Taxonomic and Biochemical Characterization of Microalga Graesiella emersonii GEGS21 for Its Potential to Become Feedstock for Biofuels and Bioproducts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Isolation
2.2. Morphological Identification
2.3. Molecular Identification
2.4. Determination of Optimal Culture Conditions
2.5. Analyses for Fatty Acid Composition of Lipids and Their Biodiesel Properties
2.6. Microalgal Pigment Extraction and Analysis
3. Results
3.1. Morphology or Morphological Characteristics
3.2. Molecular Identification and Sequence Analysis
3.3. Verification of the Optimal Cultivation Conditions of the Isolated Strain
3.4. Fatty Acid Composition of Lipids and Their Biodiesel Properties
3.5. Analysis of Microalgal Pigment Profile
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Corliss, J.O. Biodiversity and biocomplexity of the protists and an overview of their significant roles in maintenance of our biosphere. Acta Protozool. 2002, 41, 199–219. [Google Scholar]
- Huss, V.A.; Ciniglia, C.; Cennamo, P.; Cozzolino, S.; Pinto, G.; Pollio, A. Phylogenetic relationships and taxonomic position of Chlorella-like isolates from low pH environments (pH < 3.0). BMC Evol. Biol. 2002, 2, 13. [Google Scholar]
- Jeong, H.J.; Yoo, Y.D.; Kim, J.S.; Seong, K.A.; Kang, N.S.; Kim, T.H. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean. Sci. J. 2010, 45, 65–91. [Google Scholar] [CrossRef] [Green Version]
- La Rocca, N.; Andreoli, C.; Giacometti, G.M.; Rascio, N.; Moro, I. Responses of the Antarctic microalga Koliella antarctica (Trebouxiophyceae, Chlorophyta) to cadmium contamination. Photosynthetica 2009, 47, 471–479. [Google Scholar] [CrossRef]
- Metting, F.B. Biodiversity and application of microalgae. J. Ind. Microbiol. 1996, 17, 477–489. [Google Scholar] [CrossRef]
- Little, S.M.; Senhorinho, G.N.A.; Saleh, M.; Basiliko, N.; Scott, J.A. Antibacterial compounds in green microalgae from extreme environments: A review. Algae 2021, 36, 61–72. [Google Scholar] [CrossRef]
- Arrigo, K.R. Marine microorganisms and global nutrient cycles. Nature 2005, 437, 349–355. [Google Scholar] [CrossRef]
- Cuellar-Bermudez, S.P.; Garcia-Perez, J.S.; Rittmann, B.E.; Parra-Saldivar, R. Photosynthetic bioenergy utilizing CO2: An approach on flue gases utilization for third generation biofuels. J. Clean. Prod. 2015, 98, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Leu, S.; Boussiba, S. Advances in the production of high-value products by microalgae. Ind. Biotechnol. 2014, 10, 169–183. [Google Scholar] [CrossRef]
- Tsukahara, K.; Sawayama, S. Liquid fuel production using microalgae. J. Jpn. Pet. Inst. 2005, 48, 251. [Google Scholar] [CrossRef] [Green Version]
- Carrasco-Reinado, R.; Escobar, A.; Carrera, C.; Guarnizo, P.; Vallejo, R.A.; Fernández-Acero, F.J. Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. LWT 2019, 114, 108385. [Google Scholar] [CrossRef]
- Cezare-Gomes, E.A.; del Mejia-da-Silva, L.C.; Pérez-Mora, L.S.; Matsudo, M.C.; Ferreira-Camargo, L.S.; Singh, A.K.; de Carvalho, J.C.M. Potential of microalgae carotenoids for industrial application. Appl. Biochem. Biotechnol. 2019, 188, 602–634. [Google Scholar] [CrossRef]
- de Oliveira, A.P.F.; Bragotto, A.P.A. Microalgae-based products: Food and public health. Future Foods 2022, 6, 100157. [Google Scholar] [CrossRef]
- Hu, I.C. Production of potential coproducts from microalgae. In Biofuels from Algae; Lee, D.J., Pandey, A., Chang, J.-S., Chisti, Y., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 345–358. [Google Scholar]
- Orejuela-Escobar, L.; Gualle, A.; Ochoa-Herrera, V.; Philippidis, G.P. Prospects of microalgae for biomaterial production and environmental applications at biorefineries. Sustainability 2021, 13, 3063. [Google Scholar] [CrossRef]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.J.; Chang, J.S. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017, 229, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Olguín, E.J.; Sánchez-Galván, G.; Arias-Olguín, I.I.; Melo, F.J.; González-Portela, R.E.; Cruz, L.; De Philippis, R.; Adessi, A. Microalgae-based biorefineries: Challenges and future trends to produce carbohydrate enriched biomass, high-added value products and bioactive compounds. Biology 2022, 11, 1146. [Google Scholar] [CrossRef] [PubMed]
- Pomeroy, B.; Grilc, M.; Likozar, B. Artificial neural networks for bio-based chemical production or biorefining: A review. Renew. Sustain. Energ. Rev. 2022, 153, 111748. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Suresh, S.; Kanwal, S.; Ramadoss, G.; Ramprakash, B.; Incharoensakdi, A. Microalgal biorefinery concepts’ developments for biofuel and bioproducts: Current perspective and bottlenecks. Int. J. Mol. Sci. 2022, 2, 2623. [Google Scholar] [CrossRef]
- Srimongkol, P.; Sangtanoo, P.; Songserm, P.; Watsuntorn, W.; Karnchanatat, A. Microalgae-based wastewater treatment for developing economic and environmental sustainability: Current status and future prospects. Front. Bioeng. Biotechnol. 2022, 10, 904046. [Google Scholar] [CrossRef]
