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Abstract: Reliable energy consumption forecasting is essential for building energy efficiency improve-
ment. Regression models are simple and effective for data analysis, but their practical applications
are limited by the low prediction accuracy under ever-changing building operation conditions. To
address this challenge, a Joinpoint–Multiple Linear Regression (JP–MLR) model is proposed in
this study, based on the investigation of the daily electricity usage data of 8 apartment complexes
located within a university in Xiamen, China. The univariate model is first built using the Joinpoint
Regression (JPR) method, and then the remaining residuals are evaluated using the Multiple Lin-
ear Regression (MLR) method. The model contains six explanatory variables, three of which are
continuous (mean outdoor air temperature, mean relative humidity, and temperature amplitude)
and three of which are categorical (gender, holiday index, and sunny day index). The performance
of the JP–MLR model is compared to that of the other four data-driven algorithm models: JPR,
MLR, Back Propagation (BP) neural network, and Random Forest (RF). The JP–MLR model, which
has an R2 value of 95.77%, has superior prediction performance when compared to the traditional
regression-based JPR model and MLR model. It also performs better than the machine learning-based
BP model and is identical to that of the RF model. This demonstrates that the JP–MLR model has
satisfactory prediction performance and offers building operators an effective prediction tool. The
proposed research method also provides also serves as a reference for electricity consumption analysis
in other types of buildings.

Keywords: joinpoint regression; Multiple Linear Regression; back propagation neural network;
Random Forest; electricity consumption; prediction

1. Introduction

Energy consumption analysis and forecasting in buildings are prerequisites for build-
ing energy efficiency improvement. In the design planning stage, the design of building
energy use systems can be improved. In the operation stage, reasonable energy con-
sumption forecasting can help operators identify energy-saving potential and implement
scientific management policies. Usually, the model for building energy consumption predic-
tion is composed of three components [1]: input data (e.g., architectural design parameters
such as orientation [2], shape [3], the window-to-wall ratio [4], shading [5], and weather
variables), system structure (e.g., thermal properties of the exterior walls [6,7], parameters
of the cooling or heating system [8,9]), and output data (i.e., energy use).

Currently, there are numerous methods for predicting building energy consumption,
which can be grouped into 2 categories depending on the analysis method [10]: simulation
techniques based on physics principles and data-driven approaches utilizing artificial
intelligence algorithms.
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Simulation techniques are used to predict building energy consumption by building
physical models. Currently, there are several software tools for building energy consump-
tion simulation, such as DOE-2 [11], Energy Plus [12], ESP-r [13], TRNSYS [14], Design
Builder [15] and EQUEST [16], etc. These tools can calculate the changes in building energy
consumption on a time-by-time basis and are easy and convenient to operate.

The data-driven approach applies statistical analysis approaches to build mathematical
models of energy consumption systems based on known input and output data. Data-
driven models used in the field of energy prediction involve Multiple Linear Regression
(MLR) [17], Time Series Model (TSM) [18] and machine learning-based methods, e.g., Back
Propagation (BP) neural network [19] and Random Forest (RF) [20].

The Joinpoint−Multiple Linear Regression (JP–MLR) model proposed in this study is
a regression model based on a data-driven approach. Each algorithm has its advantages
and disadvantages, and choosing the right method for a specific case is the key to ensuring
the success of building energy operation management. However, different models in the
data-driven method have different prediction accuracy. Sretenović [21] used different
inverse modelling methods, including MLR, SVM and neural network models, to compare
the prediction of cooling electricity consumption in a commercial building in Belgrade. The
results show that the MLR model has the lowest accuracy than the neural network and
SVM.

The following authors have also used regression models for energy forecasting. Fumo
et al. [22] analyzed the energy consumption of residential buildings using MLR and
quadratic regression. Two explanatory variables were used in the model: solar radia-
tion and outdoor temperature. However, they found that the root mean square error values
deteriorate with the inclusion of the solar radiation variable in the model. The prediction ac-
curacy of the model for daily data R2 = 74%. Amiri et al. [23] demonstrated the advantages
and potential of the MLR regression model for building energy prediction through 150,000
computer simulations. The model contains 13 screened building parameters, of which
occupancy schedule and exterior wall construction are the two most dominant parameters.
The R2 values of the models given in the study vary between 95% and 98%, but there are
no other parameters for model evaluation that can be discussed. Marwen et al. [24] used an
MLR regression model to predict the future electricity consumption in Florida. The results
show that month, cooling and heating degree days and GDP are the important variables in
the regression model. Venkataramana et al. [25] found that the MLR method can predict
the electricity demand of a substation located in Warangal with good accuracy. YANG
et al. [26] found a strong relationship between outdoor temperature and building energy
usage utilizing a regression method and established a cubic equation with R2 = 70.27%.
Capozzoli et al. [27] analyzed the annual heating energy consumption of 80 schools and
developed an MLR model with 9 variables to estimate the energy consumption of these
schools. The final model showed R2 = 85% and MAPE = 15%. Aranda [28] developed three
different MLR models using building characteristics and climatic areas to assess the energy
performance of bank buildings in Spain. The R2 values for the three models were 56.8%,
65.2% and 68.5%, respectively.

