A Review of the Parameters Affecting a Heat Pipe Thermal Management System for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Parameters Affecting the Performance of a HP-BTMS
2.1. Effects of the Heat Generation Rate
2.2. Effects of the Ambient Temperature
2.3. Effects of the Coolant Temperature
2.4. Effects of the Coolant Flow Rate
2.5. Effects of the Start-Up Time
2.6. Effects of the Inclination Angle of the Heat Pipe
2.7. Effects of the Condenser and Evaporator Section Lengths
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gou, J.; Liu, W. Feasibility study on a novel 3D vapor chamber used for Li-ion battery thermal management system of electric vehicle. Appl. Therm. Eng. 2019, 152, 362–369. [Google Scholar] [CrossRef]
- Guo, S.; Xiong, R.; Wang, K.; Sun, F. A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application. Appl. Energy 2018, 219, 256–263. [Google Scholar] [CrossRef]
- Rajan, A.; Vijayaraghavan, V.; Ooi, M.P.-L.; Garg, A.; Kuang, Y.C. A simulation-based probabilistic framework for lithium-ion battery modelling. Measurement 2018, 115, 87–94. [Google Scholar] [CrossRef]
- Zhang, W.; Qiu, J.; Yin, X.; Wang, D. A novel heat pipe assisted separation type battery thermal management system based on phase change material. Appl. Therm. Eng. 2020, 165, 114571. [Google Scholar] [CrossRef]
- Mbulu, H.; Laoonual, Y.; Wongwises, S. Experimental study on the thermal performance of a battery thermal management system using heat pipes. Case Stud. Therm. Eng. 2021, 26, 101029. [Google Scholar] [CrossRef]
- Hu, Y.; Choe, S.; Garrick, T. Measurement of heat generation rate and heat sources of pouch type Li-ion cells. Appl. Therm. Eng. 2021, 189, 116709. [Google Scholar] [CrossRef]
- Xu, J.; Lan, C.; Qiao, Y.; Ma, Y. Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Appl. Therm. Eng. 2017, 110, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Jaguemont, J.; Boulon, L.; Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 2016, 164, 99–114. [Google Scholar] [CrossRef]
- Ye, Y.; Saw, L.H.; Shi, Y.; Tay, A.A. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Appl. Therm. Eng. 2015, 86, 281–291. [Google Scholar] [CrossRef]
- Ye, Y.; Shi, Y.; Saw, L.H.; Tay, A.A. Performance assessment and optimization of a heat pipe thermal management system for fast charging lithium ion battery packs. Int. J. Heat Mass Transf. 2016, 92, 893–903. [Google Scholar] [CrossRef]
- Pesaran, A.A. Battery thermal models for hybrid vehicle simulations. J. Power Sources 2002, 110, 377–382. [Google Scholar] [CrossRef]
- Zhao, R.; Gu, J.; Liu, J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries. J. Power Sources 2015, 273, 1089–1097. [Google Scholar] [CrossRef]
- Hwang, H.-Y.; Chen, Y.-S.; Chen, J.-S. Optimizing the heat dissipation of an electric vehicle battery pack. Adv. Mech. Eng. 2015, 7, 204131. [Google Scholar] [CrossRef] [Green Version]
- Chombo, P.V.; Laoonual, Y. A review of safety strategies of a Li-ion battery. J. Power Sources 2020, 478, 228649. [Google Scholar] [CrossRef]
- Roe, C.; Feng, X.; White, G.; Li, R.; Wang, H.; Rui, X.; Li, C.; Zhang, F.; Null, V.; Parkes, M.; et al. Immersion cooling for lithium-ion batteries-A review. J. Power Sources 2022, 525, 231094. [Google Scholar]
