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Abstract: As artificial intelligence technology has progressed, numerous businesses have used
intelligent diagnostic technology. This study developed a deep LSTM neural network for a nuclear
power plant to defect diagnostics. PCTRAN is used to accomplish data extraction for distinct faults
and varied fault degrees of the PCTRAN code, and some essential nuclear parameters are chosen
as feature quantities. The training, validation, and test sets are collected using random sampling
at a ratio of 7:1:2, and the proper hyperparameters are selected to construct the deep LSTM neural
network. The test findings indicate that the fault identification rate of the nuclear power plant fault
diagnostic model based on a deep LSTM neural network is more than 99 percent, first validating the
applicability of a deep LSTM neural network for a nuclear power plant fault-diagnosis model.

Keywords: nuclear power plant; PCTRAN; deep learning; fault diagnosis; deep LSTM

1. Introduction

The nuclear power plant is a complex and extensive system comprised of many sub-
systems, which in turn contain many different devices; to obtain a comprehensive picture
of the operating status of the equipment in each system, a large number of sensors are
distributed throughout the system equipment to measure parameters such as temperature,
pressure, and water level. Therefore, it is complicated for operators to obtain information
directly from the large amount of measurement data generated by the monitoring system at
any given time. This situation is seen primarily when an abnormal condition occurs in the
plant, and an alarm signal is generated; even a well-trained operator may make a mistaken
judgment under tremendous mental pressure and in the presence of numerous signs. In
the early phases of the Three Mile Island catastrophe, the operator failed to discern the
condition of the pressure release valve from a significant volume of data, resulting in a
misdirection of the plant’s status and a severe accident [1]. Suppose a diagnostic algorithm
could be utilized to give information on the operational state of the system’s equipment.
In that case, it would significantly minimize the mental stress of the operators and the
likelihood of error, which is crucial for ensuring the system’s safe operation.

Research on fault diagnostic technology began in the United States, and the tragedy
caused by equipment failure during the Apollo program was precipitated in 1967 when
the U.S. Office of Naval Research formed a mechanical failure prevention division. In
the late 1960s, the establishment of the British Machine Health and Condition Monitoring
Association furthered the development of fault diagnosis technology. Subsequently, Euro-
pean countries conducted relevant research on condition monitoring and fault diagnosis
technology and developed their distinctive diagnosis technology system. Japan’s fault
diagnosis technology began in the mid-1970s, and by learning from the world’s research
and with continuous development, it has become one of the most advanced in the world.
Since the early 1980s, China’s fault diagnostic technology has developed into a generally
flawless theoretical framework [2–5]. In the nuclear field, Tsinghua University has re-
searched and developed a fault diagnosis system for a 200 MW nuclear heating station [6].
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Harbin Engineering University has designed and developed a nuclear power plant op-
eration support system, which includes functions such as condition monitoring, alarm
analysis, fault diagnosis, and emergency operation guidance [7]. The Korean Academy of
Science and Technology (KAIST) has developed a fault diagnosis advisory system (ADAS)
for nuclear power plant fault diagnosis [8]. In recent years, under the influence of the
“fourth industrial revolution”—the artificial intelligence wave, the development of artificial
intelligence-based mechanical fault diagnosis has been very rapid [9–14].

In summary, this paper proposes to apply deep LSTM neural networks to nuclear
power plant fault diagnosis, using the self-developed autoPCTRAN code to achieve au-
tomatic data extraction for different faults of the PCTRAN code as well as different fault
levels, selecting some important nuclear parameters (nuclear power, regulator pressure,
regulator water level, coolant flow rate, average coolant temperature, and steam generator
water level) as feature quantities. The training set, validation set, and test set are obtained
using random sampling at a ratio of 7:1:2, and a deep LSTM neural network is constructed
to train on and learn the accident data training set, using the validation set to correct the
model to avoid model overfitting. The test set is used to test the model.

