geothermal
energy plants—those that are in the pipeline or already in operation—has been developed to
help geothermal project developers evaluate the environmental performance of their project,
in particular against fossil alternatives (https://www.geoenvi.eu/lca-for-geothermal/, ac-
cessed on 9 September 2022).

3.6. Waste

The European Union adopted the Circular Economy Package in 2018, wherein the
waste-to-energy (WtE) sector plays a crucial role towards a resource-efficient, low-carbon,
circular economy. WtE has several purposes: to reduce the amount of waste sent to landfills
by producing usable energy: heat and/or electricity [78].

Waste can be classified as organic and non-organic, while the main technologies used for
WtE are direct combustion, thermochemical, physiochemical, and biochemical processes.

According to this review and in the context of LCA, much attention is paid to
biochemical–anaerobic digestion processes for food waste [79,80] and municipal waste [81].
This is a tested technology for waste management that has a global application, but it has
been given less attention recently in terms of thermal treatment [82].

The LCA modeling techniques applied in the research outlined a large degree of
variability in technological systems, with different system boundaries, functional units,
impact categories, and geographical features complicating the comparison. Neverthe-
less, the most widely assessed impact categories are global warming [83–85], eutrophica-
tion/acidification [86], toxicity, etc. (Table 6).

https://www.geoenvi.eu/lca-for-geothermal/
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Table 6. Assessed impact categories in the investigated studies [82].

LCIA-Category Share

Global warming 98%
Eutrophication/acidification 79%

Toxicity 57%
Respiratory effects 57%
Energy/resources 52%
Ozone depletion 33%

Land use 12%

In this research, we found a problem with the comparability of the WtE LCA results
due to different functional units. Most researchers choose the input-based approach with a
specific amount of solid, food, or other waste as the functional unit [79,80,85]. It was only
in a few cases that the authors followed the output-based approach, wherein the results
were presented towards the amount of useful products [86].

The critical review of WtE also stated the major challenges in comparability LCA:
while most of the studies analyzed followed an input-based approach (80%), some of
them did not clearly state their functional unit, and/or the functional unit could not
be retrieved [82].

The analysis of the cogeneration processes using waste appeared to be more informa-
tive for the purposes of comparison of the functional units for gCO2 eq/kWh or MJ/kWh;
as a result, some of the data are presented in the following section.

3.7. Cogeneration

Usually, during the cogeneration process, two types of products are produced: elec-
tricity and heat. Different allocation methods are used to distribute the environmental
impact between these two products on the basis of energy, exergy, the value of emissions,
fuel chargeable to power, shared emissions, and other methods. Variations of up to 88%
were identified among the most common methods applied to the allocation of resources
and emissions [87]. In some cases, in addition to energy flows, some other co-products
can include, for example, combined synthetic natural gas and electricity production from
lignocellulosic biomass [88], electricity and cold [89], and electricity and hydrogen [90,91].
Due to electricity cogeneration from excess heat occurring in the production of gas, both
gas and the electricity are potential products, with their relative amount depending on
the process design. The exergy allocation method is often referred to as the most objective
and more precise [87,89,92]. The problem related to electrical and thermal energy alloca-
tion in the cogeneration process can be avoided by choosing the primary energy as the
functional unit [93]. The case of co-processing sewage sludge and the organic fraction
of municipal solid waste shows that anaerobic co-digestion provides better performance
than dark co-fermentation, mainly because of the higher energy recovery for electricity
and thermal energy production [94]. In looking for better options of cogeneration of waste
products, recovery of used cooking oil in cogeneration plants has in general lower values
in terms of environmental impacts than its employment in biodiesel production [95]. The
effective integration of traditional and renewable sources and the proper operation of
thermal storage units increase the system flexibility and sustainability, helping to deal with
the intermittent nature of the solar source [96].