- Šoštarič, M.; Klinar, D.; Bricelj, M.; Golob, J.; Berovič, M.; Likozar, B. Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris. New Biotechnol. 2012, 29, 325–331. [Google Scholar] [CrossRef]
- Eleršek, T.; Flisar, K.; Likozar, B.; Klemenčič, M.; Golob, J.; Kotnik, T.; Miklavčič, D. Electroporation as a solvent-free green technique for non-destructive extraction of proteins and lipids from Chlorella vulgaris. Front. Bioeng. Biotechnol. 2020, 8, 443. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Al Momin, S.; Kumar, V.V.; Ahmed, J.; Al-Musallam, L.; Shajan, A.B.; Al-Aqeel, H.; Al-Zakri, W.M. Distribution and diversity of eukaryotic microalgae in Kuwait waters assessed using 18S rRNA gene sequencing. PLoS ONE 2021, 16, e0250645. [Google Scholar] [CrossRef] [PubMed]
- Leliaert, F.; Tronholm, A.; Lemieux, C.; Turmel, M.; DePriest, M.S.; Bhattacharya, D.; Karol, K.G.; Fredericq, S.; Zechman, F.W.; Lopez-Bautista, J.M. Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the chlorophyta, Palmophyllophyceae Class. Nov. Sci. Rep. 2016, 6, 25367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanković, N.; Kostić, I.; Jovanović, B.; Savić-Zdravković, S.; Matić, S.; Bašić, J.; Cvetković, T.; Simeunović, J.; Milošević, D. Can phytoplankton blooming be harmful to benthic organisms? The toxic influence of Anabaena sp. and Chlorella sp. on Chironomus riparius larvae. Sci. Total Environ. 2020, 729, 138666. [Google Scholar] [CrossRef]
- Hong, J.W.; Kang, N.S.; Jang, H.S.; Kim, H.J.; An, Y.R.; Yoon, M.; Kim, H.S. Biotechnological potential of Korean marine microalgal strains and its future prospectives. Ocean Polar Res. 2019, 41, 289–309. [Google Scholar]
- Hong, J.W.; Kim, O.H.; Jo, S.-W.; Kim, H.; Jeong, M.R.; Park, K.M.; Lee, K.I.; Yoon, H.-S. Biochemical composition of a Korean domestic microalga Chlorella vulgaris KNUA027. Microbiol. Biotechnol. Lett. 2016, 44, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Jo, S.W.; Kang, N.S.; Lee, J.A.; Kim, E.S.; Kim, K.M.; Yoon, M.; Hong, J.W.; Yoon, H.S. Characterization of MABIK microalgae with biotechnological potentials. J. Mar. Biosci. Biotechnol. 2020, 12, 40–49. [Google Scholar]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microb. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Champenois, J.; Marfaing, H.; Pierre, R. Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe. J. Appl. Phycol. 2015, 27, 1845–1851. [Google Scholar] [CrossRef]
- Borowitzka, M. Systematics, taxonomy and species names: Do they matter? In The Physiology of Microalgae; Developments in Applied Phycology; Borowitzka, M.A., Beardall, J., Raven, J.A., Eds.; Springer International Publishing: Dordrecht, The Netherlands, 2016; pp. 655–681. [Google Scholar]
- Gantar, M.; Svircev, Z. Microalgae and cyanobacteria: Food for thought. J. Phycol. 2008, 44, 260–268. [Google Scholar] [CrossRef]
- Vardaka, E.; Kormas, K.A.; Katsiapi, M.; Genitsaris, S.; Moustaka-Gouni, M. Molecular diversity of bacteria in commercially available “Spirulina” food supplements. Peer J. 2016, 4, e1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalina, T.; Puncochárová, M. Taxonomy of the subfamily Scotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae). Arch. Hydrobiol. Suppl. Algol. Stud. 1987, 45, 473–521. [Google Scholar]
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication; National University of Ireland Galway: Galway, Ireland, 2022; Available online: http://www.algaebase.org (accessed on 18 October 2022).
- Robinson, P.K. Immobilized algal technology for wastewater treatment purposes. In Wastewater Treatment with Algae; Wong, Y.S., Tam, N.F.Y., Eds.; Springer-Verlag & Landes Bioscience: Berlin, Germany, 1998; pp. 1–16. [Google Scholar]
- Xu, M.; Bernards, M.; Hu, Z. Algae-facilitated chemical phosphorus removal during high-density Chlorella emersonii cultivation in a membrane bioreactor. Bioresour. Technol. 2014, 153, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.S.; Singh, R.D.; Ghosh, S.B.; Kelkar, V. A novel strategy for disarming quorum sensing in Pseudomonas aeruginosa-Chlorella emersonii KJ725233. J. Appl. Biol. Biotechnol. 2020, 8, 78–83. [Google Scholar]
- Kumar, V.S.; das Sarkar, S.; Das, B.K.; Sarkar, D.J.; Gogoi, P.; Maurye, P.; Mitra, T.; Talukder, A.K.; Ganguly, S.; Nag, S.K. Sustainable Biodiesel Production from Microalgae Graesiella emersonii through Valorization of Garden Wastes-Based Vermicompost. Sci. Total Environ. 2022, 807, 150995. [Google Scholar] [CrossRef] [PubMed]
- Perdana, B.A.; Dharma, A.; Zakaria, I.J.; Syafrizayanti, S. Freshwater pond microalgae for biofuel: Strain isolation, identification, cultivation and fatty acid content. Biodiversitas 2021, 22, 505–511. [Google Scholar] [CrossRef]
- Sawant, S.S.; Mane, V.K. Nutritional profile, antioxidant, antimicrobial potential, and bioactives profile of Chlorella emersonii KJ725233. Asian J. Pharm. Clin. Res. 2018, 11, 220–225. [Google Scholar] [CrossRef]
- Araújo, R.; Peteiro, C. Algae as Food and Food Supplements in Europe. EUR 30779 EN.; Publications Office of the European Union: Luxembourg, 2021; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC125913 (accessed on 16 October 2022).