Based on the above discussion, we found four deficiencies in the existing regression
prediction model studies.

First, previous regression analysis studies have been based on MLR analysis, and the
Joinpoint Regression (JPR) method has not been addressed. The JPR model is a special
regression model [29] that is typically employed in the field of medicine [30].

Second, the accuracy of regression models is relatively low compared to other data-
driven models. To increase the accuracy of regression models, researchers have to find more
input variables. As the input variables to the regression model are critical, the number and
validity of the variables can significantly influence the predictive accuracy of the model.
However, the variables affecting the model cannot always be obtained effectively. Moreover,
some variables are difficult to measure in practical applications. Therefore, the issue of
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using the current regression modelling techniques logically and producing great predicted
performance is still present given the small number of critical variables.

Again, previous research has shown a significant relationship between energy use and
meteorological variables, and the models they constructed used meteorological variables
like air temperature, but the impact of rain or shine is often overlooked. Rainy (or sunny)
weather affects people’s travel plans and indirectly affects the use of indoor appliances,
thus affecting energy consumption. Therefore, in this study, the input parameters of the
model are studied by considering whether it rains or not on the same day.

Finally, previous studies have included the key meteorological variable, i.e., outdoor
air temperature, in the input variables of the model. However, most of them ignored the
effect of balance point temperatures on energy consumption. The balance point temperature
is the turning point at which the correlation between a building’s energy consumption and
outdoor temperature changes. For example, rising temperatures would raise the need for
interior cooling and vice versa. The electricity usage changes at different rates above or
below the temperature point. Thus, when predicting building energy consumption, it is
important to take into account the influence of the balance point temperature and perform
the analysis in segments.

In order to overcome the problems mentioned above, this study analyzes the daily
electricity consumption data of 8 apartment buildings in Xiamen, China, and proposes
a building energy consumption prediction model based on Joinpoint−Multiple Linear
Regression (JP–MLR). To the best of the authors’ knowledge, this work is the first to apply
the JPR model to the field of electricity prediction. A total of 8 variables are screened in the
pre-analysis phase of the study, and 6 parameters are finally selected as model variables.

The rest of the paper is structured as follows. Section 2 introduces the methodology
of this study. Section 3 is a case study that demonstrates the application of the proposed
method. Section 4 presents a comparison and discussion of the model’s performance.
Finally, Section 5 gives concluding remarks.

2. Methodology

This section presents the research methodology of the proposed JP–MLR model, the
framework of which is shown in Figure 1. The details of the different stages are detailed in
the following.
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2.1. Data Collection

In this research, electricity consumption data from eight student apartment buildings
located in Xiamen, China, are analyzed to apply and validate the proposed JP–MLR
model, as shown in Figure 2. The electricity consumption data are measured through a
central smart meter on the campus. In addition to this, meteorological data and gender
information of occupants are also collected. The meteorological data are downloaded from
a meteorological website [31].
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This study spans a full academic year (the academic system of Chinese universities,
which includes two semesters). The first semester is from 1 September 2020 to 8 January
2021, and the second semester is from 15 March 2021 to 2 July 2021, for a total of 240 days.

The dependent variable in the prediction model is the electricity consumption of the
building. There are three types of indicators that describe the electricity consumption of a
building: total electricity consumption, electricity consumption per floor area, and electric-
ity consumption per person [32]. Since the floor area and occupancy of the apartments are
the same, the average daily electricity consumption of the rooms is chosen as the dependent
variable data in this study.

A total of 8 explanatory variables were collected and divided into continuous and
categorical types. The continuous variables are mainly outdoor meteorological parameters,
and there are 5 of them: average outdoor air temperature, average relative humidity, daily
global irradiance, average wind speed and daily temperature amplitude, see Figure 3.
There are 3 categorical variables: gender of the occupants, the holiday index and the sunny
day index. These indices will be explained below.
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Among these 8 apartment buildings, the odd-numbered buildings (1#A, 1#B, 3#A,
3#B) are male buildings and the even-numbered buildings(2#A, 2#B, 4#A, 4#B) are female
buildings. Different genders have different energy consumption habits and electricity
demands [33,34], thus using gender as one of the explanatory variables. The dummy value
for the female is 0 and for the male is 1.

