Review of Advanced Effusive Cooling for Gas Turbine Blades
Abstract
:1. Introduction
2. Metrics of Effusive Cooling Efficiency
3. Advanced Effusive Cooling Schemes
3.1. Effusion Cooling
3.2. Impingement/Effusion Cooling
3.3. Transpiration Cooling
4. Conclusions and Future Research Perspectives
- (a)
- Effusion cooling consists of multirow cooling holes and aims at providing a full coverage cooling film for the hot section components. Factors affecting film cooling efficiency are expected to influence the effusion cooling efficiency. In addition, effusion cooling features the interaction of upstream and downstream coolant jets that do not exist in discrete film cooling. Two crucial factors that affect the row-to-row interaction are hole numbers and hole arrangement. More experimental and numerical investigations are needed to quantify the effects of the numerous factors on the effusion cooling performance.
- (b)
- Impingement/effusion cooling incorporates double walls between which pins or pedestal arrays are usually installed to further enhance the internal heat transfer. It is suggested that other enhancement measures developed in internal cooling can be borrowed to improve the impingement/effusion cooling efficiency. In addition, to make impingement/effusion cooling schemes with internal structures more reliable, the heat transfer and mechanical stress analysis should be combined in future investigations.
- (c)
- Transpiration cooling has been proved to have high efficiency by both experiments and simulations. However, the mechanical strength of traditional porous materials such as metal foam, sintered metal particles, and sintered woven wire mesh limits the commercial application of transpiration cooling to gas turbine blades. Additive manufacturing technologies have provided the freedom of designing and fabricating innovative porous material configurations with elevated mechanical strength. It is expected that the optimization of coolant allocation in transpiration cooling will also benefit from the additive manufacturing.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Acronyms | |
TIT | Turbine inlet temperature |
TBC | Thermal barrier coating |
AM | Additive manufacturing |
NHFR | Net heat flux reduction |
BR | Blowing ratio |
DR | Density ratio |
IRT | Infrared thermometry |
PSP | Pressure sensitive paint |
LCT | Liquid crystal thermometry |
SA | Simple angle |
CA | Compound angle |
LES | Large-eddy simulation |
DNS | Direct numerical simulation |
TKE | Turbulent kinetic energy |
Parameters | |
D | Cooling hole diameter |
P | Lateral pitch of cooling hole |
S | Streamwise pitch of cooling hole |
q | Heat flux |
h | Heat transfer coefficient |
T | Temperature |
λ | Thermal conductivity |
Pr | Prandtl number |
Re | Reynolds number |
η | Adiabatic cooling efficiency |
φ | Overall cooling efficiency |
F | Injection ratio |
Subscripts | |
0 | Without cooling film |
f | With cooling film |
∞ | Mainstream |
c | Coolant |
w | Wall |
aw | Adiabatic wall |
Superscripts | |
- | Lateral average |
= | Area average |
References
- Soares, C. Gas Turbines: Handbook of Air, Land and Sea Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–40. [Google Scholar]
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Turbojet (accessed on 6 November 2022).
- Royce, R. The Jet Engine, 5th ed.; Rolls-Royce plc.: London, UK, 1996; pp. 1–64. [Google Scholar]
- Boyce, M.P. Gas Turbine Engineering Handbook, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 401–425. [Google Scholar]
- Carter, T.J. Common failures in gas turbine blades. Eng. Fail. Anal. 2005, 12, 237–247. [Google Scholar] [CrossRef]
- Mishra, R.K.; Thomas, J.; Srinivasan, K.; Nandi, V.; Bhatt, R.R. Failure analysis of an un-cooled turbine blade in an aero gas turbine engine. Eng. Fail. Anal. 2017, 79, 836–844. [Google Scholar] [CrossRef]
- Rajabinezhad, M.; Bahrami, A.; Mousavinia, M.; Seyedi, S.J.; Taheri, P. Corrosion-fatigue failure of gas-turbine blades in an oil and gas production plant. Materials 2020, 13, 900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqallaf, J.; Ali, N.; Teixeira, J.A.; Addali, A. Solid particle erosion behaviour and protective coatings for gas turbine compressor blades—A review. Processes 2020, 8, 984. [Google Scholar] [CrossRef]