- Mendes, M.C.; Navalho, S.; Ferreira, A.; Paulino, C.; Figueiredo, D.; Silva, D.; Gao, F.; Gama, F.; Bombo, G.; Jacinto, R.; et al. Algae as food in Europe: An overview of species diversity and their application. Foods 2022, 11, 1871. [Google Scholar] [CrossRef]
- Grama, B.S.; Chader, S.; Khelifi, D.; Agathos, S.N.; Jeffryes, C. Induction of canthaxanthin production in a Dactylococcus microalga isolated from the Algerian Sahara. Bioresour. Technol. 2014, 151, 297–305. [Google Scholar] [CrossRef]
- Granéli, E.; Flynn, K. Chemical and physical factors influencing toxin content. In Ecology of Harmful Algae; Granéli, E., Turner, J.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 189, pp. 229–241. [Google Scholar]
- Huelsenbeck, J.P.; Ronquist, F. MrBayes: Bayesian inference of phylogeny. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, N.S.; Jeong, H.J.; Moestrup, Ø.; Shin, W.G.; Nam, S.W.; Park, J.Y.; de Salas, M.F.; Kim, K.W.; Noh, J.H. Description of a new planktonic mixotrophic dinoflagellate Paragymnodinium shiwhaense n. gen., n. sp. from the coastal waters off western Korea: Morphology, pigments, and ribosomal DNA gene sequence. J. Eukaryot. Microbiol. 2010, 57, 121–144. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medlin, L.; Elwood, H.J.; Stickel, S.; Sogin, M.L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 1988, 71, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Litaker, R.W.; Vandersea, M.W.; Kibler, S.R.; Reece, K.S.; Stokes, N.A.; Steidinger, K.A.; Millie, D.F.; Bendis, B.J.; Pigg, R.J.; Tester, P.A. Identification of Pfiesteria piscicida (Dinophyceae) and Pfiesteria-like organisms using internal transcribed spacers-specific PCR assays. J. Phycol. 2003, 39, 754–761. [Google Scholar] [CrossRef]
- Weekers, P.; Gast, R.J.; Fuerst, P.A.; Byers, T.J. Sequence variations in small-subunit ribosomal RNAs of Hartmannella vermiformis and their phylogenetic implications. Mol. Biol. Evol. 1994, 11, 684–690. [Google Scholar]
- Scholin, C.A.; Herzog, M.; Sogin, M.; Anderson, D.M. Identification of group and strain specific genetic makers for globally distributed Alexandrium (Dinophyceae) II. Sequence analysis of a fragment of the LSU rRNA gene. J. Phycol. 1994, 30, 999–1011. [Google Scholar] [CrossRef]
- Hadi, S.I.I.A.; Santana, H.; Brunale, P.P.M.; Gomes, T.G. DNA barcoding green microalgae isolated from neotropical inland waters. PLoS ONE 2016, 11, e0149284. [Google Scholar] [CrossRef] [Green Version]
- Heo, J.; Cho, D.H.; Ramanan, R.; Oh, H.M.; Kim, H.S. PhotoBiobox: A tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and CO2 sequestration. Biochem. Eng. J. 2015, 103, 193–197. [Google Scholar] [CrossRef]
- Breuer, G.; Evers, W.A.C.; de Vree, J.H.; Kleinegris, D.M.M.; Martens, D.E.; Wijffels, R.H.; Lamers, P.P. Analysis of fatty acid content and composition in microalgae. J. Vis. Exp. 2013, 80, e50628. [Google Scholar] [CrossRef] [Green Version]
- Kang, N.S.; Lee, J.A.; Jang, H.S.; Kim, K.M.; Kim, E.S.; Yoon, M.; Hong, J.W. First record of a marine microalgal species, Chlorella gloriosa (Trebouxiophyceae) isolated from the Dokdo Islands, Korea. Korean J. Environ. Biol. 2019, 37, 526–534. [Google Scholar] [CrossRef]
- Islam, M.A.; Magnusson, M.; Brown, R.J.; Ayoko, G.A.; Nabi, M.N.; Heimann, K. Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies 2013, 6, 5676–5702. [Google Scholar] [CrossRef] [Green Version]
- Baek, K.L.; Yu, J.; Jeong, J.; Sim, S.J.; Bae, S.; Jin, E.S. Photoautotrophic production of macular pigment in a Chlamydomonas reinhardtii strain generated by using DNA-free CRISPR-Cas9 RNP-mediated mutagenesis. Biotechnol. Bioeng. 2018, 115, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, H.; Katagiri, M.; Nakagawa, M.; Aizawa, K.; Watanabe, M.M. Taxonomic re-examination of two strains labeled ‘Chlorella’ in the microbial culture collection at the National Institute for Environmental Studies (NIES-Collection). Microbiol. Cult. Collect. 1995, 11, 11–18. [Google Scholar]
- Shihira, I.; Krauss, R.W. Chlorella, Physiology and Taxonomy of Forty-One Isolates; No. NASA-CR-69107; University of Maryland: College Park, MD, USA, 1965. [Google Scholar]
- Bark, M. Cultivation of Eleven Different Species of Freshwater Microalgae using Simulated Flue Gas Mimicking Effluents from Paper Mills as Carbon Source. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2012. [Google Scholar]
- Afi, L.; Metzger, P.; Largeau, C.; Connan, J.; Berkaloff, C.; Rousseau, B. Bacterial degradation of green microalgae: Incubation of Chlorella emersonii and Chlorella vulgaris with Pseudomonas oleovorans and Flavobacterium aquatile. Org. Geochem. 1996, 25, 117–130. [Google Scholar] [CrossRef]
- Frasinel, C.; Patterson, G.W.; Dutky, S.R. Effect of triarimol on sterol and fatty acid composition of three species of Chlorella. Phytochemistry 1978, 17, 1567–1570. [Google Scholar] [CrossRef]
- Andrew, A.R.; Yong, W.T.L.; Misson, M.; Anton, A.; Chin, G.J.W.L. Selection of tropical microalgae species for mass production based on lipid and fatty acid profiles. Front. Energy Res. 2022, 10, 912904. [Google Scholar] [CrossRef]
- Duong, V.T.; Ahmed, F.; Thomas-hall, S.R.; Quigley, S.; Nowak, E.; Schenk, P.M. High protein- and high lipid-producing microalgae from northern Australia as potential feedstock for animal feed and biodiesel. Front. Bioeng. Biotechnol. 2015, 3, 53. [Google Scholar]
- Cheng, W.; Shao, X.; Song, C.; Shi, F.; Ji, C.; Li, R. Effects of nitrogen stress on growth and oil accumulation of Chlorella emersonii. Biotechnol. Bull. 2017, 33, 160–165. [Google Scholar]
- Vazhappilly, R.; Chen, F. Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J. Am. Oil Chem. Soc. 1998, 75, 393–397. [Google Scholar] [CrossRef]
- Viso, A.C.; Marty, J.C. Fatty acids from 28 marine microalgae. Phytochemistry 1993, 34, 1521–1533. [Google Scholar] [CrossRef]
- Volkman, J.K.; Jeffrey, S.W.; Nichols, P.D.; Rogers, G.I.; Garland, C.D. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 1989, 128, 219–240. [Google Scholar] [CrossRef]