Building occupancy significantly affects the energy consumption of a building. How-
ever, the real building occupancy rate is not available in the actual study, so this research
introduces the “holiday index” to represent the building usage [17]. The dummy value for
working days is 0 and for holidays is 1. Non-working days include weekends and national
holidays [35]. The holiday index affects the occupancy of the building and thus the use of
indoor electrical equipment.

The sunny day index is a meteorological parameter of categorical type. Rain or shine
affects people’s travel arrangements, and therefore indirectly reflects the use of electrical
appliances inside the building. Therefore, this study introduces a proxy variable, the
“sunny day index”. The dummy value is 1 for rainy days and 0 for non-rainy days. This is
one of the innovative points of this study.

Since the parameters such as floor area, orientation and indoor electrical equipment
(including air conditioning) are the same for these 8 buildings, these parameters are not
considered explanatory variables in this study. In this study, the data from Building 2#–4#
are used as the training data set and Building 1# is used as the testing data set.

2.2. Data Preprocessing

The existence of missing-value rooms, empty rooms and data-abnormal rooms can
interfere with the statistical calculation of average electricity consumption, so data pre-
processing is required to identify and remove them from the data set, as shown in Figure 4.
When the electricity usage in a room has not been recorded for more than 3 days, it is
recognized as a missing-value room, which may be caused by a faulty electricity meter.
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However, to save sample size, rooms with only one or two missing values are filled by
linear interpolation. When zero or near-zero electricity use in a room is last for more than
five consecutive days, this room is deemed to be empty. When negative electricity use is
observed in a room, this room is considered to be data-abnormal. After data pre-processing,
493 valid rooms remained in the dataset.
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2.3. Data normalization

Data normalization is an important part of regression analysis. Different input vari-
ables have different magnitudes, which can lead to weak comparability between variables.
In order to enhance the analysis results of the data, data normalization is required. Af-
ter the raw data are normalized, the variables are in the same order of magnitude and
dimensionless, which is suitable for data analysis. There are various methods of data
normalization [36], such as Min-Max Normalization, Z-score Normalization and Batch
Standardization. The Z-score normalization method was chosen for this study:

xn =
x− u

δ
(1)

where xn is the normalized data, x is the original data, u is the mean of the original data and
δ is the standard deviation of the original data. The processed data have a mean of 0 and a
variance of 1, which conform to the standard normal distribution and are dimensionless.

2.4. Model Analysis Method
2.5. Joinpoint Regression (JPR)

The JPR method is first proposed by KIM in 1998 [29]. It performs a regression analysis
on each side of a join point of trend change after identifying it. JPR is typically employed in
the field of medicine [37] for the analysis of time series, such as the trend in the incidence
of a disease over a decade. However, the JPR method can also be utilised for datasets
where the independent parameter is ordered numerical and the dependent parameter is
numerical. This method was also used in this study to analyze balance point temperatures.
The Joinpoint Regression Program (version 4.8.0.0) was released by the National Cancer
Institute [38].

For a set of ordered data (xi, yi), . . . ,(xn, yn), where yi is the dependent variable, xi is
the independent variable, and x1 ≤ . . . ≤ xn. The log-linear model equation is:

E[yi|xi] = eβ0+β1xi+δ1(xi−τ1)
++...+δk(xi−τk)

+
(2)
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where β0 is the constant, β1 is the regression coefficient; δk = βn+1 − βn is the coefficient of
the segments; τk is the joining point, k is the number of joining points, when (xi − τk) > 0,
(xi − τk)

+ = (xi − τk) otherwise, (xi − τk)= 0.

2.6. Multiple Linear Regression

MLR is a statistical tool [39] used to reveal the linear relationship between the depen-
dent variable and multiple other explanatory variables.

The MLR equation is:

Y = b0 + b1x1 + b2x2 + . . . + bnxn (3)

where Y is the predicted value, x1 to xn are the different explanatory variables, b0 is the
intercept, and b1 to bn are the regression coefficients.

The check for collinearity between explanatory variables is crucial in the analysis of
MLR models. The presence of high collinearity between explanatory variables can affect
the calculation of the regression model. When multiple explanatory variables are co-linear,
one should choose to keep and remove the others. The analysis of MLR is performed using
SPSS25 software [40].