A summary of the LCA results for cogeneration technologies is presented in Table 7.
The nature of the indicators is very different and depends on the priorities of the authors,
the specifics of the technology, and the functional unit chosen (electricity and/or thermal
output). The ranges of the indicator values are also very wide. They depend mainly on
the type of the primary energy source (RES or Non-RES) and the cogeneration technol-
ogy. Unfortunately, no clear trends in the dependencies of the indicators were observed
in the studies examined.
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Table 7. LCA impact of the cogeneration technologies.

Source Technology Country Energy Source gCO2
eq/kWh.e

gCO2
eq/kWh.t MJ/kWh.e MJ/kWh.t

[92]

CH4-fueled combined liquid
fuel and power co-production

based on chemical looping
combustion and CO2 storage

China

Natural gas

52 ÷ 57 1

[97]

Micro cogeneration systems
with fuel cell, Stirling, and

reciprocating
engine configurations

Germany 260 ÷ 520

[98]
A bioenergy power plant

integrated with a juice factory
Residual biomass (citrus peel)

Italy
Residual
biomass

−330 ÷ 1 −7.53 ÷ −2.06

[99] Biomass direct combustion
steam turbine cogeneration Turkey 40 ÷ 50 10 0.67 0.16

[100]

A biomass combustion
cogeneration (heat and power)

plant and a district
heating plant

Italy Residual and
crop biomass 50 ÷ 330 1.01 ÷ 4.27

[101]

Electricity generation from the
combined use of energy cane

locally cropped
with imported pellet

France Crop biomass 220 ÷ 260 2.20 ÷ 2.55

[69] Geothermal heat and/or
power plants France Geothermal

sources 20 ÷ 50 3 ÷ 9

[94]
Biogas turbine and internal

combustion engine
cogeneration

Italy

Waste

8.63 4.27

[93]

Municipal solid bio-waste
combustion/gasification with
electricity recovery, anaerobic

digestion with energy
cogeneration from

biogas/biomethane

Italy −30 ÷ 670 −0.07 ÷ 2.7

[102] Electricity import, supply of
biomass, and CHP Denmark Country mix 170 ÷ 550 2.1 ÷ 8.1

[103] Hungarian grid Hungary 500 12.2

[69] Electricity supply system France Geothermal
sources 20 ÷ 50 3 ÷ 9

[94]

CH4-fueled combined liquid
fuel and power co-production

based on chemical looping
combustion and CO2 storage

Italy

Waste

8.63 4.27

[93]

Micro cogeneration systems
with fuel cell, Stirling, and

reciprocating
engine configurations

Italy −30 ÷ 670 −0.07 ÷ 2.7

[102]
A bioenergy power plant

integrated with a juice factory
Residual biomass (citrus peel)

Denmark
Country mix

170 ÷ 550 2.1 ÷ 8.1

[103] Biomass direct combustion
steam turbine cogeneration Hungary 500 12.2

1 with carbon capture and utilization.
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3.8. Results for Different Energy Conversion Technologies

All results from the previous section related to separate energy conversion sources
were consolidated into one comparative graph (Figure 3).

No comparison of the non-RES primary energy demand for different sources was
made because of the limited amount of data available. The sufficient amount of GWP
indicators, wherein the functional unit is kWh of produced electricity, makes it possible
to present differences and ranges for different technologies, comparing them to fossil-
fuel-based energy conversion systems (coal, oil, and natural gas). Some values of RES
generators are even higher than the traditional fossil-fuel-based technologies, pointing to
some design drawbacks or worst-case scenarios. Most of the values are in a range from
0 to 100 gCO2 eq/kWh.e, proving that RES technologies, if carefully designed with the
environmental issues in mind, have a high potential to replace conventional technologies
and lead to the global decarbonization goals.