- Salama, E.-S.; Kim, H.-C.; Abou-Shanab, R.I.; Ji, M.-K.; Oh, Y.-K.; Kim, S.-H.; Jeon, B.-H. Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess Biosyst. Eng. 2013, 36, 827–833. [Google Scholar] [CrossRef]
- Vanderploeg, H.A.; Liebig, J.R.; Gluck, A.A. Evaluation of different phytoplankton for supporting development of zebra mussel larvae (Dreissena polymorpha): The importance of size and polyunsaturated fatty acid content. J. Great Lakes Res. 1996, 22, 36–45. [Google Scholar] [CrossRef]
- Tang, D.; Han, W.; Li, P.; Miao, X.; Zhong, J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour. Technol. 2011, 102, 3071–3076. [Google Scholar] [CrossRef]
- Nascimento, I.A.; Marques, S.S.I.; Cabanelas, I.T.D.; Pereira, S.A.; Druzian, J.I.; de Souza, C.O.; Vich, D.V.; de Carvalho, G.C.; Nascimento, M.A. Screening microalgae strains for biodiesel production: Lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. Bioenergy Res. 2013, 6, 1–13. [Google Scholar] [CrossRef]
- Kang, N.S.; Kim, E.S.; Lee, J.A.; Kim, K.M.; Kwak, M.S.; Yoon, M.; Hong, J.W. First report of the dinoflagellate genus Effrenium in the east sea of Korea: Morphological, genetic, and fatty acid characteristics. Sustainability 2020, 12, 3928. [Google Scholar] [CrossRef]
- Damiani, M.C.; Popovich, C.A.; Constenla, D.; Leonardi, P.I. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour. Technol. 2010, 101, 3801–3807. [Google Scholar] [CrossRef]
- Kim, K.M.; Kang, N.S.; Jang, H.S.; Park, J.S.; Jeon, B.H.; Hong, J.W. Characterization of Heterochlorella luteoviridis (Trebouxiaceae, Trebouxiophyceae) isolated from the Port of Jeongja in Ulsan, Korea. J. Mar. Biosci. Biotechnol. 2017, 9, 22–29. [Google Scholar]
- Tonon, T.; Harvey, D.; Larson, T.R.; Graham, I.A. Long-chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 2002, 61, 15–24. [Google Scholar] [CrossRef]
- Makri, A.; Bellou, S.; Birkou, M.; Papatrehas, K.; Dolapsakis, N.P.; Bokas, D.; Papanikolaou, S.; Aggelis, G. Lipid synthesized by micro-algae grown in laboratory- and industrial-scale bioreactors. Eng. Life Sci. 2011, 11, 52–58. [Google Scholar] [CrossRef]
- Becker, K.; Makkar, H.P.S. Jatropha curcas: A potential source for tomorrow’s oil and biodiesel. Lipid Technol. 2008, 20, 104–107. [Google Scholar] [CrossRef]
- Goembira, F.; Saka, S. Advanced supercritical methyl acetate method for biodiesel production from Pongamia pinnata oil. Renew. Energy 2015, 83, 1245–1249. [Google Scholar] [CrossRef]
- Saravanan, N.; Nagarajan, G.; Puhan, S. Experimental investigation on a DI diesel engine fuelled with Madhuca Indica ester and diesel blend. Biomass Bioenergy 2010, 34, 838–843. [Google Scholar] [CrossRef]
- Crabbe, E.; Nolasco-Hipolito, C.; Kobayashi, G.; Sonomoto, K.; Ishizaki, A. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties. Process Biochem. 2001, 37, 65–71. [Google Scholar] [CrossRef]
- Ramadhas, A.S.; Muraleedharan, C.; Jayaraj, S. Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil. Renew. Energy 2005, 30, 1789–1800. [Google Scholar] [CrossRef]
- Odjadjare, E.C.; Mutanda, T.; Olaniran, A.O. Potential biotechnological application of microalgae: A critical review. Crit. Rev. Biotechnol. 2017, 37, 37–52. [Google Scholar] [CrossRef]
- Allard, B.; Rager, M.N.; Templier, J. Occurrence of high molecular weight lipids (C80+) in the trilaminar outer cell walls of some freshwater microalgae. A reappraisal of algaenan structure. Org. Geochem. 2002, 33, 789–801. [Google Scholar] [CrossRef]
- Baudelet, P.; Ricochon, G.; Linder, M.; Muniglia, L. A new insight into cell walls of Chlorophyta. Algal Res. 2017, 25, 333–371. [Google Scholar] [CrossRef]
- Kim, D.Y.; Vijayan, D.; Praveenkumar, R.; Han, J.I.; Lee, K.; Park, J.Y.; Chang, W.S.; Lee, J.S.; Oh, Y.K. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour. Technol. 2016, 199, 300–310. [Google Scholar] [CrossRef]
- Borkenstein, C.G.; Knoblechner, J.; Frühwirth, H.; Schagerl, M. Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J. Appl. Phycol. 2011, 23, 131–135. [Google Scholar] [CrossRef]
- Kim, M.J.; Shim, C.K.; Kim, Y.K.; Hong, S.J.; Park, J.H.; Han, E.J.; Ji, H.J.; Yoon, J.C.; Kim, S.C. Isolation and morphological identification of fresh water green algae from organic farming habitats in Korea. Korean J. Org. Agric. 2014, 22, 743–760. [Google Scholar] [CrossRef]
- Malis, S.A.; Cohen, E.; Ben Amotz, A. Accumulation of canthaxanthin in Chlorella emersonii. Physiol. Plant. 1993, 87, 232–236. [Google Scholar] [CrossRef]
- Mandal, M.K.; Chaurasia, N. De novo transcriptomic analysis of Graesiella emersonii NC-M1 reveals differential genes expression in cell proliferation and lipid production under glucose and salt supplemented condition. Renew. Energy 2021, 179, 2004–2015. [Google Scholar] [CrossRef]
- Wilson, M.; Houghton, J.A. Continuous cultivation of Chlorella emersonii on pig manure. Ir. J. Agric. Res. 1977, 16, 21–33. [Google Scholar]
- Zhang, J.J.; Duan, L.L.; Cheng, W.L.; Ji, C.L.; Cui, H.L.; Li, R.Z. Algae-bacteria symbiosis increases biomass and oil production of Chlorella emersonii. Biotechnol. Bull. 2019, 35, 76–84. (In Chinese) [Google Scholar]
- Sawant, S.S.; Joshi, A.A.; Bhagwat, A.; Mane, V.K. Tapping the antioxidant potential of a novel isolate Chlorella emersonii. World J. Pharm. Res. 2014, 3, 726–739. [Google Scholar]
- Afifudeen, C.L.W.; Loh, S.H.; Aziz, A.; Takahashi, K.; Effendy, A.W.M.; Cha, T.S. Double-high in palmitic and oleic acids accumulation in a non-model green microalga, Messastrum gracile SE-MC4 under nitrate-repletion and -starvation cultivations. Sci. Rep. 2021, 11, 381. [Google Scholar] [CrossRef]
- Priya, D.; Patil, A.; Niranjana, S.; Chavan, A. Potential testing of fatty acids from mangrove Aegiceras corniculatum (L.) Blanco. Int. J. Pharm. Sci. 2012, 3, 569–571. [Google Scholar]
- Market Growth Reports. Global Palmitic Acid Market Report 2016–2027 by Companies, Regions, Types and Application. 2021. Available online: https://www.marketgrowthreports.com/global-palmitic-acid-market-19119624. (accessed on 30 September 2022).
