Effect of Mixing Section Acoustics on Combustion Instability in a Swirl-Stabilized Combustor
Abstract
:1. Introduction
2. Experimental Methods
2.1. Experimental Setup and Instrumentation
2.2. Experimental Conditions
3. Results and Discussion
3.1. Definition of Combustion Instability
3.2. Analysis for Resonant Frequency in the Swirl-Stabilized Combustor
3.3. Phase Analysis for the Combustion Instability Characteristics
3.4. Flame Structure Characteristics for Two Different Combustion Instabilities
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lefebvre Lean Premixed/Prevaporized Combustion; NASA CP-2016; Lewis Research Center: Cleveland, OH, USA, 1977.
- Foglesong, R.E.; Frazier, T.R.; Flamand, L.M.; Peters, J.E.; Lucht, R.P. Flame structure and emissions characteristics of a lean premixed gas turbine combustor. Jt. Propuls. Conf. Exhib. 1999, 2399. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, V. Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 2009, 35, 293–364. [Google Scholar] [CrossRef]
- Ruan, C.; Chen, F.; Cai, W.; Qian, Y.; Yu, L.; Lu, X. Principles of non-intrusive diagnostic techniques and their applications for fundamental studies of combustion instabilities in gas turbine combustors: A brief review. Aerosp. Sci. Technol. 2019, 84, 585–603. [Google Scholar] [CrossRef]
- Wu, G.; Lu, Z.; Xu, X.; Pan, W.; Wu, W.; Li, J.; Ci, J. Numerical investigation of aeroacoustics damping performance of a Helmholtz resonator: Effects of geometry, grazing and bias flow. Aerosp. Sci. Technol. 2019, 86, 191–203. [Google Scholar] [CrossRef]
- Renaud, A.; Ducruix, S.; Zimmer, L. Bistable behaviour and thermo-acoustic instability triggering in a gas turbine model combustor. Proc. Combust. Inst. 2017, 36, 3899–3906. [Google Scholar] [CrossRef] [Green Version]
- Bernier, D.; Lacas, F.; Candel, S. Instability Mechanisms in a Premixed Prevaporized Combustor. J. Propuls. Power 2004, 20, 648–656. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, D.; Han, N.; Wang, S.; Li, J. Control of combustion instability with a tunable Helmholtz resonator. Aerosp. Sci. Technol. 2015, 41, 55–62. [Google Scholar] [CrossRef]
- Chen, F.; Ruan, C.; Yu, T.; Cai, W.; Mao, Y.; Lu, X. Effects of fuel variation and inlet air temperature on combustion stability in a gas turbine model combustor. Aerosp. Sci. Technol. 2019, 92, 126–138. [Google Scholar] [CrossRef]
- Kim, K.T.; Santavicca, D.A. Interference mechanisms of acoustic/convective disturbances in a swirl-stabilized lean-premixed combustor. Combust. Flame 2013, 160, 1441–1457. [Google Scholar] [CrossRef]
- Rayleigh, J.W.S. The Theory of Sound, 2nd ed.; Dover: New York, NY, USA, 1945. [Google Scholar]
- Kim, K.T. Combustion instability feedback mechanisms in a lean-premixed swirl-stabilized combustor. Combust. Flame 2016, 171, 137–151. [Google Scholar] [CrossRef]
- Nicoud, F.; Poinsot, T. Thermoacoustic instabilities: Should the Rayleigh criterion be extended to include entropy changes? Combust. Flame 2005, 142, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Venkataraman, K.K.; Preston, L.H.; Simons, D.W.; Lee, B.J.; Lee, J.G.; Santavicca, D.A. Mechanism of Combustion Instability in a Lean Premixed Dump Combustor. J. Propuls. Power 1999, 15, 909–918. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, V. Bifurcation of flame structure in a lean-premixed swirl-stabilized combustor: Transition from stable to unstable flame. Combust. Flame 2004, 136, 383–389. [Google Scholar] [CrossRef]
- Yoon, J.; Kim, M.-K.; Hwang, J.; Lee, J.; Yoon, Y. Effect of fuel–air mixture velocity on combustion instability of a model gas turbine combustor. Appl. Therm. Eng. 2013, 54, 92–101. [Google Scholar] [CrossRef]