- Harada, H.; Murakami, H. Design of Ni-base superalloys. In Computational Materials Design; Springer: Berlin, Heidelberg, 1999; pp. 39–70. [Google Scholar] [CrossRef]
- Reed, R.C. The Superalloys: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2008; pp. 1–32. [Google Scholar]
- Misra, A.K.; Greenbauer-Seng, L.A. Aerospace propulsion and power materials and structures research at NASA Glenn Research Center. J. Aerosp. Eng. 2013, 26, 459–490. [Google Scholar] [CrossRef]
- Koff, B.L. Gas turbine technology evolution: A designers perspective. J. Propuls. Power 2004, 20, 577–595. [Google Scholar] [CrossRef]
- Xu, L.; Bo, S.; Hongde, Y.; Lei, W. Evolution of Rolls-Royce air-cooled turbine blades and feature analysis. Procedia Eng. 2015, 99, 1482–1491. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.A. Thermal barrier coatings for aircraft engines: History and directions. J. Therm. Spray Technol. 1997, 6, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.R.; Oechsner, M.; Padture, N.P. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012, 37, 891–898. [Google Scholar] [CrossRef]
- Khosravy el_Hossaini, M. Review of the new combustion technologies in modern gas turbines. In Progress in Gas Turbine Performance; IntechOpen: London, UK, 2013; pp. 953–978. [Google Scholar] [CrossRef] [Green Version]
- Aminov, R.Z.; Moskalenko, A.B.; Kozhevnikov, A.I. Optimal gas turbine inlet temperature for cyclic operation. J. Phys. Conf. Ser. 2018, 1111, 012046. [Google Scholar] [CrossRef]
- Malina, R.; Abate, M.A.; Schlumberger, C.E.; Pineda, F.N. The Role of Sustainable Aviation Fuels in Decarbonizing Air Transport. 2022. Available online: http://hdl.handle.net/10986/38171 (accessed on 1 October 2022).
- Naik, S. Basic aspects of gas turbine heat transfer. In Heat Exchangers–Design, Experiment and Simulation; IntechOpen: London, UK, 2017; pp. 111–142. [Google Scholar] [CrossRef] [Green Version]
- Han, J.C. Recent studies in turbine blade cooling. Int. J. Rotating Mach. 2004, 10, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Bunker, R.S. Cooling design analysis. In The Gas Turbine Handbook; NETL: Albany, NY, USA, 2006; pp. 296–308. [Google Scholar]
- Bogard, D.G.; Thole, K.A. Gas turbine film cooling. J. Propuls. Power 2006, 22, 249–270. [Google Scholar] [CrossRef] [Green Version]
- Hartsel, J. Prediction of effects of mass-transfer cooling on the blade-row efficiency of turbine airfoils. In Proceedings of the 10th Aerospace Sciences Meeting, San Diego, CA, USA, 17–19 January 1972; p. 11. [Google Scholar] [CrossRef]
- Denton, J.D. Loss mechanisms in turbomachines. J. Turbomach. 1993, 115, 621–656. [Google Scholar] [CrossRef]
- Gomes, R.A.; Araujo, M.B. On Aerothermal Effects of Film Cooling on Turbine Blades with Flow Separation; Verlag Dr. Hut: München, Germany, 2010. [Google Scholar]
- Horlock, J.H.; Watson, D.T.; Jones, T.V. Limitations on gas turbine performance imposed by large turbine cooling flows. J. Eng. Gas Turbines Power 2001, 123, 487–494. [Google Scholar] [CrossRef]
- Wilcock, R.C.; Young, J.B.; Horlock, J.H. The effect of turbine blade cooling on the cycle efficiency of gas turbine power cycles. J. Eng. Gas Turbines Power 2005, 127, 109–120. [Google Scholar] [CrossRef]
- Ligrani, P. Heat transfer augmentation technologies for internal cooling of turbine components of gas turbine engines. Int. J. Rotating Mach. 2013, 2013, 275653. [Google Scholar] [CrossRef]
- Chyu, M.K.; Siw, S.C. Recent advances of internal cooling techniques for gas turbine airfoils. J. Therm. Sci. Eng. Appl. 2013, 5, 021008. [Google Scholar] [CrossRef]
- Yeranee, K.; Yu, R.A.O. A review of recent studies on rotating internal cooling for gas turbine blades. Chin. J. Aeronaut. 2021, 34, 85–113. [Google Scholar] [CrossRef]
- Martin, H. Heat and mass transfer between impinging gas jets and solid surfaces. In Advances in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 1977; Volume 13, pp. 1–60. [Google Scholar] [CrossRef]