- Dan, D.; Yao, C.; Zhang, Y.; Zhang, H.; Zeng, Z.; Xu, X. Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Appl. Therm. Eng. 2019, 162, 114183. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, F.; Zhou, H.; Wang, Q.; Kong, J. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling. Appl. Therm. Eng. 2020, 175, 115331. [Google Scholar]
- Mahamud, R.; Park, C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. J. Power Sources 2011, 196, 5685–5696. [Google Scholar] [CrossRef]
- Park, H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J. Power Sources 2013, 239, 30–36. [Google Scholar]
- Yang, W.; Zhou, F.; Zhou, H.; Liu, Y. Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module. Int. J. Heat Mass Transf. 2020, 161, 120307. [Google Scholar]
- Buidin, T.I.C.; Mariasiu, F. Battery thermal management systems: Current status and design approach of cooling technologies. Energies 2021, 14, 4879. [Google Scholar] [CrossRef]
- Wu, W.; Wang, S.; Wu, W.; Chen, K.; Hong, S.; Lai, Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers. Manag. 2019, 182, 262–281. [Google Scholar] [CrossRef]
- Lai, Y.; Wu, W.; Chen, K.; Wang, S.; Xin, C. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack. Int. J. Heat Mass Transf. 2019, 144, 118581. [Google Scholar]
- Murali, G.; Sravya, G.S.N.; Jaya, J.; Vamsi, V.N. A review on hybrid thermal management of battery packs and it’s cooling performance by enhanced PCM. Renew. Sustain. Energy Rev. 2021, 150, 111513. [Google Scholar]
- Singh, R.; Sadeghi, S.; Shabani, B. Thermal conductivity enhancement of phase change materials for low-temperature thermal energy storage applications. Energies 2019, 12, 75. [Google Scholar] [CrossRef] [Green Version]
- Ping, P.; Peng, R.; Kong, D.; Chen, G.; Wen, J. Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment. Energy Convers. Manag. 2018, 176, 131–146. [Google Scholar]
- Wu, W.; Yang, X.; Zhang, G.; Ke, X.; Wang, Z.; Situ, W.; Li, X.; Zhang, J. An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack. Energy 2016, 113, 909–916. [Google Scholar]
- Zhang, C.W.; Chen, S.R.; Gao, H.B.; Xu, K.J.; Xia, Z.; Li, S.T. Study of thermal management system using composite phase change materials and thermoelectric cooling sheet for power battery pack. Energies 2019, 12, 1937. [Google Scholar] [CrossRef]
- Zohuri, B. Heat Pipe Design and Technology Modern Applications for Practical Thermal Management, 2nd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Behi, H.; Ghanbarpour, M.; Behi, M. Investigation of PCM-assisted heat pipe for electronic cooling. Appl. Therm. Eng. 2017, 127, 1132–1142. [Google Scholar] [CrossRef]
- Wu, M.-S.; Liu, K.; Wang, Y.-Y.; Wan, C.-C. Heat dissipation design for lithium-ion batteries. J. Power Sources 2002, 109, 160–166. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Y.; Chen, G. Heat-pipe based spray-cooling thermal management system for lithium-ion battery: Experimental study and optimization. Int. J. Heat Mass Transf. 2020, 163, 120494. [Google Scholar]
- E, J.; Yi, F.; Li, W.; Zhang, B.; Zuo, H.; Wei, K.; Chen, J.; Zhu, H.; Zhu, H.; Deng, Y. Effect analysis on heat dissipation performance enhancement of a lithium-ion-battery pack with heat pipe for central and southern regions in China. Energy 2021, 226, 120336. [Google Scholar] [CrossRef]