- Li, Y.; Horsman, M.; Wu, N.; Lan, C.Q.; Dubois-Calero, N. Biofuels from microalgae. Biotech. Prog. 2008, 24, 815–820. [Google Scholar] [CrossRef]
- Cho, K.; Heo, J.; Cho, D.-H.; Tran, Q.-G.; Yun, J.-H.; Lee, S.-M.; Lee, Y.J.; Kim, H.-S. Enhancing algal biomass and lipid production by phycospheric bacterial volatiles and possible growth enhancing factor. Algal Res. 2019, 37, 186–194. [Google Scholar] [CrossRef]
- Yilancioglu, K.; Cokol, M.; Pastirmaci, I.; Erman, B.; Cetiner, S. Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS ONE 2014, 9, e91957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kousoulidou, M.; Fontaras, G.; Ntziachristos, L.; Samaras, Z. Biodiesel blend effects on common-rail diesel combustion and emissions. Fuel 2010, 89, 3442–3449. [Google Scholar] [CrossRef]
- El-Sayed, A.E.K.B.; Fetyan, N.A.; Moghanm, F.S.; Elbagory, M.; Ibrahim, F.M.; Sadik, M.W.; Shokr, M.S. Biomass fatty acid profile and fuel property prediction of bagasse waste grown Nannochloropsis oculata. Agriculture 2022, 12, 1201. [Google Scholar] [CrossRef]
- Mehta, L.R.; Dworkin, R.H.; Schwid, S.R. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 2009, 5, 82–92. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Engelen, A.; Varela, J. Polyunsaturated fatty acids of marine macroalgae: Potential for nutritional and pharmaceutical applications. Mar. Drugs 2012, 10, 1920–1935. [Google Scholar] [CrossRef] [Green Version]
- Radwan, S.S. Sources of C20-polyunsaturated fatty acids for biotechnological use. Appl. Microbiol. Biot. 1991, 35, 421–430. [Google Scholar] [CrossRef]
- Vrablik, T.L.; Watts, J.L. Polyunsaturated fatty acid derived signaling in reproduction and development: Insights from Caenorhabditis elegans and Drosophila melanogaster. Mol. Reprod. Dev. 2013, 80, 244–259. [Google Scholar] [CrossRef] [Green Version]
- Abedi, E.; Sahari, M.A. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef]
- Santin, A.; Russo, M.T.; Ferrante, M.I.; Balzano, S.; Orefice, I.; Sardo, A. Highly valuable polyunsaturated fatty acids from microalgae: Strategies to improve their yields and their potential exploitation in aquaculture. Molecules 2021, 26, 7697. [Google Scholar] [CrossRef]
- Guerin, M.; Huntley, M.E.; Olaizola, M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 2003, 21, 210–216. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Y.; Li, S.; Nagarajan, D.; Varjani, S.; Lee, D.J.; Chang, J.S. Recent advances in lutein production from microalgae. Renew. Sustain. Energy Rev. 2022, 153, 111795. [Google Scholar] [CrossRef]
- Maximize Market Research PVT. LTD. Global lutein Market Industry Analysis and Forecast (2021–2027)-by Form, by Source, by Production Process, by Application and Region. 2020. Available online: https://www.maximizemarketresearch.com/market-report/lutein-market/661/ (accessed on 30 September 2022).
- Breithaupt, D.E.; Wirt, U.; Bamedi, A. Differentiation between lutein monoester regioisomers and detection of lutein diesters from marigold flowers (Tagetes erecta, L.) and several fruits by liquid chromatography-mass spectrometry. J. Agric. Food Chem. 2002, 50, 66–70. [Google Scholar] [CrossRef]
- Paliwal, C.; Ghosh, T.; George, B.; Pancha, I.; Maurya, R.; Chokshi, K.; Ghosh, A.; Mishra, S. Microalgal carotenoids: Potential nutraceutical compounds with chemotaxonomic importance. Algal Res. 2016, 15, 24–31. [Google Scholar] [CrossRef]
- Banskota, A.H.; Sperker, S.; Stefanova, R.; McGinn, P.J.; O′Leary, S.J.B. Antioxidant properties and lipid composition of selected microalgae. J. Appl. Phycol. 2018, 31, 309–318. [Google Scholar] [CrossRef]
- Dineshkumar, R.; Subramanian, G.; Dash, S.K.; Sen, R. Development of an optimal light-feeding strategy coupled with semicontinuous reactor operation for simultaneous improvement of microalgal photosynthetic efficiency, lutein production and CO2 sequestration. Biochem. Eng. J. 2016, 113, 47–56. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, Z.; Ho, S.-H.; Ruan, C.; Li, J.; Xie, Y.; Shi, X.; Liu, L.; Chen, J. Two-stage bioprocess for hyper-production of lutein from microalga Chlorella sorokiniana FZU60: Effects of temperature, light intensity, and operation strategies. Algal Res. 2020, 52, 102119. [Google Scholar] [CrossRef]
- Gong, M.; Bassi, A. Investigation of Chlorella vulgaris UTEX 265 cultivation under light and low temperature stressed conditions for lutein production in flasks and the coiled tree photo-bioreactor (CTPBR). Appl. Biochem. Biotechnol. 2017, 183, 652–671. [Google Scholar] [CrossRef] [PubMed]
Species | Strain | LC | Date | T (℃) | S (PSU) | Marker Gene | GBAN |
---|---|---|---|---|---|---|---|
G. emersonii | GEGS21 | Geumgang Estuary | May 2021 | 18.4 | 21 | SSU | OP592224 |
ITS | OP592225 | ||||||