- Zuckerman, N.; Lior, N. Jet impingement heat transfer: Physics, correlations, and numerical modeling. Adv. Heat Transf. 2006, 39, 565–631. [Google Scholar] [CrossRef]
- Weigand, B.; Spring, S. Multiple jet impingement—A review. In Proceedings of the International Symposium on Heat Transfer in Gas Turbine Systems, Antalya, Turkey, 9–14 August 2009; Begel House Inc.: Danbury, CT, USA, 2009. [Google Scholar] [CrossRef]
- Maghrabie, H.M. Heat transfer intensification of jet impingement using exciting jets—A comprehensive review. Renew. Sustain. Energy Rev. 2021, 139, 110684. [Google Scholar] [CrossRef]
- Hussain, L.; Khan, M.M.; Masud, M.; Ahmed, F.; Rehman, Z.; Amanowicz, Ł.; Rajski, K. Heat Transfer Augmentation through Different Jet Impingement Techniques: A State-of-the-Art Review. Energies 2021, 14, 6458. [Google Scholar] [CrossRef]
- Dutta, S.; Singh, P. Opportunities in Jet-Impingement Cooling for Gas-Turbine Engines. Energies 2021, 14, 6587. [Google Scholar] [CrossRef]
- Goldstein, R.J. Film cooling. In Advances in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 1971; Volume 7, pp. 321–379. [Google Scholar] [CrossRef]
- Han, J.C. Fundamental gas turbine heat transfer. Journal of thermal science and engineering applications. J. Thermal Sci. Eng. Appl. 2013, 5, 021007. [Google Scholar] [CrossRef]
- Acharya, S.; Kanani, Y. Advances in film cooling heat transfer. In Advances in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 2017; Volume 49, pp. 91–156. [Google Scholar] [CrossRef]
- Seban, R.A. Heat transfer and effectiveness for a turbulent boundary layer with tangential fluid injection. J. Heat Transf. 1960, 82, 303–312. [Google Scholar] [CrossRef]
- Goldstein, R.J.; Eckert, E.R.G.; Tsou, F.K.; Haji-Sheikh, A. Film cooling with air and helium injection through a rearward-facing slot into a supersonic air flow. AIAA J. 1966, 4, 981–985. [Google Scholar] [CrossRef]
- Jia, R.; Sunden, B.; Miron, P.; Léger, B. A numerical and experimental investigation of the slot film-cooling jet with various angles. J. Turbomach. 2005, 127, 635–645. [Google Scholar] [CrossRef]
- Bunker, R.S. A review of shaped hole turbine film-cooling technology. J. Heat Transf. 2005, 127, 441–453. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Chunhua, W.A.N.G.; Xiaoming, T.A.N. Recent advances in film cooling enhancement: A review. Chin. J. Aeronaut. 2020, 33, 1119–1136. [Google Scholar] [CrossRef]
- Cerri, G.; Giovannelli, A.; Battisti, L.; Fedrizzi, R. Advances in effusive cooling techniques of gas turbines. Appl. Therm. Eng. 2007, 27, 692–698. [Google Scholar] [CrossRef]
- Krewinkel, R. A review of gas turbine effusion cooling studies. Int. J. Heat Mass Transf. 2013, 66, 706–722. [Google Scholar] [CrossRef]
- Sellers, J.P., Jr. Gaseous film cooling with multiple injection stations. AIAA J. 1963, 1, 2154–2156. [Google Scholar] [CrossRef]
- Mayle, R.E.; Camarata, F.J. Multihole cooling film effectiveness and heat transfer. J. Heat Transf. 1975, 97, 534–538. [Google Scholar] [CrossRef]
- Grootenhuis, P. The mechanism and application of effusion cooling. Aeronaut. J. 1959, 63, 73–89. [Google Scholar] [CrossRef]
- Wadia, A.R. Advanced combustor liner cooling technology for gas turbines. Def. Sci. J. 1988, 38, 363–380. [Google Scholar] [CrossRef]
- Bunker, R.S. Evolution of turbine cooling. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2017; Volume 50770, p. V001T51A001. [Google Scholar] [CrossRef]
- Filinov, E.P.; Kuz’michev, V.S.; Yu Tkachenko, A.; Ostapyuk, Y.; Krupenich, I.N. Estimation of cooling flow rate for conceptual design stage of a gas turbine engine. Proc. Inst. Mech. Eng. Part A J. Power Energy 2021, 235, 2014–2021. [Google Scholar] [CrossRef]
- Duwez, P.; Wheeler, H.L., Jr. Experimental study of cooling by injection of a fluid through a porous material. J. Aeronaut. Sci. 1948, 15, 509–521. [Google Scholar] [CrossRef]
- Eckert, E.R.G.; Esgar, J.B. Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-Turbine Blades (No. NACA-RM-E50K15). 1951. Available online: https://ntrs.nasa.gov/citations/19930086539 (accessed on 1 October 2022).