- Xu, X.; Tang, W.; Fu, J.; Li, R.; Sun, X. Plate flat heat pipe and liquid-cooled coupled multistage heat dissipation system of Li-ion battery. Int. J. Energy Res. 2018, 43, 1133–1141. [Google Scholar] [CrossRef]
- Wang, Y.; Dan, D.; Xie, Y.; Li, W.; Guo, H.; Zhang, Y. Study on the influence of flat heat pipe structural parameters in battery thermal management system. Front. Energy Res. 2022, 9, 797664. [Google Scholar]
- Wang, Y.; Dan, D.; Zhang, Y.; Qian, Y.; Panchal, S.; Fowler, M.; Li, W.; Tran, M.; Xie, Y. A novel heat dissipation based on flat heat pipe for battery thermal management system. Int. J. Energy Res. 2022, 46, 15961–15980. [Google Scholar] [CrossRef]
- Huang, Q.; Li, X.; Zhang, G.; Zhang, J.; He, F.; Li, Y. Experimental investigation of the thermal performance of heat pipe pipe assisted phase change material for battery thermal management system. Appl. Therm. Eng. 2018, 141, 1092–1100. [Google Scholar]
- Boonma, K.; Mesgarpour, M.; NajmAbad, J.M.; Alizadeh, R.; Mahian, O.; Dalkılıç, A.S.; Ahn, H.S.; Wongwises, S. Prediction of battery thermal behaviour in the presence of a constructal theory-based heat pipe (CBHP): A multiphysics model and pattern-based machine learning approach. J. Energy Storage 2022, 48, 103963. [Google Scholar]
- Liang, J.; Gan, Y.; Li, Y. Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures. Energy Convers. Manag. 2018, 155, 1–9. [Google Scholar]
- Nasir, F.M.; Abdullah, M.Z.; Ismail, M.A. Experimental investigation of water-cooled heat pipes in the thermal management of lithium-ion EV batteries. Arab. J. Sci. Eng. 2019, 44, 7541–7552. [Google Scholar]
- Gan, Y.; He, L.; Liang, J.; Tan, M.; Xiong, T.; Li, Y. A numerical study on the performance of a thermal management system for a battery pack with cylindrical cells based on heat pipes. Appl. Therm. Eng. 2020, 179, 115740. [Google Scholar]
- Zhang, Z.; Wei, K. Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium-ion batteries. Appl. Therm. Eng. 2020, 166, 114660. [Google Scholar]
- Zeng, W.; Niu, Y.; Li, S.; Hu, S.; Mao, B.; Zhang, Y. Cooling performance and optimization of a new hybrid thermal management system of cylindrical battery. Appl. Therm. Eng. 2022, 217, 119171. [Google Scholar]
- Chien, L.-H.; Shih, Y.-C. An experimental study of mesh type flat heat pipes. J. Mech. 2011, 27, 167–176. [Google Scholar]
- Rao, Z.; Wang, S.; Wu, M.; Lin, Z.; Li, F. Experimental investigation on thermal management of electric vehicle battery with heat pipe. Energy Convers. Manag. 2013, 65, 92–97. [Google Scholar]
- Wang, Q.; Jiang, B.; Xue, Q.; Sun, H.; Li, B.; Zou, H.; Yan, Y. Experimental investigation on EV battery cooling and heating by heat pipes. Appl. Therm. Eng. 2015, 88, 54–60. [Google Scholar] [CrossRef]
- Khateeb, S.A.; Amiruddin, S.; Farid, M.; Selman, J.R.; Al-Hallaj, S. Thermal management of Li-ion battery with phase change material for electric scooters: Experimental validation. J. Power Sources 2005, 142, 345–353. [Google Scholar]
- Yao, C.; Dan, D.; Zhang, Y.; Wang, Y.; Qian, Y.; Yan, Y.; Zhuge, W. Thermal Performance of a Micro Heat Pipe Array for Battery Thermal Management Under Special Vehicle-Operating Conditions. Automot. Innov. 2020, 3, 317–327. [Google Scholar]