LSU | OP592226 | ||||||
rbcL | OP605746 |
Primer Name | Primer Region | Sequence (5′-3′) | References |
---|---|---|---|
EukA | Forward, SSU | AACCTGGTTGATCCTGCCAG | [50] |
G18R | Reverse, SSU | GCATCACAGACCTGTTATTG | [51] |
570F | Forward, SSU | GTAATTCCAGCTCCAATAGC | [52] |
EukB | Reverse, SSU | TGATCCTTCTGCAGGTTCACCTAC | [50] |
ITSF2 | Forward, ITS | TACGTCCCTGCCCTTTGTAC | [51] |
ITSFR2 | Reverse, ITS | TCCCTGTTCATTCGCCATTAC | [51] |
D1R | Forward, LSU | ACCCGCTGAATTTAAGCATA | [53] |
LSUB | Reverse, LSU | ACGAACGATTTGCACGTCAG | [51] |
rbcL-192 | Forward, rbcL | GGTACTTGGACAACWGTWTGGAC | [54] |
rbcL-657 | Reverse, rbcL | GAAACGGTCTCKCCARCGCAT | [54] |
Character Traits | GEGS21 | NIES-226 | Maryland Culture Collection No. 2 | CCAP211/11N |
---|---|---|---|---|
Strain locality | Korea | Japan | USA | Germany |
Cell shape | Spherical to ellipsoidal | Spherical | Spherical or ellipsoidal | Spherical |
Cell size (μm; vegetative cells) | 8.79–14.4 (11.6) | ~17 | 4–16 | 3–17 |
Cell size (μm; daughter cells) | 5.0–12.7 (6.9) | 5.4–7.1 (5.9) * | ND | ND |
Pyrenoid | Present, surrounded by the starch grains | Present, surrounded by the starch grains | Present | Present, surrounded by the starch grains |
Numbers of nuclei (mature cell) | More than two nuclei, sometimes remained single | More than two nuclei, sometimes remained single | ND | More than two nuclei, sometimes remained single |
Numbers of daughter cells (in parental cell) | 2, 4, 8, or 16 | 4, 8, or 16 | ND | 2, 4, 8, or 16 |
Vacuoles | Numerous | Numerous | ND | ND |
Cell wall | Composed of a trilaminar sheath and fibrillar wall | Composed of a trilaminar sheath | ND | Composed of a trilaminar sheath |
Cell wall ribs | Most cells have meridional or irregular network ribs | Lacking meridional ribs, but sometimes developing minute ribs | ND | ND |
References | This study | [60] | [61] | [60,62] |
Collection Location | Strain Habitat (Isolation Source) | Strain Name | GenBank Accession No. | Graesiella emersonii GEGS21 * |
---|---|---|---|---|
Berlin, Germany | Freshwater | CCAP 211/11N | MK541794 | 0 (0) |
Gran Canaria, Spain | Freshwater | BEA0616B | ON652616 | 0 (0) |
Cadiz, Spain | Brackish | BEA1005B | ON652615 | 0 (0) |
Tennant Creek, Australia | Freshwater | NT1e | KF286273 | 0 (0) |
England | Freshwater | CCAP 211/15 | FR865661 | 0 (0) |
ND | Soil | CCAP 211/11M | FR865657 | 0 (0) |
ND | Freshwater | CCAP 211/8H | MG022718 | 0 (0) |
ND | Freshwater | CCAP 211/8P | FR865687 | 0 (0) |
Berlin-Dahlem, Germany | Freshwater | NIES-2151 | AB488562 | 2 (0.1) |
Berlin, Germany | Freshwater | NIES-690 | AJ242761 | 1 (0.2) |
India | Freshwater | ND | MN877773 | 8 (0.9) |
Mumbai, India | Freshwater | ND | KJ725233 | 7 (1.3) |
Component | Content (%) | Note |
---|---|---|
Palmitic acid (C16:0) | 27.5 | SFA (major) |
Stearic acid (C18:0) | 0.6 | - |
Oleic acid (C18:1 n-9) | 22.2 | Omega-9 MUFA (major) |
Linoleic acid (C18:2 n-6) | 26.3 | Omega-6 PUFA (major) |
g-linolenic acid (C18:3 n-6) | 1.0 | - |
α-linolenic acid (C18:3 n-3) | 22.1 | Omega-3 PUFA (major) |
Eicosenoic acid (C20:1 n-9) | 0.3 | - |
Species | Group | Strain | Individual Fatty Acids as Percentages of Total Fatty Acids | References | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Palmitic | Palmitoleic | Stearic | Oleic | Linoleic | Gamma- Linolenic | Alpha-Linolenic | Stearidonic | Eicosenoic | EPA | DPA | DHA | ||||
C16:0 | C16:1 n-7 | C18:0 | C18:1 n-9 | C18:2 n-6 | C18:3 n-6 | C18:3 n-3 | C18:4 n-3 | C20:1 n-9 | C20:5 n-3 | C22:5 n-3 | C22:6 n-3 | ||||
Graesiella emersonii | CHL | GEGS21 | 27.5 | - | 0.6 | 22.2 | 26.3 | 1.0 | 22.1 | - | 0.3 | - | - | - | This study |
G. emersonii | CHL | CCAP 211/8P | 19 | 1.6 | 2.3 | 53.8 | 4.8 | 6.7 * | - | - | - | - | - | - | [63] |
G. emersonii | CHL | Maryland Culture Collection No. 2 | 28.3 | 2 | - | 31 | 5.9 | 17 * | - | 2.1 | - | - | - | - | [64] |
G. emersonii | CHL | MAUA001 | 18.7 | - | 4.15 | 47.74 | 13.72 | - | - | - | - | - | - | - | [40] |
G. emersonii | CHL | MM0036 | 16.8 | 0.9 | 1.7 | 17.6 | 10.7 | - | 27.2 | - | - | - | - | - | [28] |
G. emersonii | CHL | NFW2 | 20.93 | 3.41 | 0.19 | 8.4 | 4.01 | - | 45.04 | - | - | 16.39 | - | - | [65] |
G. emersonii | CHL | NT1e | 18.79 | 2.39 | 2.04 | 23.79 | 11.04 | 18.36 | - | - | 0.29 | - | - | - | [66] |
G. emersonii | CHL | SXND-25 | 14.8 | 6.5 | 3.2 | 44.5 | 10.1 | 12.9 * | - | - | - | - | - | - | [67] |
Amphidinium carterae | DINO | UTEX LB 1002 | 30.9 | 7.1 | 10.5 | 0.3 | 5.6 | 3.1 * | - | - | - | 15.1 | 1.3 | 17 | [68] |
Auxenochlorella protothecoides | CHL | MM0012 | 7.1 | 1 | 1.8 | 3.8 | 29.4 | - | 21.9 | - | - | - | - | - | [28] |
Chaetoceros affinis | BACI | B02 | 26 | 33.9 | 3.2 | 2.8 | 1.3 | - | 0.8 | - | - | 0.6 | - | 0.1 | [69] |