- Eckert, E.R.G.; Livingood, J.N. Comparison of Effectiveness of Convection-, Transpiration-, and Film-Cooling Methods with Air as Coolant (Vol. 1182). National Advisory Committee for Aeronautics. 1954. Available online: https://ntrs.nasa.gov/citations/19930092205 (accessed on 1 October 2022).
- Zhang, S.; Li, X.; Zuo, J.; Qin, J.; Cheng, K.; Feng, Y.; Bao, W. Research progress on active thermal protection for hypersonic vehicles. Prog. Aerosp. Sci. 2020, 119, 100646. [Google Scholar] [CrossRef]
- Nealy, D.A.; Reider, S.B. Evaluation of laminated porous wall materials for combustor liner cooling. J. Eng. Power 1980, 102, 268–276. [Google Scholar] [CrossRef]
- Wassell, A.B.; Bhangu, J.K. The development and application of improved combustor wall cooling techniques. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 1980; Volume 79658, p. V01AT01A066. [Google Scholar] [CrossRef] [Green Version]
- Hollworth, B.R.; Dagan, L. Arrays of impinging jets with spent fluid removal through vent holes on the target surface—Part 1: Average heat transfer. J. Eng. Power 1980, 102, 994–999. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Vafadar, A.; Guzzomi, F.; Rassau, A.; Hayward, K. Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges. Appl. Sci. 2021, 11, 1213. [Google Scholar] [CrossRef]
- Guddati, S.; Kiran, A.; Leavy, M.; Ramakrishna, S. Recent advancements in additive manufacturing technologies for porous material applications. Int. J. Adv. Manuf. Technol. 2019, 105, 193–215. [Google Scholar] [CrossRef]
- Kaur, I.; Singh, P. State-of-the-art in heat exchanger additive manufacturing. Int. J. Heat Mass Transf. 2021, 178, 121600. [Google Scholar] [CrossRef]
- Kaur, I.; Singh, P. Critical evaluation of additively manufactured metal lattices for viability in advanced heat exchangers. Int. J. Heat Mass Transf. 2021, 168, 120858. [Google Scholar] [CrossRef]
- Kays, W.M.; Crawford, M.E. Convective Heat and Mass Transfer, 3rd ed.; McGraw Hill: New York, NY, USA, 1993; pp. 159–191. [Google Scholar]
- Incropera, F.P.; Dewitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer, 6th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2007; pp. 405–414. [Google Scholar]
- Eckert, E.R.G. Analysis of film cooling and full-coverage film cooling of gas turbine blades. J. Eng. Gas Turbines Power 1984, 106, 206–213. [Google Scholar] [CrossRef]
- Sen, B.; Schmidt, D.L.; Bogard, D.G. Film cooling with compound angle holes: Heat transfer. J. Turbomach. 1996, 118, 800–806. [Google Scholar] [CrossRef]
- Metzger, D.E.; Carper, H.J.; Swank, L.R. Heat transfer with film cooling near nontangential injection slots. J. Eng. Power 1968, 90, 157–162. [Google Scholar] [CrossRef]
- Baldauf, S.; Scheurlen, M.; Schulz, A.; Wittig, S. Heat Flux Reduction From Film Cooling and Correlation of Heat Transfer Coefficients From Thermographic Measurements at Enginelike Conditions. J. Turbomach. 2002, 124, 699–709. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Ren, J.; Jiang, H. The interaction between upstream and downstream film cooling rows in flow field and heat transfer. Int. J. Therm. Sci. 2020, 149, 106176. [Google Scholar] [CrossRef]
- Jiang, Y.; Murray, A.V.; Ireland, P.T.; di Mare, L. Coolant Jets Interaction in Effusion Cooling System: Experimental and Numerical Study. J. Turbomach. 2020, 142, 091007. [Google Scholar] [CrossRef]
- Harrington, M.K.; McWaters, M.A.; Bogard, D.G.; Lemmon, C.A.; Thole, K.A. Full-coverage film cooling with short normal injection holes. J. Turbomach. 2001, 123, 798–805. [Google Scholar] [CrossRef]