2.7. Back Propagation Neural Network

Back Propagation (BP) neural network is a weight learning process based on error
back propagation of gradient most rapid descent method [41]. Its network learning process
is the process of iterating weights and thresholds to make the error reach a preset range.
The BP algorithm includes two phases: the forward spread of the signal and the backward
spread of the error. The errors are evaluated in the direction from input to output, while
adjusting the weights and thresholds in the opposite direction. This part of the computation
is programmed in Python, using the scikit-learn library (https://scikit-learn.org/, accessed
on 4 November 2022). The training process is as follows.

1. Sample data selection and grid initialization, initialization of BP neural network
weights and thresholds.

2. Preprocess the sample data and calculate the hidden layer and output layer outputs.
Suppose there are s neurons in the hidden layer, the output of the hidden layer is bj,
and the threshold of the hidden layer and output layer units are θj θk, respectively.
Then, the output of the jth unit of the hidden layer, bj, is:

bj = f1∑s
j=1wijxi − θj (4)

3. The output layer outputs yk as:

yk = f2∑s
j=1wijbj − θk (5)

where f1, f2 are the hidden layer and output layer transfer functions, respectively.
4. Deviation function of the actual output value of the neural network from the expected

value.
e = ∑m

k=1(tk − yk)
2 (6)

5. If the prediction error does not meet the setting requirements, the error is back-
propagated and the weights and thresholds of the network are adjusted iteratively.
The above process is repeated until the error meets the pre-set requirements.

Figure 5 shows the computational structure of the BP neural network.

https://scikit-learn.org/
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2.8. Random Forest Model

Random forest (RF) is a combinatorial model containing multiple decision trees [42],
which has the advantages of high accuracy, flexibility, ability to handle high-dimensional
feature samples, and the ability to evaluate the importance of individual features. RF is an
improved algorithm for integrated learning [43], and its principle is shown in Figure 6. The
RF algorithm randomly samples m training sets with the same sample size as the original
sample and builds m decision trees from the original sample. The final result of the RF
regression, y(x), is determined by the average of the outputs of the m decision trees.

y(x) =
1
m ∑ h(x, θn) (7)

where x is the independent and dependent variables of the input model. θn is the in-
dependent identically distributed random vector. This part of the computation is also
programmed in Python, using the scikit-learn library.
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2.9. Model Performance Evaluation

To quantitatively evaluate and compare the forecasting performance of different data-
driven algorithms, this study evaluates the results using 6 metrics commonly used in
electricity load forecasting [17,44]: the Root Mean Squared Error (RMSE), the Coefficient of
Variation of the Root Mean Squared Error (CV-RMSE), the Normalized Mean Bias Error
(NMBE), the Normalized Root Mean Square Error (NRMSE), the Mean Absolute Percentage
Error (MAPE) and R2. The above metrics are calculated in Equations (8)–(13), where yi
is the real value, ŷi is forecasted value and ȳ is the mean of the real values. Index “n”
represents the total number of observations.
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RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(8)

CV-RMSE =
RMSE

y
× 100% (9)

NMBE =
∑n

i=1(yi − ŷi)

n× y
× 100% (10)

NMBE =
RMSE

ymax − ymin
(11)

MAPE =
1
n ∑n

i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (12)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ŷi)

2 (13)

3. Results and Analysis

Air temperature is the most important factor affecting energy consumption [45,46].
A good prediction can be achieved by establishing a one-dimensional equation using
outdoor air temperature as the independent variable, R2 = 0.7027 [26]. Therefore, as shown
in the review in Section Introduction, most of the MLR models developed by previous
authors include air temperature among the explanatory variables. However, the simple
MLR prediction model has a large error and does not consider the effect of balance point
temperatures on energy consumption.

Xiamen is located in China’s hot summer and warm winter climate zone, with cooling
in summer and almost no heating in winter. In addition, campus administrators procured
air conditioners in the rooms without heating functions to save energy. This results in a
significant correlation between electricity use and the outdoor air temperature during the
hot season, and no significant correlation during the cold season. The trend of electrical
consumption should be different at different temperature conditions. Therefore, a seg-
mented regression approach should be used for the temperature parameter-driven electric
consumption prediction model according to the balance point temperatures.

The JPR analysis is carried out with average energy usage as the dependent parameter
and temperature as the independent parameter, the results are shown in Figure 7. Addi-
tionally, Table 1 shows their parameters. Model B is chosen because it fits better and has
more significant parameters than Model A. It can be expressed as

f(T) = exp
{

0.399864 + 0.012426T + 0.296417(T− 20.5)+ − 0.2056766(T− 26.0)+
}

(14)

where f(T) is the predicted mean daily electricity usage, T is mean daily temperature. The
range of T is 6.31−31.45 ◦C.
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Table 1. Parameters of the four JPR models.