C. calcitrans | BACI | CS-I78 | 10.7 | 30 | 0.8 | 2.8 | 0.8 | 0.4 | - | 0.5 | - | 11.1 | - | 0.8 | [70] |
Chlamydomonas hedleyi | CHL | MM0020 | 18.3 | 2.6 | 1.2 | - | 9.8 | - | 16.4 | - | - | - | - | - | [28] |
C. oblonga | CHL | YSL07 | 40 | - | 2 | 3 | 37 | 2 | 16 | - | - | - | - | - | [71] |
Chlorella gloriosa | CHL | MM0063 | 22.5 | 0.4 | 1 | 2.2 | 10.6 | - | - | - | - | - | - | - | [57] |
C. minutissima | CHL | UTEX 2341 | 12.5 | 19.4 | 0.4 | 4.5 | 2.1 | 3.6 * | - | - | - | 31.8 | - | - | [72] |
C. pyrenoidosa | CHL | SJTU-2 | 27.9 | 0.7 | 0.8 | 2.2 | 5.9 | 35.8 * | - | - | - | - | - | - | [73] |
C. sorokiniana | CHL | MM0034 | 27.7 | 1.2 | 1.4 | 5.9 | 9.4 | - | 23.1 | - | - | - | - | - | [28] |
C. vulgaris | CHL | CCAP 211/8K | 20.3 | 4.2 | 1.4 | 4.2 | 15.5 | 21.7 * | - | - | - | - | - | - | [63] |
Coelastrum microporum | CHL | IBL-C119 | 25.66 | 1 | 2.91 | 44.24 | 8.58 | 11.12 | - | - | - | - | - | - | [74] |
Crypthecodinium cohnii | DINO | UTEX L1649 | 20.6 | 22.6 | 9 | 0.3 | 2.3 | 1.1 * | - | - | - | - | 2 | 19.9 | [68] |
Dunaliella salina | CHL | LIMS-PS-1511 | 19.3 | - | 1.6 | 3.7 | 5.6 | - | 31.7 | - | - | - | - | - | [28] |
D. tertiolecta | CHL | CS-I75 | 14.7 | 0.1 | 0.4 | 2 | 4.8 | 2.7 | 43.5 | 1 | - | - | - | - | [70] |
Effrenium voratum | DINO | MABIKLP88 | 22.1 | 9.3 | 0.7 | 3.3 | 0.6 | 0.9 | 0.3 | 15.2 | - | 10.9 | - | 25.4 | [75] |
Haematococcus pluvialisa | CHL | - | 22.49 | 0.64 | 3.15 | 19.36 | 20.23 | 0.86 | 16.18 | - | 0.13 | 0.57 | - | - | [76] |
Heterosigma akashiwo | OCH | Q01 | 44.8 | 16.1 | 0.5 | 1.6 | 1.6 | - | 4.1 | 7.1 | - | 8.4 | - | 0.7 | [69] |
Isochrysis galbana | HAP | SW2 | 23.18 | 32.13 | - | .4.01 | 0.39 | - | 5.82 | - | - | 9.07 | - | 0.99 | [65] |
Jaagichlorella luteoviridis | CHL | MM0014 | 20.7 | - | 1.4 | 7.1 | 35.6 | - | 16.2 | - | - | - | - | - | [77] |
Microglena monadina | CHL | NFW3 | 25.09 | 3.28 | 0.4 | - | 14.47 | - | 53.01 | - | - | - | - | - | [65] |
Nannochloropsis oculata | OCH | CCAP 849/1 | 26.65 | 38.12 | 2.42 | 9.14 | - | - | - | - | - | 12.13 | - | - | [78] |
Phaeodactylum tricornutum | BACI | B24 A | 22.3 | 32.7 | 1.7 | 1.5 | 4.1 | 0.2 | 2.8 | 0.2 | - | 12.5 | - | 0.8 | [69] |
Porphyridium purpureum | RHO | R01 | 42.5 | - | 1.4 | 1.4 | 2.5 | 0.2 | 6.6 | 0.9 | - | 8.3 | - | 0.1 | [69] |
Prorocentrum cordatum | DINO | S1 | 33.45 | 2.04 | 5.05 | 2.51 | 2.23 | 4.09 | 2.28 | 12.33 | 7.3 | 2.91 | - | 20.87 | [79] |
P. micans | DINO | D06 | 61.9 | 0.6 | 3.2 | 3.2 | 0.7 | - | 4.5 | 3.3 | - | 0.1 | - | 2.8 | [69] |
Schizochytrium aggregatum | BIG | ATCC 28209 | 15.3 | 18.6 | 8 | 14.7 | 15.1 | 0.6 * | - | - | - | 15.7 | - | - | [68] |
Scrippsiella acuminata | DINO | D08 | 47.6 | 0.5 | 5.3 | 7.4 | 0.8 | - | 2 | 3.2 | - | 0.1 | - | 4.2 | [69] |
Skeletonema costatum | BACI | CS-181 | 16.5 | 28.6 | 0.8 | 1.4 | 2.2 | 0.3 | 0.3 | 2.2 | - | 6 | - | 2 | [70] |
Tetradesmus dimorphus | CHL | NT8c | 22.21 | 1.9 | 1.59 | 24.45 | 6.29 | 17.71 | - | - | 0.33 | - | - | - | [66] |
T. obliquus | CHL | MM0026 | 18 | 2 | 1.3 | 16.4 | 5.2 | - | 28.3 | - | - | - | - | - | [28] |
Tetraedron caudatum | CHL | NT5 | 7.16 | 1.43 | 0.46 | 6.13 | 3.45 | 11.77 | - | - | - | - | - | - | [66] |
Tetraselmis chuii | CHL | SW4 | 24.98 | 1.9 | 0.13 | 5.43 | 12.85 | - | 29.96 | - | - | 18.01 | - | - | [65] |
T. suecica | CHL | P03A | 36.8 | 0.9 | 3 | 11.4 | 5 | - | 11.5 | 6.7 | 1.9 | 4.2 | - | 0.8 | [69] |
T. marina | CHL | P02D | 28.8 | 3.8 | 2.1 | 6.2 | 1.6 | 0.2 | 16 | 8 | - | 5.8 | - | - | [69] |
Thalassiosira pseudonana | BACI | CS-173 | 11.2 | 18 | 0.7 | 0.5 | 0.4 | 0.2 | 0.1 | 5.3 | 0.2 | 19.3 | - | 3.9 | [70] |
Second-generation oil sources | |||||||||||||||
Jatropha | - | - | 13.4 | 0.8 | 6.4 | 36.5 | 42.1 | - | 0.2 | - | 0.1 | - | - | - | [80] |
Karanja | - | - | 7.4 | - | 3.8 | 65.6 | 15.4 | 4.4 | - | - | - | - | - | - | [81] |
Mahua | - | - | 21.5 | - | 19 | 39.1 | 19.6 | 0.16 | - | - | - | - | - | - | [82] |
Palm | - | - | 47.9 | 0.04 | 4.23 | 37 | 9.07 | 0.26 | - | - | - | - | - | - | [83] |
Rapeseed | - | - | 3.49 | - | 0.85 | 64.4 | 22.3 | 8.23 | - | - | - | - | - | - | [84] |
Source | SV | IV | DU | MUFA | PUFA | LCSF | CFPP | CN | OS |
---|---|---|---|---|---|---|---|---|---|
Jatropha | 190.98 | 105.42 | 122.10 | 37.30 | 42.40 | 4.54 | −2.21 | 51.16 | 5.37 |
Karanja | 184.05 | 94.22 | 105.20 | 65.60 | 19.80 | 2.64 | −8.18 | 54.76 | 8.55 |
Mahua | 191.58 | 67.72 | 78.62 | 39.10 | 19.76 | 11.65 | 20.12 | 59.55 | 8.56 |
Palm | 194.82 | 48.05 | 55.70 | 37.04 | 9.33 | 6.91 | 5.22 | 63.50 | 15.23 |
Rapeseed | 188.61 | 115.07 | 125.46 | 64.40 | 30.53 | 0.77 | −14.05 | 49.35 | 6.45 |
Graesiella emersonii GEGS21 | 194.74 | 124.79 | 121.30 | 22.50 | 49.40 | 3.05 | −6.89 | 46.25 | 4.98 |
Chlamydomonas hedleyi MM0020 | 95.60 | 62.09 | 55.00 | 2.60 | 26.20 | 2.43 | −8.84 | 89.42 | 7.09 |