- Scrittore, J.J.; Thole, K.A.; Burd, S.W. Investigation of velocity profiles for effusion cooling of a combustor liner. J. Turbomach. 2007, 129, 518–526. [Google Scholar] [CrossRef]
- Facchini, B.; Tarchi, L.; Toni, L.; Ceccherini, A. Adiabatic and overall effectiveness measurements of an effusion cooling array for turbine endwall application. J. Turbomach. 2010, 132, 041008. [Google Scholar] [CrossRef]
- Wang, G.; Ledezma, G.; DeLancey, J.; Wang, A. Experimental Study of Effusion Cooling with Pressure-Sensitive Paint. J. Eng. Gas Turbines Power 2017, 139, 051601. [Google Scholar] [CrossRef]
- Bazdidi-Tehrani, F.; Andrews, G.E. Full-coverage discrete hole film cooling: Investigation of the effect of variable density ratio. J. Eng. Gas Turbines Power. 1994, 116, 587–596. [Google Scholar] [CrossRef]
- Andreini, A.; Facchini, B.; Picchi, A.; Tarchi, L.; Turrini, F. Experimental and theoretical investigation of thermal effectiveness in multiperforated plates for combustor liner effusion cooling. J. Turbomach. 2014, 136, 091003. [Google Scholar] [CrossRef]
- Gustafsson, K.B.; Johansson, T.G. An experimental study of surface temperature distribution on effusion-cooled plates. J. Eng. Gas Turbines Power 2001, 123, 308–316. [Google Scholar] [CrossRef]
- Huang, Z.; Xiong, Y.B.; Liu, Y.Q.; Jiang, P.X.; Zhu, Y.H. Experimental investigation of full-coverage effusion cooling through perforated flat plates. Appl. Therm. Eng. 2015, 76, 76–85. [Google Scholar] [CrossRef]
- Murray, A.V.; Ireland, P.T.; Wong, T.H.; Tang, S.W.; Rawlinson, A.J. High Resolution Experimental and Computational Methods for Modelling Multiple Row Effusion Cooling Performance. Int. J. Turbomach. Propuls. Power 2018, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Metzger, D.E.; Takeuchi, D.I.; Kuenstler, P.A. Effectiveness and heat transfer with full-coverage film cooling. J. Eng. Power 1973, 95, 180–184. [Google Scholar] [CrossRef]
- Yuen, C.H.N.; Martinez-Botas, R.F. Film cooling characteristics of rows of round holes at various streamwise angles in a crossflow: Part I. Effectiveness. Int. J. Heat Mass Transf. 2005, 48, 4995–5016. [Google Scholar] [CrossRef]
- Ahmed, S.; Ramakrishnan, K.R.; Ekkad, S.V. Overall Cooling Effectiveness of Effusion Cooled Can Combustor Liner under Reacting and Non-Reacting Conditions. J. Therm. Sci. Eng. Appl. 2022, 14, 021009. [Google Scholar] [CrossRef]
- Li, W.; Lu, X.; Li, X.; Ren, J.; Jiang, H. Wall thickness and injection direction effects on flat plate full-coverage film cooling arrays: Adiabatic film effectiveness and heat transfer coefficient. Int. J. Therm. Sci. 2019, 136, 172–181. [Google Scholar] [CrossRef]
- Bashir, M.H.; Shiau, C.C.; Han, J.C. Film cooling effectiveness for three-row compound angle hole design on flat plate using PSP technique. Int. J. Heat Mass Transf. 2017, 115, 918–929. [Google Scholar] [CrossRef]
- Paitich, L.C.; Richer, P.; Jodoin, B.; Pyo, Y.; Yun, S.; Hong, Z. Directional Effects of Effusion Cooling on the Cooling Film Effectiveness. AIAA J. 2022, 60, 423–434. [Google Scholar] [CrossRef]
- Wang, W.; Cui, J.H.; Qu, S.X. Effects of hole arrangement and trenched hole on multirow film cooling. AIP Adv. 2022, 12, 045205. [Google Scholar] [CrossRef]
- Wei, H.; Zu, Y.Q.; Ai, J.L.; Ding, L. Experimental study on the full-coverage film cooling of fan-shaped holes with a constant exit width. Int. J. Heat Mass Transf. 2019, 140, 379–398. [Google Scholar] [CrossRef]
- Natsui, G.; Little, Z.; Kapat, J.S.; Dees, J.E. Adiabatic film cooling effectiveness measurements throughout multirow film cooling arrays. J. Turbomach. 2017, 139, 101008. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [Green Version]