Model R2 k τ1 (◦C) τ2 (◦C) β0 β1 δ1 δ2

A 0.8939 1 18.6 0.519124 0.004096 0.200149 *
B 0.9434 2 20.5 26.0 0.399864 * 0.012426 * 0.296417 * −0.205676 *

*: p < 0.05.

From Model B, it can be observed that two balance point temperatures exist that
influence the energy usage curve of the buildings, 20.5 ◦C and 26.0 ◦C, respectively. The
average outdoor air temperature can be divided into three segments based on these two
turning points. The Segment I is the low-temperature segment, where the average outdoor
air temperature value is lower than 20.5 ◦C. Segment II is the transition segment, where
the temperature is between 20.5 and 26.0 ◦C. Segment III belongs to the high-temperature
segment, the temperature is greater than 26.0 ◦C. At lower temperatures (<20.5 ◦C), the
room does not need to be cooled and only basic energy consumption such as lighting or
sockets is included, so energy consumption is independent of temperature. The energy
consumption remains almost at a stable value because the users have the same daily habits.
At high temperatures (>26.0 ◦C), the energy use is significantly correlated with temperature
because the daily energy consumption is mainly cooling energy consumption. Additionally,
in the transition temperature segment (20.5–26.0 ◦C), such as spring or fall, the temperature
change significantly affects the occupants’ hot and cold sensations. It is the key stage to
decide whether to turn on the air conditioner or not, so there is a clear rising curve here.

The R2 value of model B is 94.34%, which is already much better than the simple MLR
model (R2 = 72% in [17]), while 5.66% of the variables (∆Ed) are still influenced by unknown
or potential factors. So the perfect prediction model can be expressed as Equation (15).

Ed = f(T) + ∆Ed (15)

Therefore, to further refine the model, ∆Ed is analyzed using the MLR method, where
∆Ed is the difference between Ed and f(T). Ed is the predicted daily electricity consump-
tion. The ∆Ed of three Segments are analyzed using the MLR method, respectively, and
continuous-type independent variables are used with normalized data.

Firstly, the significance between the 8 explanatory variables and the dependent variable
(∆Ed) is identified in Table 2. After preliminary tests, explanatory variables that are not
significantly linearly related to the dependent variable are excluded (p-value > 0.05). In
Segment I, global solar irradiance, average outdoor air temperature, relative humidity,
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and wind speed are excluded. In Segment II, all explanatory variables are significantly
correlated with the dependent variable, so no explanatory variables are excluded. In
Segment III, the sunny day index and global solar irradiance are excluded.

Table 2. Preliminary MLR Model.

I II III
B p-Value B p-Value B p-Value

Intercept −0.249 0.000 −1.200 0.000 −2.828 0.000
X1 0.135 0.002 0.346 0.002 1.014 0.000
X2 0.688 0.000 1.730 0.000 2.770 0.000
X3 0.320 0.000 1.527 0.000 0.308 0.193
X4 0.014 0.675 0.221 0.012 0.067 0.671
X5 0.045 0.194 −1.091 0.000 1.081 0.007
X6 0.032 0.349 0.726 0.000 0.438 0.035
X7 −0.015 0.571 0.471 0.000 0.558 0.001
X8 −0.070 0.017 −0.256 0.004 −0.391 0.003

X1: holiday index; X2: gender; X3: sunny day index; X4: global solar irradiance; X5: outdoor air temperature; X6:
relative humidity; X7: wind speed; X8: temperature amplitude.

Then, the explanatory variables suitable for inclusion in the model are selected based
on the collinearity analysis, as shown in Table 3. Collinearity is a phenomenon in which
independent variables (explanatory variables) are correlated with each other. High collinear-
ity between any two variables indicates that only one of them can be used because they
affect the dependent variable in a similar way. In Segment I of the model, 2 explanatory
variables are chosen: gender (X2) and sunny day index(X3). In the Segment II, 3 explanatory
variables are selected: holiday index (X1), gender (X2) and sunny day index (X3). In the
Segment III, 3 explanatory variables are selected: holiday index (X1), gender (X2) and
relative humidity (X6).

Table 3. Collinearity Analysis.