- Wang, J.; Gan, Y.; Liang, J.; Tan, M.; Li, Y. Sensitivity analysis of factors influencing a heat pipe-based thermal management system for a battery module with cylindrical cells. Appl. Therm. Eng. 2019, 151, 475–485. [Google Scholar]
- Chen, M.; Li, J. Nanofluid-based pulsating heat pipe for thermal management of lithium-ion batteries for electric vehicles. J. Energy Storage 2020, 32, 101715. [Google Scholar]
- Jouhara, H.; Serey, N.; Khordehgah, N.; Bennett, R.; Almahmoud, S.; Lester, S.P. Investigation, development and experimental analyses of a heat pipe based battery thermal management system. Int. J. 2020, 1, 100004. [Google Scholar]
- Behi, H.; Karimi, D.; Behi, M.; Ghanbarpour, M.; Jaguemont, J.; Sokkeh, M.A.; Gandoman, F.H.; Berecibar, M.; van Mierlo, J. A new concept of thermal management system in Li-ion battery using Fair cooling and heat pipe for electric vehicles. Appl. Therm. Eng. 2020, 174, 115280. [Google Scholar]
- Alihosseini, A.; Shafaee, M. Experimental study and numerical simulation of a Lithium-ion battery thermal management system using a heat pipe. J. Energy Storage 2021, 39, 102616. [Google Scholar] [CrossRef]
- Li, Y.; Guo, H.; Qi, F.; Guo, Z.; Li, M.; Tjernberg, L.B. Investigation on liquid cold plate thermal management system with heat pipes for LiFePO4 battery pack in electric vehicles. Appl. Therm. Eng. 2021, 185, 116382. [Google Scholar]
- Behi, H.; Karimi, D.; Behi, M.; Jaguemont, J.; Ghanbarpour, M.; Behnia, M.; Berecibar, M.; Mierlo, J.V. Thermal management analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles. J. Energy Storage 2020, 32, 101893. [Google Scholar] [CrossRef]
- Wu, W.; Yang, X.; Zhang, G.; Chen, K.; Wang, S. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Convers. Manag. 2017, 138, 486–492. [Google Scholar]
- Wan, C. A Numerical Investigation of the Thermal Performances of an Array of Heat Pipes for Battery Thermal Management. Fluid Dyn. Mater. Processing 2019, 15, 343–356. [Google Scholar] [CrossRef]
- Wan, C. Prediction on Transient Thermal Performance of Heat Pipe Array for a Battery Thermal Management. Acad. J. Eng. Technol. Sci. 2020, 3, 199–208. [Google Scholar]
- Wan, C. Effect of Start-Up Time and Cycle Characteristic of Heat Pipe Array for a Battery Thermal Management. Acad. J. Eng. Technol. Sci. 2020, 3, 121–130. [Google Scholar]
- Wu, Y.; Zhang, Z.; Li, W.; Xu, D. Effect of the inclination angle on the steady-state heat transfer performance of a thermosyphon. Appl. Sci. 2019, 9, 3324. [Google Scholar] [CrossRef]
- Behi, H.; Karimi, D.; Jaguemont, J.; Berecibar, M.; van Mierlo, J. Experimental study on cooling performance of flat heat pipe for lithium-ion battery at various inclination angels. Energy Perspect. 2020, 1, 77–92. [Google Scholar]
Fluid Used for Cooling at Condenser End | Authors | Heat Source | Heat Pipe | Heat Generation Rate | Tamb | Coolant Inlet Temp. | Tmax | ΔT |
---|---|---|---|---|---|---|---|---|
Water | Mbulu et al. [5] (Experiment) | Battery surrogate | 16 heat pipes (copper) | 30–60 W | - | 30 °C | <55 °C | <5 °C |
Water | Liang et al. [39] (Experiment) | 2 simulated batteries (battery surrogate) | 4 heat pipes (copper) | 20–50 W | 15–35 °C | 15–35 °C | <40 °C | <5 °C |