- Han, J.C.; Rallabandi, A. Turbine blade film cooling using PSP technique. Front. Heat Mass Transf. 2010, 1, 013001. [Google Scholar] [CrossRef]
- Ekkad, S.V.; Singh, P. Liquid Crystal Thermography in Gas Turbine Heat Transfer: A Review on Measurement Techniques and Recent Investigations. Crystals 2021, 11, 1332. [Google Scholar] [CrossRef]
- Tian, K.; Tang, Z.; Wang, J.; Vujanović, M.; Zeng, M.; Wang, Q. Numerical investigations of film cooling and particle impact on the blade leading edge. Energies 2021, 14, 1102. [Google Scholar] [CrossRef]
- Aumeier, T.; Behrendt, T. Application of an Aerothermal Model for Effusion Cooling Systems and Finite Rate Chemistry in Aeroengine Combustors. Turbul. Heat Mass Transf. 2015, 8, 851–854. [Google Scholar]
- Dunn, M.G. Convective heat transfer and aerodynamics in axial flow turbines. J. Turbomach. 2001, 123, 637–686. [Google Scholar] [CrossRef]
- Zhang, G.; Rui, Z.H.U.; Gongnan, X.I.E.; Shulei, L.I.; Sunde, B. Optimization of cooling structures in gas turbines: A review. Chin. J. Aeronaut. 2022, 35, 18–46. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Sethi, V.; Nalianda, D.; Li, Y.G.; Wang, L. Review of modern low emissions combustion technologies for aero gas turbine engines. Prog. Aerosp. Sci. 2017, 94, 12–45. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.V.; Ireland, P.T.; Romero, E. Experimental and Computational Methods for the Evaluation of Double-Wall, Effusion Cooling Systems. J. Turbomach. 2020, 142, 111003. [Google Scholar] [CrossRef]
- Li, W.; Lu, X.; Li, X.; Ren, J.; Jiang, H. On improving full-coverage effusion cooling efficiency by varying cooling arrangements and wall thickness in double wall cooling application. J. Heat Transf. 2019, 141, 042201. [Google Scholar] [CrossRef]
- Andrews, G.E.; Asere, A.A.; Hussain, C.I.; Mkpadi, M.C.; Nazari, A. Impingement/effusion cooling: Overall wall heat transfer. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 1988; Volume 79214, p. V004T09A036. [Google Scholar] [CrossRef] [Green Version]
- Metzger, D.E.; Bunker, R.S. Local heat transfer in internally cooled turbine airfoil leading edge regions: Part II—Impingement cooling with film coolant extraction. J. Turbomach. 1990, 112, 451–458. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, X.; Li, J. Influences of effusion hole diameter on impingement/effusion cooling performance at turbine blade leading edge. Int. J. Heat Mass Transf. 2019, 134, 1101–1118. [Google Scholar] [CrossRef]
- Rogers, N.; Ren, Z.; Buzzard, W.; Sweeney, B.; Tinker, N.; Ligrani, P.; Hollingsworth, K.; Liberatore, F.; Patel, R.; Ho, S.; et al. Effects of double wall cooling configuration and conditions on performance of full-coverage effusion cooling. J. Turbomach. 2017, 139, 051009. [Google Scholar] [CrossRef]
- Ligrani, P.; Ren, Z.; Liberatore, F.; Patel, R.; Srinivasan, R.; Ho, Y.H. Double wall cooling of a full-coverage effusion plate, including internal impingement array cooling. J. Eng. Gas Turbines Power 2018, 140, 051901. [Google Scholar] [CrossRef]
- Nakamata, C.; Mimura, F.; Matsushita, M.; Yamane, T.; Fukuyama, Y.; Yoshida, T. Local cooling effectiveness distribution of an integrated impingement and pin fin cooling configuration. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2007; Volume 47934, pp. 23–34. [Google Scholar] [CrossRef]
- Cho, H.H.; Rhee, D.H.; Goldstein, R.J. Effects of hole arrangements on local heat/mass transfer for impingement/effusion cooling with small hole spacing. J. Turbomach. 2008, 130, 041003. [Google Scholar] [CrossRef]