2. Introduction to PCTRAN

PCTRAN is a tiny software code created by Microsimulation Technology (MST) in the
United States that may be used for nuclear power plant simulation and severe accident
analysis [15]. PCTRAN is a PC-based simulation software code designed specifically for
nuclear power plant operation and disaster response training. Severe accidents, such as
core meltdown, containment failure, and radioactive leakage, are also within its purview.
PCTRAN has been the most effective training simulation code implemented globally in
nuclear power plants and research institutions since 1985. The International Atomic Energy
Agency (IAEA) has chosen PCTRAN as the training software for its biennial Advanced
Reactor Simulation Symposium [16] since 1996. The NPP models currently included in
PCTRAN include ACP100, ABWR, BWR5 MARK II, AP1000, AREVA EPR, TRIGA, RadPuff,
ESBWR, VVER 1200, Korean APR1400, Korean KSNP, HTGR, SFP, MHI APWR NuScale,
PWR 3-loop, BWR4, and SMART [17]. Their operating interfaces, shown in Figure 1, are
simple and can be used with direct control through the operator interface and provide
instantaneous feedback on different operating condition values such as temperature, pres-
sure, flow, and dose. Figure 2 depicts the overall flow diagram of the application [18].
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Figure 2. PCTRAN general flow block diagram. 
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In this research, a CPR1000 type (i.e., PWR 3-loop type) nuclear power plant is utilized
to simulate the first operating circumstances at various operational points of the NPP. More
than ten starting conditions are employed to model the beginning operating conditions.
In addition, PCTRAN covers 20 distinct kinds of NPP operational failures, such as feed-
water loss, primary pump failure, ATWT, coolant loss, and steam generator pipe rupture,
representing the majority of NPP, as well as inevitable severe design benchmark failures.
Meanwhile, PCTRAN follows the “no intervention for 30 min” policy for nuclear power
plants in accident mode [19] to prevent failures caused by personnel error.

3. Deep Learning
3.1. LSTM Neural Network

A Recurrent Neural Network (RNN) [20] is a class of neural networks dedicated
to processing temporal data samples, in which each layer not only outputs to the next
layer but also outputs a hidden state for the current layer to use when processing the next
sample. Just as convolutional neural networks can easily scale to images with large widths
and heights, and some convolutional neural networks can also handle images of different
sizes, recurrent neural networks can scale to longer sequential data, and most of them can
handle data with different sequence lengths. It can be regarded as a fully connected neural
network with self-loop feedback. Its network structure is shown in Figure 3, where W
is the self-looping parameter matrix from the hidden layer to the hidden layer, U is the
parameter matrix from the input layer to the hidden layer, and V is the parameter matrix
from the hidden layer to the output layer. However, the general recurrent neural network
suffers from a long-term dependence problem, which leads to gradient disappearance and
gradient explosion in RNN. To solve this problem, Sepp Hochreiter proposed a long and
short-term memory network in 1997 [21]. The LSTM neural network cell unit consists of
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a forgetting gate (ft), an input gate (it), and an output gate (ot). The input gate is used to
update the structural state value of the cell to be added to the cell. The forgetting gate is
used to determine the proportion of cell values retained from the previous moment, and
the output gate generates a hidden layer state value (ht) as an additional input for the
next moment. According to the moment t signal, they generate the structural state value
(ct) of this cell and the hidden layer state ht at moment t, and an additional input at time
t + 1. Thus the update of the open and closed cell values of each link can be controlled
internally and spontaneously based on the data in the network training, giving the network
a variable-length “memory”. The cell structure of the LSTM model is shown in Figure 4,
and its calculation formula is shown in Equations (1)–(5) [22].

it = σ(∑ Wxixt+∑ Wxixt−1+∑ Wxixt−1+bi) (1)

ft = σ(∑ Wx f xt+∑ Wx f xt−1+∑ Wx f xt−1+b f ) (2)

ot = σ(∑ Wxoxt+∑ Wxoxt−1+∑ Wxoxt−1+bo) (3)
∼
c t = ftct−1 + ittanh(∑ Wxcxt+∑ Whcxt−1+bc) (4)

ht = ottanh(
∼
c t) (5)

xt is the input vector at time t; W is the weight matrix; b is the weight partiality term;
σ is the activation function;

∼
c t, ct−1 are the cell structure state values at times t and t − 1,

respectively; tanh is the hyperbolic tangent activation function; tanh is the input gate; ft is
the forgetting gate; ot is the output gate, and ht is the output value of the cell at time t.
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3.2. Deep Neural Network

Deep Neural Networks (DNNs) are the foundation of deep learning, and to understand
DNNs, we first need to understand the DNN model. The neural network is based on the
extension of the perceptron, and a DNN can be understood as a neural network with many
hidden layers. The terms “multi-layer neural network” and “deep neural network” (DNN)
refer to the same thing; DNN is sometimes called Multi-Layer perceptron (MLP). From
the DNN’s use of the location of different layers, the neural network layers inside the
DNN can be divided into three categories: input layer, hidden layer, and output layer,
as shown in Figure 5. Generally, the first layer is the input layer, the last layer is the
output layer, and the middle layers are all hidden layers. The layers are fully connected,
i.e., any neuron in layer I must be connected to any neuron in layer I + 1. Although the
DNN looks complex, it is still the same as a perceptron in terms of a small local model,
i.e., a linear relationship. The so-called DNN forward propagation algorithm uses several
weight coefficient matrices W, a bias vector b to perform a series of linear operations, and
activation operations with the input value vector x. Starting from the input layer, layer
by layer, the backward computation is carried out until the operation reaches the output
layer, and the final output result is obtained. Usually, MLPs with more than three hidden
layers are called DNNs. Deep LSTM neural networks are a combination of DNNs and
LSTMs, and their neurons are not independent of each other but are the same as LSTMs,
with interconnections between neurons in each layer and weight transfer between each
neuron and the number of hidden layers greater than three.
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4. Results
4.1. Data Access