Air and water | Nasir et al. [40] (Experiment) | Proxy cells (battery surrogate) | 2 heat pipes (aluminium plate) | 10–35 W | - | - | <50 °C | <5 °C |
Water | Gan et al. [41] (Experiment) | 24 cylindrical cells | 15 heat pipes (copper) | 1 and 2 C discharge | 25 °C | 20 °C | <40 °C | <5 °C |
Natural convection | Zhang and Wei [42] (Experiment) | 5 prismatic cells (16 V, 8.5 Ah) | 6 flat heat pipes (aluminium plate) | 4, 6, and 8 C rate | 25 °C | - | <40 °C | <5 °C |
Fluid Used for Cooling at Condenser End | Authors | Heat Source | Heat Pipe | Heat Generation Rate | Tamb | Coolant Flow Rate | Coolant Inlet Temp. | Tmax | ΔT |
---|---|---|---|---|---|---|---|---|---|
Water | Mbulu et al. [5] (Experiment) | Battery surrogate | 16 heat pipes (copper) | 30–60 W | - | 1 LPM | 30 °C | <55 °C | <5 °C |
Water | Rao et al. [45] (Experiment) | Aluminium rectangular heater (battery surrogate) | 4 heat pipes (copper) | 10–60 W | - | - | 25 ± 0.5 °C | <50 °C | <5 °C |
Water | Liang et al. [39] (Experiment) | Simulated battery (battery surrogate) | 4 heat pipes (copper) | 20–50 W | 15, 25, 30, and 35 °C | 1, 2, and 3 LPM | 15–35 °C | <40 °C | <5 °C |
Air | Yao et al. [48] (Experiment) | Heater (battery surrogate) | MHPA | 10–50 W | 24.8 °C | 3.3 ms−1 | 24.8 °C | <40 °C | 3.44 °C |
Air | Zhang and Wei [42] (Experiment and simulation) | 5 prismatic cells (3.65 V, 8.5 Ah) | 6 flat heat pipes (aluminium) | 2, 4, 6, and 8 C rate | 25 ± 2 °C | - | 25 ± 2 °C | <40 °C | <5 °C |
Water | Wang et al. [49] (Experiment and simulation) | 12 cylindrical cells (3.7 V, 1.96 Ah) | 5 heat pipes (copper) | 3 and 5 C discharge | 25 °C | 2 LPM | 25 °C | 27.62 °C | 1.08 °C |
TiO2 nano-fluid | Chen and Li [50] (Experiment) | Prismatic cells (3.2 V, 68 Ah) | PHP | 0.5, 1, and 1.5 C discharge | 25, 30, and 35 °C | - | 25 °C | <42.22 °C | <2 °C |
Water and refrigerant | Jouhara et al. [51] (Experiment) | 16 prismatic cells (2.3 V, 23 Ah) | Flat heat pipe (heat mat) | 4 C | - | 9.5 LPM | - | <28 °C | ±1 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boonma, K.; Patimaporntap, N.; Mbulu, H.; Trinuruk, P.; Ruangjirakit, K.; Laoonual, Y.; Wongwises, S. A Review of the Parameters Affecting a Heat Pipe Thermal Management System for Lithium-Ion Batteries. Energies 2022, 15, 8534. https://doi.org/10.3390/en15228534
Boonma K, Patimaporntap N, Mbulu H, Trinuruk P, Ruangjirakit K, Laoonual Y, Wongwises S. A Review of the Parameters Affecting a Heat Pipe Thermal Management System for Lithium-Ion Batteries. Energies. 2022; 15(22):8534. https://doi.org/10.3390/en15228534
Chicago/Turabian StyleBoonma, Kittinan, Napol Patimaporntap, Hussein Mbulu, Piyatida Trinuruk, Kitchanon Ruangjirakit, Yossapong Laoonual, and Somchai Wongwises. 2022. "A Review of the Parameters Affecting a Heat Pipe Thermal Management System for Lithium-Ion Batteries" Energies 15, no. 22: 8534. https://doi.org/10.3390/en15228534
APA StyleBoonma, K., Patimaporntap, N., Mbulu, H., Trinuruk, P., Ruangjirakit, K., Laoonual, Y., & Wongwises, S. (2022). A Review of the Parameters Affecting a Heat Pipe Thermal Management System for Lithium-Ion Batteries. Energies, 15(22), 8534. https://doi.org/10.3390/en15228534