X1 X2 X3 X4 X5 X6 X7 X8

I

X1 1 0.000 −0.152 ** 0.158 **
X2 0.000 1 0.000 0.000
X3 −0.152 ** 0.000 1 −0.207 **
X8 0.158 ** 0.000 −0.207 ** 1

II

X1 1 0.000 0.010 0.040 −0.011 −0.001 −0.025 0.122 *
X2 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000
X3 0.010 0.000 1 −0.574 ** 0.154 ** 0.708 ** −0.456 ** −0.410 **
X4 0.040 0.000 −0.574 ** 1 0.086 −0.380 ** 0.058 0.705 **
X5 −0.011 0.000 0.154 ** 0.086 1 0.183 ** −0.227 ** −0.019
X6 −0.001 0.000 0.708 ** −0.380 ** 0.183 ** 1 −0.760 ** −0.252 **
X7 −0.025 0.000 −0.456 ** 0.058 −0.227 ** −0.760 ** 1 −0.137 *
X8 0.122 * 0.000 −0.410 ** 0.705 ** −0.019 −0.252 ** −0.137 * 1

III

X1 1 0.000 −0.031 −0.004 0.136 * −0.278 **
X2 0.000 1 0.000 0.000 0.000 0.000
X5 −0.031 0.000 1 −0.502 ** 0.253 ** 0.580 **
X6 −0.004 0.000 −0.502 ** 1 −0.188 ** −0.342 **
X7 0.136 * 0.000 0.253 ** −0.188 ** 1 0.053
X8 −0.278 ** 0.000 0.580 ** −0.342 ** 0.053 1

**: p < 0.01, *: p < 0.05.

MLR analysis is performed using the selected explanatory variables, and the pa-
rameters of the models for the 3 segments are calculated as shown in Table 4. All three
segments of the model use the gender variable and have a positive slope. This indicates
that males use more electricity than females, both in winter and summer, which is in line
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with previous works [34]. The sunny day index is used in both Segment I and II with a
positive slope. This indicates that at relatively low temperatures, rainy days re-duce the
occupants’ outside activities and thus increase indoor electricity usage. In Segments II and
III, when the temperature is relatively high, the day type (i.e., working or not-working day)
will also affect the electricity consumption of the day. The positive slope of the holiday
index indicates that on non-working days, occupants do not have to go out to work or class,
which leads to an increase in indoor electricity consumption. In addition, in Segment III,
i.e., at high temperatures, the relative humidity also affects the electricity consumption. A
positive slope indicates that the higher the humidity, the higher the electricity consumption
of the air conditioner will be.

Table 4. Proposed MLR Models.

B Std t p-Value R2

I
(constant) −0.279 0.029 −8.282 0.000

0.530X2 0.688 0.040 16.349 0.000
X8 0.388 0.062 −3.537 0.000

II

(constant) −1.553 0.102 −15.290 0.000

0.525
X1 0.269 0.124 2.171 0.031
X2 1.730 0.119 14.514 0.000
X3 2.133 0.136 15.637 0.000

III

(constant) −1.766 0.153 −11.522 0.000

0.608
X1 1.199 0.173 6.916 0.000
X2 2.770 0.155 17.822 0.000
X6 0.386 0.153 2.518 0.012

X1: holiday index; X2: gender; X3: sunny day index; X6: relative humidity; X8: temperature amplitude.

The ∆Ed is evaluated by the MLR method. The final integrated prediction model, i.e.,
the JP–MLR model, can be expressed as: when T ≤ 20.5 ◦C:

Ed = exp (0.399864 + 0.012426T) − 0.279 + 0.688x2 + 0.388x3 (16)

when 20.5 ◦C < T ≤ 26.0:

Ed = exp (−5.6766845 + 0.308843T) − 1.553 + 0.269x1 + 1.730x2 + 2.133x3 (17)

when T > 26.0 ◦C:

Ed = exp (−0.3290929 + 0.1031664T) − 1.766 + 1.199x1 + 2.77x2 + 0.386x6 (18)

which implies that Ed = f (T, x1, x2, x3, x6, x8), where T is average outdoor air temperature,
x1 is holiday index, x2 is gender, x3 is sunny day index, x6 is normalized daily average
relative humidity, x8 is normalized daily temperature amplitude and Ed is the predicted
daily electricity consumption,.

4. Discussion and Comparison of Data-Driven Models Performance

Using data from the training set, five different data-driven algorithm methods are
employed to predict the average daily electricity consumption in Building 1# (the test set).
These five methods are: the JP–MLR model, JPR model, MLR model, BP model and RF
model. Among them, JP–MLR, JPR and MLR are models based on regression algorithms,
and BP and RF are models based on machine learning algorithms.

The analysis process and results of the JP–MLR model are shown in Section 3.
The JPR model derived using the training set data is f(T).
The algorithm of the MLR model is the same as when analyzing ∆Ed in Section 3. The

analysis process is divided into three steps: preliminary analysis, collinearity analysis and
regression analysis. Preliminary and collinearity analyses are shown in Table 5. The p-value
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of the holiday index is greater than 0.05, so it can be excluded and thus collinearity is
analyzed for the remaining seven variables. Gender (x2) has no collinearity with any of the
other variables. In contrast, the collinearity between the six climate-related variables is more
severe, so only one variable could be selected, and the average outdoor air temperature (x5)
is chosen for this study.