The safety of a nuclear power plant is contingent upon the capacity to rapidly and
precisely monitor operating trends in critical operating parameters. Typically, experienced
nuclear plant operators monitor the plant’s status by tracking data changes over time.
In this work, the PCTRAN code simulated four distinct operating modes of a nuclear
power station (normal operation, loss of coolant accident, steam generator tube rupture,
containment steam pipe rupture). In order to generate appropriate data sets for various
failure types, PCTRAN simulations were conducted at varying simulation levels. Based
on the data set produced from PCTRAN simulations, six data quantities crucial for the
operating states of nuclear power plants were selected as feature quantities (pressurizer
pressure, coolant average temperature, coolant flow rate, pressurizer water level, steam
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generator water level, nuclear power). As illustrated in Figures 6–9, for each operating
condition, a collection of data was picked for each description.
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As seen in Figures 6–9, the pattern of data set changes in various states is entirely
distinct, which provides the nuclear plant operator with a foundation for establishing
state determinations and theoretical support for problem detection. Due to limited human
attention, it is impossible to concentrate on numerous data volumes simultaneously. If just
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one or two changes in data volume are considered, multiple outcomes may be obtained.
In states 1 and 2, for instance, the coolant flow rate is always constant, but pressurizer
pressure first exhibits a downward trend and later an upward trend. If just the pressurizer
pressure and coolant flow rate trends are considered, the operational state of the nuclear
facility may be overestimated, which might have severe implications.

4.2. Data Pre-Processing

Data sets were simulated using PCTRAN, with each data set including 300 s of data,
and 114,000 6-dimensional data sets were created after separating the data. The linear
normalization [23] method (i.e., the minimum-maximum normalization method) was used
to normalize the characteristic quantities in order to improve the model accuracy. The
formula is shown in Equation (6), where xmin is the feature minimum, xmax is the feature
maximum, x is the initial feature value, and x* is the processed feature value. Using random
sampling under normal operation settings, steam generator heat transfer tube rupture,
containment steam pipe rupture, loss of coolant feed water, and moderator dilution, the
data sets were retrieved and split into a training set, validation set, and test set at a ratio of
7:1:2 [24].

x∗ =
x − xmin

xmax − xmin
(6)

4.3. Model Training

In this paper, accuracy (accuracy) and the cross-entropy loss function (cross-entropy)
are used to evaluate the accuracy of the model [25]. Accuracy is the ratio of the number of
correct classifications to the total number of classifications. The cross-entropy loss function
is used to evaluate the difference between the probability distribution obtained from the
current training and the true distribution. With the total number of samples k and the
number of correctly classified samples k1, the formula of accuracy is shown in (7), and the
formula of the cross-entropy loss function is shown in (8)(where n denotes the total sample
size, c is the number of accident types, yi,t denotes the predicted value, and ŷi,t denotes the
true value). It can be concluded from the formula that the closer acc is to 1, the closer Loss
is to 1, and the better the prediction.

acc =
k1

k
(7)

Loss = −
n

∑
i=1

c

∑
t=1

yi,t log ŷi,t (8)

The parameters of the LSTM neural network model are a continuous debugging
process in which some parameters are defined for the user to change in order to apply
the corresponding engineering model. As a result, some hyperparameters need to be
adjusted in the process of use. Based on the processed data, the prediction model is formed
in the training set by establishing hyperparameters, which are provided in Table 1. The
trained model is employed for validation using the validation set and the dropout layer to
prevent overfitting of the model. Using Occam’s razor [26], if there are two explanations
for anything, the most probable proper explanation is the simplest one, i.e., the one with
the fewest assumptions. Given specific training data and network design, multiple weight
values (i.e., many models) may describe the data. Simple models are less likely to be
overfitted than complicated ones. Dropout [27] is a deep learning training procedure in
which neural network training units are eliminated from the network according to a given
probability. Each mini-batch is training a new network for stochastic gradient descent since
it is dropped randomly. The mechanism of action, shown in Figure 10, prevents overfitting
of the model by randomly removing some training units of the neural network from the
network and constructing a new network using stochastic gradient descent.
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Table 1. The Model hyperparameter setting.