4. Discussion

This review aimed to identify any opportunities for comparing environmental impacts
of different power generation technologies using the results of the previously performed
LCAs. The paper further compared different RES-based technologies—hydro, wind, solar
(PV and thermal collectors), geothermal, and waste—with the results of cogeneration tech-
nology as an alternative, an efficient way to transform energy with a smaller environmental
impact. The comparison was made using kWh of converted energy as a functional unit.
The impact was assessed in terms of GWP (global warming potential), which is the most
common indicator in similar studies, and demand for non-RES primary energy. There are
many differences in the methodological approaches in different LCA studies, which were
systematized in Annex A; for numerical comparison, only studies that involved the same
functional units were used. Each of the technologies was reviewed separately, and the data
were structured and compared to the other alternative technologies as the final result of the
review paper.

Electricity generated in hydropower stations takes the biggest share of the world’s
renewable energy conversion, and in most cases has the smallest global warming potential
(GWP) compared with other RES. However, two typical cases can be distinguished, each
with its own level of GWP. In the case of high dams and large reservoirs, the expected GWP
value is between 140 and 240 gCO2 eq/kWh.e, and in the run-off-river case, it is below
15 gCO2 eq/kWh.e. Such significant differences occur depending on whether biogenic
GHG emissions are included in the assessment or not.

Wind energy is the second largest source of RES energy. The reviewed literature con-
firms the already-known facts that larger wind farms with larger turbines, especially those
that have greater capacity factors, produce lower GHG emissions per energy unit. Another
obvious fact mentioned in almost all of the studies reviewed is that the main part of GHG
emissions is generated during the manufacturing phase of wind farms. The GWP effect of
wind power generation is comparable to PV and hydro energy. The approximate average
value derived from the sources reviewed can be estimated as 25 ± 10 gCO2 eq/kWh.e.
Any values outside this interval usually are associated with scenarios that are based on
near-marginal favorable or unfavorable assumptions.

Solar PV technologies are some of the most rapidly developing RES technologies,
where different generations of solar cells are applied and developed. Despite their relatively
high environmental impacts during the production stage, these technologies have a small
overall impact during the whole life cycle, compared to the conventional fossil-fuel-based
systems. Some of the PV technologies, such as thin-film technologies, seem extremely
environmentally efficient and are estimated to have the potential to reach GWP values of
6–7 gCO2 eq/kWh. This level of impact is hundreds of times lower compared, e.g., to coal
power plants. However, it is important to note that geographic features of a photovoltaic
installation have a significant effect on the electricity generation, and therefore it is also
an important factor when it comes to assessing the sustainability of the PV technologies
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within their life cycle, as low radiation levels, such as those that exist in Northern Europe,
may double or triple the impacts.

Solar thermal systems are also presented as clean energy conversion systems with
quite a long lifetime of more than 25 years and relatively small maintenance costs. LCA
studies show that here, the production stage plays the largest role, producing almost all of
the environmental impact for different types of solar collectors. Meanwhile, the results for
the operation stage are insignificant. The review also proved that the geographical location
has a decisive impact on energy and GWP, with northern locations presenting up to twice
the GWP values and as much as half the GWP and energy savings of southern locations.

As most of the studies on geothermal system LCA covered in this review showed,
these systems have low GWP impact results compared to the conventional fossil fuel
systems, despite the high variation and values depending on the region and the type of the
system. In particular, low impacts are found in geothermal power plants in Iceland and
when enhanced geothermal systems (EGS) are employed with the application of different
additional technologies, such as carbon capture and storage, combined heat and power
production, or the use of refrigerators with low GWP impacts. These plants may reach
extremely low GWP values of less than 2 gCO2 eq/kWh. However, there are studies that
prove that emissions of CO2 from geothermal energy sources may have the same order of
magnitude as fossil fuel power plants, demonstrating that geothermal electricity conversion
is not exempt from environmental drawbacks. Thus, geothermal systems must be designed
carefully with environmental factors in mind throughout the whole life cycle of the system.

The review of LCA studies of waste-to-energy (WtE) systems identified many differ-
ences in system boundaries, functional units, impact categories, and geographical features.
Therefore, a problem was found with the comparability of WtE LCA results, as in most
cases the functional unit was found to be a specific amount of waste. Thus, the analysis
of using waste as a fuel in cogeneration processes was shown to be more informative and
could present some results for GWP (gCO2 eq/kWh) emissions and non-renewable energy
consumption (MJ/kWh).