- Rhee, D.H.; Choi, J.H.; Cho, H.H. Flow and heat (mass) transfer characteristics in an impingement/effusion cooling system with crossflow. J. Turbomach. 2003, 125, 74–82. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Rao, Y.; He, J.; Qu, Y. Numerical investigation on conjugate heat transfer of impingement/effusion double-wall cooling with different crossflow schemes. Appl. Therm. Eng. 2019, 155, 515–524. [Google Scholar] [CrossRef]
- Kim, S.H.; Ahn, K.H.; Park, J.S.; Jung, E.Y.; Hwang, K.Y.; Cho, H.H. Local heat and mass transfer measurements for multi-layered impingement/effusion cooling: Effects of pin spacing on the impingement and effusion plate. Int. J. Heat Mass Transf. 2017, 105, 712–722. [Google Scholar] [CrossRef]
- Rhee, D.H.; Nam, Y.W.; Cho, H.H. Local heat/mass transfer with various rib arrangements in impingement/effusion cooling system with crossflow. J. Turbomach. 2004, 126, 615–626. [Google Scholar] [CrossRef]
- Hong, S.K.; Rhee, D.H.; Cho, H.H. Effects of fin shapes and arrangements on heat transfer for impingement/effusion cooling with crossflow. J. Heat Transf. 2007, 129, 1697–1707. [Google Scholar] [CrossRef]
- Bang, M.; Kim, S.; Choi, S.; Sohn, H.S.; Cho, H.H. Impingement/effusion cooling with a hollow cylinder structure for additive manufacturing. Int. J. Heat Mass Transf. 2020, 155, 119786. [Google Scholar] [CrossRef]
- Bang, M.; Kim, S.; Park, H.S.; Kim, T.; Rhee, D.H.; Cho, H.H. Impingement/effusion cooling with a hollow cylinder structure for additive manufacturing: Effect of channel gap height. Int. J. Heat Mass Transf. 2021, 175, 121420. [Google Scholar] [CrossRef]
- Hossain, M.A.; Ameri, A.; Gregory, J.W.; Bons, J.P. Experimental investigation of innovative cooling schemes on an additively manufactured engine scale turbine nozzle guide vane. J. Turbomach. 2021, 143, 051004. [Google Scholar] [CrossRef]
- Mudawar, I. Two-phase microchannel heat sinks: Theory, applications, and limitations. J. Electron. Packag. 2011, 133, 041002. [Google Scholar] [CrossRef]
- Boomsma, K.; Poulikakos, D.; Zwick, F. Metal foams as compact high performance heat exchangers. Mech. Mater. 2003, 35, 1161–1176. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Jiang, P.X.; Xiong, Y.B.; Wang, Y.P. Experimental and numerical investigation of transpiration cooling for sintered porous flat plates. Appl. Therm. Eng. 2013, 50, 997–1007. [Google Scholar] [CrossRef]
- Xu, G.; Liu, Y.; Luo, X.; Ma, J.; Li, H. Experimental investigation of transpiration cooling for sintered woven wire mesh structures. Int. J. Heat Mass Transf. 2015, 91, 898–907. [Google Scholar] [CrossRef]
- Hinse, M.; Yildiz, K.; Richer, P.; Jodoin, B.; Bourmand, M.; Yun, S.; Hong, Z. Numerical and Experimental Studies of Transpiration Cooling Film Effectiveness over Porous Materials. J. Thermophys. Heat Transf. 2022, 36, 1–15. [Google Scholar] [CrossRef]
- Xiao, X.; Zhao, G.; Zhou, W.; Martynenko, S. Large-eddy simulation of transpiration cooling in turbulent channel with porous wall. Appl. Therm. Eng. 2018, 145, 618–629. [Google Scholar] [CrossRef]
- Christopher, N.; Peter, J.M.; Kloker, M.J.; Hickey, J.P. DNS of turbulent flat-plate flow with transpiration cooling. Int. J. Heat Mass Transf. 2020, 157, 119972. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Jiang, P.X.; Jin, S.S.; Sun, J.G. Transpiration cooling of a nose cone by various foreign gases. Int. J. Heat Mass Transf. 2010, 53, 5364–5372. [Google Scholar] [CrossRef]