Chlorella gloriosa MM0063 | 132.19 | 100.26 | 85.00 | 2.60 | 41.20 | 2.75 | −7.84 | 65.03 | 5.45 |
Chlorella minutissima UTEX 2341 | 142.74 | 162.79 | 98.90 | 23.90 | 37.50 | 1.45 | −11.92 | 47.91 | 23.28 |
Coelastrum microporum IBL-C119 | 181.83 | 82.61 | 84.64 | 45.24 | 19.70 | 4.02 | −3.84 | 57.73 | 8.58 |
Dunaliella salina LIMS-PS-1511 | 121.29 | 95.41 | 78.30 | 3.70 | 37.30 | 2.73 | −7.90 | 69.83 | 5.75 |
Haematococcus pluvialisa | 162.70 | 98.86 | 95.81 | 20.13 | 37.84 | 3.82 | −4.46 | 57.60 | 5.75 |
Microglena monadina NFW3 | 188.54 | 166.15 | 138.24 | 3.28 | 67.48 | 2.71 | −7.97 | 37.86 | 4.34 |
Jaagichlorella luteoviridis MM0014 | 157.60 | 109.69 | 110.70 | 7.10 | 51.80 | 2.77 | −7.77 | 56.25 | 4.87 |
Tetradesmus obliquus MM0026 | 138.92 | 98.63 | 85.40 | 18.40 | 33.50 | 2.45 | −8.78 | 63.40 | 6.11 |
EN14214 | - | ≤120 | - | - | - | - | (≤−20~5) | ≥51 | ≥6 |
ASTM D6751-02 | - | - | - | - | - | - | - | ≥47 | ≥3 |
Pigments | Retention Time | Peak Area | Amount (mg g−1) |
---|---|---|---|
Neoxanthin | 6.524 | 83.04 | 1.23 |
Unidentified | 6.792 | 154.9 | - |
Lutein | 10.654 | 152.39 | 1.49 |
Zeaxanthin | 10.863 | 30.693 | 0.46 |
Chlorophyll b | 14.215 | 23.784 | 0.85 |
Chlorophyll a | 15.643 | 388.65 | 19.1 |
α-carotene | 18.66 | 18.773 | 0.16 |
β-carotene | 18.872 | 83.927 | 0.84 |
Species | Group | Strain | Pigment Composition in mg g−1 DCW | References | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NE | VI | AS | MY | AN | LU | ZE | CA | EC | AC | BC | CHA | CHB | FU | ||||
Graesiella emersonii | CHL | GEGS21 | 1.23 | - | - | - | - | 1.49 | 0.46 | - | - | 0.16 | 0.84 | 19.1 | 0.85 | - | This study |
G. emersonii | CHL | CCNM1001 | 0.13 | 0.18 | 0.03 | 0 | 0 | 0.89 | 0.34 | 0.06 | 0 | 0 | 0.1 | 1.88 | 2.06 | - | [114] |
G. emersonii | CHL | CCNM 1011 | 0.09 | 0.08 | 0.03 | 0 | 0 | 0.56 | 0.17 | 0.13 | 0 | 0.01 | 0.08 | 0.97 | 1.18 | - | [114] |
G. emersonii | CHL | CCNM 1015 | 0.4 | 0.14 | 0.08 | 0 | 0 | 1.34 | 0.59 | 0.11 | 0 | 0.15 | 0.59 | 4.46 | 4.6 | - | [114] |
Botryococcus braunii | CHL | UTEX572 | - | - | - | - | - | 0.7 | 0.1 | - | - | 0.1 | 0.2 | - | - | - | [115] |
Bracteacoccus pseudominor | CHL | CCNM 1018 | 0.23 | 0.09 | 0 | 0 | 0 | 1.16 | 0.38 | 0 | 0 | 0.04 | 0.17 | 2.85 | 2.86 | - | [114] |
Chlorella minutissima | CHL | MCC-27 | - | - | - | - | - | 7.05 | - | - | - | - | - | - | - | - | [116] |
C. sorokiniana | CHL | FZU60 | - | - | - | - | - | 11.22 | - | - | - | - | - | - | - | - | [117] |
C. variabilis | CHL | CCNM 1017 | 0.3 | 0.08 | 0 | 0 | 0.07 | 1.13 | 0.36 | 0.03 | 0 | 0.04 | 0.17 | 2.4 | 2.43 | - | [114] |
C. vulgaris | CHL | UTEX 265 | - | - | - | - | - | 9.82 | - | - | - | - | - | - | - | - | [118] |
Desmodesmus subspicatus | CHL | CCNM 1008 | 2.73 | 0 | 0.37 | 0 | 0.07 | 1.98 | 0.23 | 0.04 | 0 | 0.04 | 0.26 | 6.6 | 7.21 | - | [114] |
Ettlia oleoabundans | CHL | UTEX 1185 | - | - | - | - | - | 3.4 | 0.1 | 0.5 | - | 0.6 | 0.6 | - | - | - | [115] |
Monoraphidium minutum | CHL | CCNM 1042 | 0.59 | 0.43 | 0.27 | 0 | 0.16 | 2.2 | 1.11 | 0.15 | 0 | 0.12 | 0.53 | 0.84 | 6.66 | - | [114] |
Phaeodactylum tricornutum | BACI | CCMP 1327 | - | - | - | - | - | 2.1 | 0.1 | 0.6 | - | 0.1 | 1.6 | - | - | 24.3 | [115] |
Tetradesmus dimorphus | CHL | CCNM 1045 | 4.13 | 0.02 | 0.07 | 0 | 0.02 | 2 | 0.54 | 0.06 | 0 | 0.1 | 0.32 | 2.37 | 10.79 | - | [114] |
T. obliquus | CHL | UTEX 2016 | - | - | - | - | - | 1.6 | 1.6 | 0.3 | - | 0.2 | 0.4 | - | - | - | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, N.S.; Cho, K.; An, S.M.; Kim, E.S.; Ki, H.; Lee, C.H.; Choi, G.; Hong, J.W. Taxonomic and Biochemical Characterization of Microalga Graesiella emersonii GEGS21 for Its Potential to Become Feedstock for Biofuels and Bioproducts. Energies 2022, 15, 8725. https://doi.org/10.3390/en15228725
Kang NS, Cho K, An SM, Kim ES, Ki H, Lee CH, Choi G, Hong JW. Taxonomic and Biochemical Characterization of Microalga Graesiella emersonii GEGS21 for Its Potential to Become Feedstock for Biofuels and Bioproducts. Energies. 2022; 15(22):8725. https://doi.org/10.3390/en15228725
Chicago/Turabian StyleKang, Nam Seon, Kichul Cho, Sung Min An, Eun Song Kim, Hyunji Ki, Chung Hyeon Lee, Grace Choi, and Ji Won Hong. 2022. "Taxonomic and Biochemical Characterization of Microalga Graesiella emersonii GEGS21 for Its Potential to Become Feedstock for Biofuels and Bioproducts" Energies 15, no. 22: 8725. https://doi.org/10.3390/en15228725
APA StyleKang, N. S., Cho, K., An, S. M., Kim, E. S., Ki, H., Lee, C. H., Choi, G., & Hong, J. W. (2022). Taxonomic and Biochemical Characterization of Microalga Graesiella emersonii GEGS21 for Its Potential to Become Feedstock for Biofuels and Bioproducts. Energies, 15(22), 8725. https://doi.org/10.3390/en15228725