LCA results for cogeneration technologies have a strong variation due to the allocation
of the environmental impact between different products such as electricity, heat, cold,
synthetic natural gas, hydrogen, and recovery of used cooking oil. Moreover, LCA results
for GWP strongly depend on the type of the primary energy source (RES or Non-RES)
and the cogeneration technology. For cogeneration plants using natural gas as fuel, the
GWP is 260 ÷ 520 CO2 eq g/kWh.e. Meanwhile, for plants using residual waste, it can
even be negative: −300 ÷ 1 CO2 eq g/kWh.e. The negative impacts are found when
residual materials (residual biomass, bio-waste) were considered more dangerous to the
environment than the energy conversion process as such.

5. Conclusions

In conclusion, of the review, RES technologies can be said to be clearly superior to
the conventional fossil-fuel-based systems in most cases (Figure 3), and, despite the high
impact during the production and installation phases, their impacts are compensated
with miniscule impacts during the operational phase. High variations in GWP results
occur because of different methodological choices, but they also show that inappropriate
technology deployed in a certain location might be the reason for serious environmental
issues when the impact of the RES technology excels over fossil-fuel-based technologies.
Thus, RES systems must be designed carefully with environmental factors in mind through
the whole life cycle of the system, taking into account the specifics of the location, such as
solar radiation, external temperatures, and geological properties. The initial hypothesis
raised by us that renewable-energy-using technologies are not always superb in terms
of their life cycle impact was confirmed. This critical review might be beneficial for
policymakers when making decisions on decarburization of the energy sector.
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List of Acronyms
a-Si amorphous silicon PV technology
CCS carbon capture and storage
CdTe cadmium telluride PV technology
CED cumulative energy demand
CExC cumulative exergy consumption
c-g from cradle to grave
c-gt from cradle to gate
CHP combined heat and power
CIGS cadmium indium gallium selenium PV technology

CML
impact assessment method by Institute of Environmental Sciences at
Leiden University

com construction, operation, and maintenance
c-u from cradle to use
daa double accounting analysis
DSC dye-sensitized PV technology
DHW domestic hot water
EGS enhanced geothermal systems
FU functional unit
GHG greenhouse gas
gt-g from gate to grave
GWP global warming potential
HT hydrothermal plant
ILCD International Reference Life Cycle Data System
IPCC intergovernmental panel on climate change
kWh.e kilowatt hours of electricity
kWh.t kilowatt hours of thermal energy
LCA life cycle assessment
LC-TEC The Thermo Ecological Cost Life Cycle Assessment
mc materials and construction
m-Si multicrystalline silicon PV technology
mud manufacturing, usage, disposal
non-RES non-renewable energy sources
o operation
OPV organic cell PV technology
ORC organic Rankine cycle
PA + EEIOA process analysis + env extended IO analysis
PE primary energy
PV photovoltaics
QD quantum dot PV technology

ReCiPe
impact assessment method by RIVM and Radboud University, CML, and
PRé Consultants

RES renewable energy sources
ROR run-off-river
s-Si conventional single-crystal PV technology
WtE waste to energy
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Appendix A

Table A1. Methodological aspects of the reviewed LCA studies.

Source

Energy Sources Converted
Energy

Software Impact Assessment
Method Boundaries

Impact Categories

RES Non-
RES/Fossil Electricity Heat

Non-
Renewable

Energy

Global
Warming Eutrophication Acidification Ozone Layer

Depletion
Photochemical

Oxidation Other

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[104] + + n/a ESA ReCiPe daa, com +

[105] + partly n/a n/a n/a + +

[18] + + n/a n/a c-g + + + + + + +

[13] + + n/a Biogenic GHG only as
input to LCA n/a +

[12] + + n/a n/a +

[19] + + n/a LCI, LCIA c-g + + + +

[14] + + SimaPro v8.3.0.0 ReCiPe n/a + +

[15] + + SimaPro 8.5
(ecoin vent)