Table 5. Preliminary and collinearity analyses.

Preliminary Analysis

B Std p-Value

Intercept 5.094 0.142 0.000
X1 0.267 0.174 0.124
X2 1.673 0.161 0.000
X3 0.669 0.252 0.008
X4 1.015 0.131 0.000
X5 3.405 0.107 0.000
X6 1.041 0.149 0.000
X7 0.328 0.126 0.009
X8 −0.527 0.114 0.000

Collinearity Analysis

X2 X3 X4 X5 X6 X7 X8

X2 1 0.000 0.000 0.000 0.000 0.000 0.000
X3 0.000 1 0.184 ** −0.321 ** 0.609 ** −0.332 ** −0.250 **
X4 0.000 −0.321 ** 0.454 ** 1 −0.137 ** −0.174 ** 0.667 **
X5 0.000 0.184 ** 1 0.454 ** 0.385 ** −0.329 ** 0.215 **
X6 0.000 0.609 ** 0.385 ** −0.137 ** 1 −0.686 ** −0.159 **
X7 0.000 −0.332 ** −0.329 ** −0.174 ** −0.686 ** 1 −0.213 **
X8 0.000 −0.250 ** 0.215 ** 0.667 ** −0.159 ** −0.213 ** 1

X1: holiday index; X2: gender; X3: sunny day index; X4: global irradiance; X5: outdoor air temperature; X6:
relative humidity; X7: wind speed; X8: temperature amplitude; **: p < 0.01.

MLR analysis is performed based on the two selected variables (x2, x5) and the results
are shown in Table 6. The final model is shown in Equation (5), where x2 is the gender and
x5 is the normalized average outdoor temperature.

Ed = 5.341 + 1.409x2 + 3.912x5 (19)

Table 6. MLR model analysis.

B Std p-Value R2

Intercept 5.341 0.117 0.000
0.706X2 1.409 0.203 0.000

X5 3.912 0.096 0.000
X2: gender; X5: outdoor air temperature.

The BP model uses the 8 explanatory variables mentioned in this study as input
variables, and the output variable is the average daily electricity consumption. The number
of hidden layers, the number of neurons in the hidden layers, and the number of iterations
are three hyperparameters that influence how well the BP model performs. Since there
is no universal unique value for these hyper parameters, this study uses trial-and-error
method for parameter tuning.
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Firstly, the number of hidden layers is debugged. When the number of hidden layers
is 1, 2 and 3, respectively, the R2 value of the BP model varies with the number of iterations,
as shown in Figure 8a. The other parameters in the iterative process are set as follows:
the number of neurons in the hidden layer is 100, and the number of iterations is 300. As
the number of iterations increases, R2 increases continuously and the prediction accuracy
improves, and the increase in the number of hidden layers speeds up the convergence of R2

to some extent. However, the effect of the number of hidden layers on the model accuracy
tends to stabilize after a threshold (i.e., 40 for 1 hidden layer, 50 for 2 hidden layers and 150
for 3 hidden layers). To save training time at computation, 2 hidden layers with moderate
convergence speed are chosen, since an increase in the number of hidden layers would
cause a significant increase in training time.
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Then, the number of neurons in each hidden layer is debugged. The number of
neurons in the hidden layer is set to 20, 50, 100 and 200, respectively, and the effect of
the number of neurons in the hidden layer on the prediction accuracy is analyzed. The
other parameters in the iterative process are set as follows: the number of hidden layers is
2 and the number of iterations is 300. The change of R2 is shown in Figure 8b. With the
increase of the neurons, the convergence speed of R2 accelerates to different degrees. The
convergence speed at the neuron number of 200 is much higher than that at 20. But again,
after many iterations, the accuracy of the model (R2) tends to be stable, and the prediction
errors are the same for different numbers of neurons. Therefore, the hyper parameters of
the BP model used as a comparison in this study are set as follows: the number of hidden
layers is 3, the number of neurons is 200, and the number of iterations is 300.