- van Foreest, A.; Sippel, M.; Gülhan, A.; Esser, B.; Ambrosius, B.A.C.; Sudmeijer, K. Transpiration cooling using liquid water. J. Thermophys. Heat Transf. 2009, 23, 693–702. [Google Scholar] [CrossRef]
- Huang, G.; Liao, Z.; Xu, R.; Zhu, Y.; Jiang, P.X. Self-pumping transpiration cooling with a protective porous armor. Appl. Therm. Eng. 2020, 164, 114485. [Google Scholar] [CrossRef]
- Huang, G.; Min, Z.; Yang, L.; Jiang, P.X.; Chyu, M. Transpiration cooling for additive manufactured porous plates with partition walls. Int. J. Heat Mass Transf. 2018, 124, 1076–1087. [Google Scholar] [CrossRef]
- Min, Z.; Huang, G.; Parbat, S.N.; Yang, L.; Chyu, M.K. Experimental investigation on additively manufactured transpiration and film cooling structures. J. Turbomach. 2019, 141, 031009. [Google Scholar] [CrossRef]
- Huang, G.; Zhu, Y.; Liao, Z.; Xu, R.; Jiang, P.X. Biomimetic self-pumping transpiration cooling for additive manufactured porous module with tree-like micro-channel. Int. J. Heat Mass Transf. 2019, 131, 403–410. [Google Scholar] [CrossRef]
- Huang, G.; Zhu, Y.; Liao, Z.Y.; Huang, Z.; Jiang, P.X. Transpiration cooling with bio-inspired structured surfaces. Bioinspiration Biomim. 2020, 15, 036016. [Google Scholar] [CrossRef]
- Jiang, P.X.; Huang, G.; Zhu, Y.; Liao, Z.; Huang, Z. Experimental investigation of combined transpiration and film cooling for sintered metal porous struts. Int. J. Heat Mass Transf. 2017, 108, 232–243. [Google Scholar] [CrossRef]
- Wu, N.; Wang, J.; He, F.; Chen, L.; Ai, B. Optimization transpiration cooling of nose cone with non-uniform permeability. Int. J. Heat Mass Transf. 2018, 127, 882–891. [Google Scholar] [CrossRef]
Primary Influencing Factors | Ref. |
---|---|
Fluid dynamic parameters | |
Blowing ratio | [73,75,76] |
Density ratio | [77,78] |
Geometrical parameters | |
Hole spacing or hole numbers | [79,80,81] |
Hole arrangement | [82,83,84] |
Hole angle | [78,85,86,87,88] |
Hole shape | [88,89,90] |
Ref. | Geometry | Method | Measurements | |
---|---|---|---|---|
Lateral Pitch (P/D) | Streamwise Pitch (S/D) | |||
[72] | 3.0 | 1.5 | PSP | Adiabatic cooling efficiency |
[73] | 7.14 | 7.14 | IRT | Adiabatic cooling efficiency |
[75] | 8 | 8 | LCT | Adiabatic cooling efficiency Overall cooling efficiency |
[76] | 9.9 | 9.0 | PSP | Adiabatic cooling efficiency |
[78] | 8.85, 8.87, 11.06, 13.25 | 10.97, 13.72, 17.11, 17.89 | PSP | Adiabatic cooling efficiency Overall cooling efficiency |
[79] | - | 3.0, 6.0, 12.0 | IRT | Wall temperature |
[80] | 3.0, 2.0 | 3.0, 2.0 | IRT | Wall temperature |
[81] | 3.0, 5.75 | 3.0, 5.75 | PSP | Adiabatic cooling efficiency |
[84] | 10 | 10 | IRT | Overall cooling efficiency |
[85] | 6 | 10 | PSP | Adiabatic cooling efficiency Heat transfer coefficient |
[87] | 14 | 4.5 | PSP | Adiabatic cooling efficiency |
[89] | 6.5 | 8.5 | LCT | Adiabatic cooling efficiency |
[90] | 7.5, 14 | 7.5, 10 | PSP | Adiabatic cooling efficiency |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Yan, Y.; Zhou, Y.; Cui, J. Review of Advanced Effusive Cooling for Gas Turbine Blades. Energies 2022, 15, 8568. https://doi.org/10.3390/en15228568
Wang W, Yan Y, Zhou Y, Cui J. Review of Advanced Effusive Cooling for Gas Turbine Blades. Energies. 2022; 15(22):8568. https://doi.org/10.3390/en15228568
Chicago/Turabian StyleWang, Wen, Yan Yan, Yeqi Zhou, and Jiahuan Cui. 2022. "Review of Advanced Effusive Cooling for Gas Turbine Blades" Energies 15, no. 22: 8568. https://doi.org/10.3390/en15228568
APA StyleWang, W., Yan, Y., Zhou, Y., & Cui, J. (2022). Review of Advanced Effusive Cooling for Gas Turbine Blades. Energies, 15(22), 8568. https://doi.org/10.3390/en15228568