- Yoon, J.; Joo, S.; Kim, J.; Lee, M.C.; Lee, J.G.; Yoon, Y. Effects of convection time on the high harmonic combustion instability in a partially premixed combustor. Proc. Combust. Inst. 2017, 36, 3753–3761. [Google Scholar] [CrossRef]
- Allison, P.; Driscoll, J.F.; Ihme, M. Acoustic characterization of a partially-premixed gas turbine model combustor: Syngas and hydrocarbon fuel comparisons. Proc. Combust. Inst. 2013, 34, 3145–3153. [Google Scholar] [CrossRef]
- Park, J.; Lee, M.C. Combustion instability characteristics of H2/CO/CH4 syngases and synthetic natural gases in a partially-premixed gas turbine combustor: Part I—Frequency and mode analysis. Int. J. Hydrog. Energy 2016, 41, 7484–7493. [Google Scholar] [CrossRef]
- Schuller, T.; Durox, D.; Palies, P.; Candel, S. Acoustic decoupling of longitudinal modes in generic combustion systems. Combust. Flame 2012, 159, 1921–1931. [Google Scholar] [CrossRef]
- Kim, D.; Joo, S.; Yoon, Y. Effects of fuel line acoustics on the self-excited combustion instability mode transition with hydrogen-enriched laboratory-scale partially premixed combustor. Int. J. Hydrogen Energy 2020, 45, 19956–19964. [Google Scholar] [CrossRef]
- Kim, M.-K.; Yoon, J.; Oh, J.; Lee, J.; Yoon, Y. An experimental study of fuel–air mixing section on unstable combustion in a dump combustor. Appl. Therm. Eng. 2014, 62, 662–670. [Google Scholar] [CrossRef]
- Katsuki, M.; Whitelaw, J. The influence of duct geometry on unsteady premixed flames. Combust. Flame 1986, 63, 87–94. [Google Scholar] [CrossRef]
- Delacruzgarcia, M.; Mastorakos, E.; Dowling, A. Investigations on the self-excited oscillations in a kerosene spray flame. Combust. Flame 2009, 156, 374–384. [Google Scholar] [CrossRef]
- Hwang, D.; Ahn, K. Experimental Study on Dynamic Combustion Characteristics in Swirl-Stabilized Combustors. Energies 2021, 14, 1609. [Google Scholar] [CrossRef]
- Beer, J.M.; Chigier, N.A. Combustion Aerodynamics; Applied Science Publisher: London, UK, 1972. [Google Scholar]
- Hwang, D.; Song, Y.; Ahn, K. Combustion instability characteristics in a dump combustor using different hydrocarbon fuels. Aeronaut. J. 2019, 123, 586–599. [Google Scholar] [CrossRef]
- Sterling, J.D. Longitudinal Mode Combustion Instabilities in Air Breathing Engines; California Institute of Technology: Pasadena, CA, USA, 1987. [Google Scholar]
- Göttgens, J.; Mauss, F.; Peters, N. Analytic approximations of burning velocities and flame thicknesses of lean hydrogen, methane, ethylene, ethane, acetylene, and propane flames. Symp. Combust. 1992, 24, 129–135. [Google Scholar] [CrossRef]
- Kim, K.T.; Santavicca, D. Linear stability analysis of acoustically driven pressure oscillations in a lean premixed gas turbine combustor. J. Mech. Sci. Technol. 2009, 23, 3436–3447. [Google Scholar] [CrossRef]
Oxidizer | Air | |||
---|---|---|---|---|
Fuel | C2H4 | CH4 | ||
ϕ | 0.60–0.80, Δ0.05 | 0.70–0.85, Δ0.05 | ||
u [m/s] | 10 | 15 | 20 | |
Reynolds number | 24,000 | 36,000 | 48,000 | |
LC [mm] | 495–1695, Δ100 | |||
LI [mm] | 350 | |||
Swirl number (SN) | 0.46, 0.80, 1.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, D.; Kang, C.; Ahn, K. Effect of Mixing Section Acoustics on Combustion Instability in a Swirl-Stabilized Combustor. Energies 2022, 15, 8492. https://doi.org/10.3390/en15228492
Hwang D, Kang C, Ahn K. Effect of Mixing Section Acoustics on Combustion Instability in a Swirl-Stabilized Combustor. Energies. 2022; 15(22):8492. https://doi.org/10.3390/en15228492
Chicago/Turabian StyleHwang, Donghyun, Cheolwoong Kang, and Kyubok Ahn. 2022. "Effect of Mixing Section Acoustics on Combustion Instability in a Swirl-Stabilized Combustor" Energies 15, no. 22: 8492. https://doi.org/10.3390/en15228492
APA StyleHwang, D., Kang, C., & Ahn, K. (2022). Effect of Mixing Section Acoustics on Combustion Instability in a Swirl-Stabilized Combustor. Energies, 15(22), 8492. https://doi.org/10.3390/en15228492