The RF model also uses the eight explanatory variables mentioned in this study as
input variables and the output variable is the average daily electricity consumption. The
main parameter that affects the performance of the RF model is the number of decision
trees. The same, trial-and-error method is used to find the optimal number of trees. The
model prediction accuracy is calculated sequentially for the number of trees from 1 to
300, still using R2 as the evaluation metric. As shown in Figure 9, the model is optimal
when the number is 22, so this study uses this parameter setting to build the RF model.
The importance of the eight input variables is shown in Figure 10, and the importance
of temperature (x5) is much higher than the other variables. This also indicates that
temperature is the most important factor affecting building energy consumption.
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The final prediction results of the five models for Building #1 (test set) are shown in
Figure 11, and their evaluation metrics are shown in Table 7. The predictive performance of
the JP–MLR model far exceeded that of the conventional regression models (JPR and MLR),
where all six evaluated metrics far outperformed them. The R2 values of the JP–MLR model
were 8.11% and 24.79% higher than JPR and MLR, respectively. Compared to the machine
learning models, the JP–MLR model outperforms the BP model and is basically on par with
the RF model. The JP–MLR model outperformed BP in all six metrics, with CVRMSE and
NMBE being 2.47% and 3.61% lower than BP, respectively. Even though the BP algorithm
can be derived as neural networks for the task of regression, its prediction performance
will be inferior to the JP–MLR model be-cause the influence of balance point temperature is
not taken into account. CVRMSE and NMBE are the only metrics recommended by the
American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)
for the evaluation of energy forecasting models. Although the CVRMSE of JP–MLR is
1.13% higher than that of RF, the NMBE is 3.03% lower. Moreover, the R2 of JP–MLR and
RF are nearly the same, with only a 0.19% difference, so the prediction performance of
both models is the same. The reason is that the RF algorithm can be also regarded as a
special type of segmented regression, which divides the data set into segments and analyzes
them segment by segment. However, the JP–MLR model is simpler and does not require
complex programming knowledge for building managers, so JP–MLR is more valuable for
promotion.
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Figure 11. Electricity consumption estimation using 5 models.

Table 7. Comparison of evaluation metrics for 4 models.

JP–MLR JPR MLR BP RF

RMSE (kWh) 1.183 1.924 2.954 1.363 1.101
CVRMSE 16.26% 26.43% 40.54% 18.73% 15.13%

NMBE 4.05% 16.08% 13.65% 7.66% 7.08%
NRMSE 6.00% 9.76% 14.97% 6.92% 5.59%
MAPE 12.70% 20.05% 55.77% 13.52% 10.99%

R2 95.77% 87.66% 70.98% 93.08% 95.96%

In addition, according to the recommendation of ASHRAE [47], the prediction model
of building monthly energy consumption should have an NMBE of 5%. However, the
prediction granularity of the JP–MLR model is 24 h (one day), but its NMBE value reaches
4.05%, which is sufficient to show its excellent performance. The prediction accuracy of the
same model for a day will be lower than that for a month.

Not surprisingly, the MLR model has the worst evaluation results, a result that is
consistent with the findings of [21]. The JPR model, however, outperformed the MLR
model, with an R2 16.68% higher. Because the JPR model is actually a combination of
several MLR models, so it fits better than the MLR model. It is the JPR that has the
advantage of segmental analysis and is therefore chosen to be used in this study to identify
the balance point temperature that influence energy usage. Additionally, the R2 of the
JP–MLR model is 7.67% higher than that of the JPR model, which is because the JP–MLR
model evaluates the residual (∆Ed) on top of the JPR model and therefore improves the
accuracy.

It is worth noticing that the subject of this study is in a hot summer-warm winter area,
while the magnitude or number of balance point temperatures in other climatic zones may
be different. However, the research method proposed can be used as a reference. Similarly,
although the subject of this paper is apartment buildings, the research methodology and
modelling process could be applied to other kinds of buildings, for example, residential or
industrial buildings.

5. Conclusions

Efficient building energy forecasting is an important foundation for building energy
efficiency management. This study proposes a method for predicting building energy
consumption based on JP–MLR through the analysis of daily electricity consumption
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data from 8 apartment buildings in Xiamen, China. The method has been applied and
validated in practical tests. The JPR approach is utilized to identify two balance point
temperatures for these apartment buildings: 20.5 ◦C and 26.0 ◦C. Segmental modeling based
on these temperatures and residuals is evaluated using the MLR method. Six explanatory
variables are used in the model, including three continuous variables (average outdoor air
temperature, average relative humidity and temperature amplitude) and three categorical
variables (gender, holiday index, and sunny day index). JP–MLR model with RMSE =
1.183 kWh, CVRMSE = 16.26%, NMBE = 4.05%, NRMSE = 6.00%, MAPE = 12.70% and R2 =
95.77%. By comparing the six prediction evaluation metrics, the JP–MLR model has good
prediction performance, much better than JPR and MLR based on conventional regression
algorithms, and also better than BP based on machine learning, while basically on par with
RF. This proves the feasibility of the JP–MLR model proposed in this study, and the research
method also provides a reference for the analysis of electricity consumption in other types
of buildings.
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