ReCiPe 2016, Impact
2002+, Eco-points 97 c-g + +

[106] + + Umberto NXT;
(ecoinvent v3.2) ReCiPe, IPCC c-g + + + +

[107] + + n/a n/a n/a +

[17] + +
GHG Risk

Assess ment
Tool

LCA ISO/TS 14067 c-g +

[16] + + SimaPro CML2001 n/a + + + +

[21] + + SimaPro 8.0.3.14
(Ecoinvent 3.01) ReCiPe 2008 c-g + +

[24] + + n/a PA + EEIOA mc + +

[22] + + n/a n/a c-g +

[23] + + + n/a n/a n/a +

[25] + + n/a ILCD n/a + +

[26] + + n/a n/a c-g +
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Table A1. Cont.

Source

Energy Sources Converted
Energy

Software Impact Assessment
Method Boundaries

Impact Categories

RES Non-
RES/Fossil Electricity Heat

Non-
Renewable

Energy

Global
Warming Eutrophication Acidification Ozone Layer

Depletion
Photochemical

Oxidation Other

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[108] + + Simapro Eco-indicator 99;
+ “original” n/a +

[20] + + n/a n/a c-g +

[109] + + + SimaPro CML 2001 o + + +

[110] + + + SimaPro 8.2 n/a c-g + + + +

[111] + + + n/a CML-IA baseline
V3.02/EU25 c-g +

[112] + + SimaPro 8 ReCiPe, USEtox, and
Ecological footprint c-g + + + + + +

[113] + + + n/a n/a c-u +

[35] + + n/a n/a c-g +

[36] + + SimaPro 7.1 IPCC 1996 GWP 100a c-g + +

[43] + + GaBi IPCC, USEtox,
EUTREND, CML 2002 c-g + + +

[44] + + n/a MRIO-LCA c-g + +

[7] + + + openLCA® 1.6.3
Matrix-based
LCA method c-gt +

[51] + + + + Simapro 8 TRACI 2.1 LCIA model c-g + + + + +

[36] + + SimaPro 7.1 IPCC 1996 GWP 100a c-g + +

[45] + + GaBi 4.0
Ecoinvent 1.01

CML 2001
CED

c-u +

[34] + + GaBi Eco-Indicator ’95 c-u +

[37] + + GaBi 4.3 CML 2001 c-g + + + + + + +

[42] + + SimaPro 7.1.8 CML 2001 mud + + + + + +

[46] + + GaBi TRACI 2.1 c-gt + + +
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Table A1. Cont.

Source

Energy Sources Converted
Energy

Software Impact Assessment
Method Boundaries

Impact Categories

RES Non-
RES/Fossil Electricity Heat

Non-
Renewable

Energy

Global
Warming Eutrophication Acidification Ozone Layer

Depletion
Photochemical

Oxidation Other

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[32] + + n/a Traci1.0
ReCiPe 2008 mud + + + + Etc

[40] + + SimaPro ReCiPe 2008,
CED c-gt +

[29] + + openLCA v1.4.2 ReCiPe v1.0.5,
CED c-g + + + + + +

[47] + + GaBi 6.0 TRACI
ReCiPe c-gt + + + +

[48] + + SimaPor n/a c-gt + + + +

[49] + + GaBi 6.0 ILCD c-gt + + + + + +

[33] + + SimaPro 8.5.2.0 ReCiPe c-g + + + + +

[50] + + EMIS v5.7
IPPC 2007 CED
ReCiP USEtox

EPB
c-gt + +

[60] + + OpenLCA ILCD 2011 Midpoint +
ReCiPe 2016 c-g + + + + + +

[67] + SimaPro CML 2002 c-u + + +

[66] + + n/a CED c-g + + + +

[68] + + + SimaPro CML 2011
CED n/a + + + +

[62] + + + n/a GREET c-u +

[71] + + + Gabi ILCD c-g + + + + + +

[76] + + + n/a IMPACT 2002+ c-g + + + +

[77] + + + n/a CED c-g + + + +

[70] + + + SimaPro CML-IA
CED c-gt + + + + + +

[72] + + + n/a IPCC 2013 gt-g +
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Table A1. Cont.