Parameters Parameter Description Value

time_step Time step 1–10
num Number of hidden layers 5

num_units Number of hidden neurons 32, 32, 16, 8, 4
activation Activation function Sigmoid, Relu, tanh
optimizer Optimizer adam, RMSProp, Adagrad, Adadelta

epoch Number of iterations 100–500
batch Batch Size 16, 32, 64, 128

dropout Dropout 0.1–0.5
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4.4. Analysis of Results

Some 5-layer deep LSTM neural networks were constructed based on the hyperpa-
rameters in Table 1. Using one-hot coding, our method was to encode N states using N-bit
status registers. Each state had its independent register bits, and only one was valid at
any time as this experiment selected four operating conditions (normal operation, loss of
coolant accident, steam generator tube rupture, containment steam pipe rupture). The
one-hot code had four states, and the one-hot codes are shown in Table 2. PCTRAN was
used in each of the four conditions to obtain 28,500 sets of data, for a total of 114,000 sets
of data. Using random sampling, 300 sets of data (each set of data was a six-dimensional
array of time steps in length) were obtained for each condition, totaling 500× time step sets
of data. The data were divided into the training set, validation set, and test set, which are
350*time step, 50*time step, and 100*time step sets, respectively. The model was trained
using the training set and validated using the validation set. The experimental model found
the optimal hyperparameters, as shown in Table 3. The training process of the LSTM neural
network model was not an iterative process. The parameter epoch represents the number
of iterations of the entire training set; epoch accuracy and epoch loss were the accuracy and
loss function values for the corresponding number of iterations. The results obtained from
the training are shown in Figure 11, where the orange curve represents the training results,
and the blue curve represents the validation results. The lighter-colored lines represent the
true calculated values, and the darker-colored lines represent the smoothed values.
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Table 2. Fault and label correspondence table.

Operation Status Tag

Loss of Coolant Accident 0
Steam Generator Tube Rupture 1

Steam Line Break Inside Containment 2
Normal Operation 3

Table 3. The optimal Model hyperparameter setting.

Parameters Parameter Description Value

time_step Time step 1–10
num Number of hidden layers 5

num_units Number of hidden neurons 32, 32, 16, 8, 4
activation Activation function Relu
optimizer Optimizer adam

epoch Number of iterations 100
batch Batch Size 16

dropout Dropout 0.5
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In the confusion matrix constructed based on the deep LSTM neural network, the
matrix rows represent the predicted fault classes, and the columns represent the actual
fault classes. If the predicted and actual results agree, the data are on the diagonal of
the confusion matrix; if the prediction is wrong, the data are outside the diagonal. The
test accuracy is obtained using the test set test, and the analysis of its confusion matrix
(Figure 12) shows that it only has one classification error in tag 3 (Normal Operation), which
shows that the deep LSTM neural network-based nuclear power plant fault diagnosis model
can accurately determine the operating group condition of nuclear power plants. In case of
nuclear plant accidents, it can effectively help operation operators to quickly identify fault
types and improve the overall safety of nuclear plants.

Meanwhile, we developed a simple LSTM model using the same parameters. The sole
difference between the simple LSTM and deep LSTM models is that the simple LSTM has
just one hidden layer, whereas the deep LSTM model has five. Figures 13 and 14 illustrate
the outcomes of using the same dataset for training and validation.

The accuracy of the simple LSTM model is only 0.915, while the accuracy of the deep
LSTM model is above 0.996. The accuracy of the simple LSTM model is lower than that
of the deep LSTM model, and the loss value is higher than that of the deep LSTM model.
The test results indicate that the deep LSTM model makes up for the shortcomings of the
traditional simple LSTM model to a certain extent and further improves the applicability of
the LSTM model.
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5. Conclusions

In order to solve the nuclear power plant fault diagnosis issue, a nuclear power plant
fault diagnostic system was developed utilizing deep LSTM neural network modeling
and nuclear power plant accident critical parameter data supplied by PCTRAN. After
comparing it to the simple LSTM model, we found that the deep LSTM model greatly
improved the accuracy of fault prediction. Based on the training and test performance, it is
evident that the system performed better in nuclear power plant fault diagnosis and could



Energies 2022, 15, 8629 14 of 15

satisfy the standards for nuclear power plant fault diagnosis. It can better assist nuclear
power plant operators in controlling unit status in the event of nuclear power plant faults,
ensuring the safe and reliable operation of nuclear power plants, reducing the likelihood of
operator error in the event of nuclear power plant accidents, and enhancing the safety of
nuclear power plant operation.
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