Source

Energy Sources Converted
Energy

Software Impact Assessment
Method Boundaries

Impact Categories

RES Non-
RES/Fossil Electricity Heat

Non-
Renewable

Energy

Global
Warming Eutrophication Acidification Ozone Layer

Depletion
Photochemical

Oxidation Other

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[69] + + + OpenLCA ILCD 2011 c-g +

[75] + + n/a IMPACT 2002 +
LCI c-g + + + +

[94] + + + n/a CML-IA baseline V3.02/
EU25 n/a + + +

[114] + + + n/a Mix c-g + + + + +

[102] + + + n/a n/a n/a + + + + + + +

[92] + + n/a n/a c-gt +

[98] + + OpenLCA 1.10.1 ILCD 2018 c-g + + + + + + +

[89] + + Cold SimaPro 8.0 IPCC 2013 GWP 20a c-gt +

[115] + + + + n/a LC-TEC c-g + +

[101] + + SimaPro 8.1
CML IA baseline V3.02;
Re-CiPe Midpoint (E)

V1.12
c-g + + + + + +

[91] + + H2 n/a Manual c-g + +

[116] + + SimaPro 7.1 Eco-Indicator 99 c-g + + + + + +

[93] + + + Ecoinvent Impact 2002+ c-g + + +

[97] + + + n/a n/a c-g + +

[69] + + + OpenLCA ILCD 2011 c-g +

[96] + + + + n/a Manual c-g +

[117] + + + + n/a ILCD c-g + + + + + +

[99] + + + SimaPro
V8.1.1.16 CML IA baseline V3.03 c-g + + + + + + +

[118] + + + n/a Manual c-g +

[103] + + + OpenLCA,
Ecoinvent v3.2

Cumulative energy
demand, CML, ReCiPe c-g + + + + + + +
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Table A1. Cont.

Source

Energy Sources Converted
Energy

Software Impact Assessment
Method Boundaries

Impact Categories

RES Non-
RES/Fossil Electricity Heat

Non-
Renewable

Energy

Global
Warming Eutrophication Acidification Ozone Layer

Depletion
Photochemical

Oxidation Other

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[95] + + + n/a CML-IA, CExC c-gt + +

[100] + + + SimaPro 8 ReCiPe (I) 2016 c-gt + + + + + + +

[54] + + SimaPro 7.3:
CED; Greenhouse Gas
Protocol; Eco-indicator

99
n/a + +

[119] + + n/a EcoIndicator 99,
Egalitarian Approach c-g + +

[52] + + GaBi n/a c-u + + + + + + +

[53] + + SimaPro 8.5

ILCD, Impact 2002+,
CED, Eco-points 97,
Eco-indicator 99 and

IPCC

c-g + + + + +

[56] + + + Simapro n/a c-g + + + +

[110] + + SimaPro 8.2 n/a c-g + + + + + +

[57] + + n/a Eco-indicator’95 c-g + + + + + +

[59] + + Gabi n/a c-g + + + + + +

[55] + + GEMIS EcoIndicator 99 c-g + + + +

[58] + + + n/a EcoIndicator 95 c-gt + +

[79] + + Gabi 4.0 CML 2001 n/a + + + + +

[84] + + SimaPro 8.05 Eco-indicator 99 o + + +

[83] + + SimaPro 8.02 Impact 2002+ c-g + + +

[86] + + + n/a ReciPe v1.12 c-g + + + +

[120] + + SimaPro7.7.3 Ecoindicator99 2.09 c-g + + + + + +

[81] + + Gabi 4.0 CML method o + + + + +

[80] + n/a Classic LCA mc + +

[85] + + GABI 4.0 CML 2001 mc + +
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