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Abstract: In the past two decades, clean energy such as hydro, wind, and solar power has achieved
significant development under the “green recovery” global goal, and it may become the key method
for countries to realize a low-carbon energy system. Here, the development of renewable energy
power generation, the typical hydro-wind-photovoltaic complementary practical project, is summa-
rized, and some key problems in complementary systems such as the description and prediction of
the power generation law in large-scale stations, risk management, and coordinated operation are
analyzed. In terms of these problems, this paper systematically summarizes the research methods
and characteristics of a hydro-wind-solar hybrid system and expounds upon the technical realization
process from the prediction and description of wind and solar power station cluster output, the risks
brought about by large-scale renewable energy grid-connected operation, and the long-term and
short-term coordination modeling and resolution thoughts on the hydro-wind-solar hybrid system in
cluster mode. Finally, based on the aforementioned analysis, the existing research gaps are discussed
from the standpoints of generation forecast, risk management, and cluster scheduling, and the future
work outlook is presented accordingly. A hybrid system that combines hydro, wind, and solar energy
is emerging as a way to make up for each other’s shortcomings and will be a fruitful area of study in
the future.

Keywords: hydro-wind-solar system; energy complementary; optimal scheduling; risk management

1. Introduction

Over the past few decades, the demand for electricity has grown rapidly because of
the rapid growth of the global economy and population. The traditional power supply is
dominated by non-renewable fossil energy (e.g., coal and oil), whose accelerated consump-
tion has caused serious pollution problems. The energy crisis and environmental pollution
have received widespread attention from countries around the world. Therefore, the need
to develop clean and renewable energy is becoming more and more urgent [1,2]. Efforts
are accelerating globally to develop renewable energy and its associated technologies,
which are now recognized as a strategic sector [3,4]. Governments all over the world have
adopted new regulations and policies encouraging the employment of renewable energy
technologies [5,6].

In 2020, the installed capacity of renewable energy even surpassed that of 2019
against the backdrop of the coronavirus pandemic and the global economic slowdown.
This undoubtedly shows that the transformation and upgrading from the traditional energy
structure to renewable energy is the general trend. Figure 1 below shows that in the past
decade, the total installed capacity of wind, solar, hydro, etc. renewable energy in the world
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has shown an upward trend year by year, and the growth rate is stable and improving.
In the future, as the proportion of renewable energy in the global energy consumption
market gradually increases, the strategic position will become more prominent, which will
have a profound impact on the global energy supply system and consumption pattern. The
future energy supply pattern will also undergo fundamental changes.

Figure 1. Global renewable energy installation (classification).

As power grids have moved from single-energy generation to today’s multi-energy
mix generation, the study of dispatch optimization has moved from deterministic to
uncertain optimization, linear to nonlinear problems, and from highly conservative static
characteristics to dynamic planning. Solar photovoltaic and wind energy resources led
various researchers to pursue several methodologies for unit sizing and the optimization of
hybrid energy systems based on photovoltaic and wind resources [7–9].

In 1983, Almeida et al. developed a simple multi-variable weather model which in-
cludes the solar radiation, wind speed, and rainfall. The power generation system gives
the association with the battery storage facility to smoothen the time distribution mismatch
between renewable energy generation and the load [10]. The use of wind, solar, and pumped
hydro storage for powering an island in Boston Harbor was planned in 1985 for public
education and recreational use [11]. In recent years, Wang et al. [12] proposed a short-term
optimal operation hydro-thermal-wind model based on the principles of complementing
hydro and wind power to reduce carbon dioxide emissions. The results showed that the
hybrid system can significantly reduce wind power curtailments by using a hydro-wind
complement and the hydropower peak-shaving capability. Concerning the water flow delay,
Gupta et al. [13] proposed the use of reservoir-filling coefficients based on the adjustable
storage capacity for load distribution of cascade hydropower stations, which provided a
new idea for hydro-PV-wind short-term optimal operation. However, the former lacks the
description method of the hybrid system net load and rarely involves the role allocation of
hydropower stations, and the latter did not analyze the role that the hybrid system should
play in the power grid. The existing research pays limited attention to the complementary
role allocation and synchronous peak shaving of cascade hydropower stations.

Many feasibility studies have been proposed with various approaches to signify hydro-
wind-solar systems, such as a real-time case study to analyze the overall efficiency [14],
different storage options for hydro-wind-solar systems [15], analysis of pumped hydro
storage as daily and seasonal energy storage [16], and the technical feasibility of pumped
hydro storage for an island in Hong Kong with a developed operating strategy [17].

Various studies performed reliability analysis for hydro-wind-solar systems, such as
through an optimization model considering system stability as the main objective [18], max-
imization of solar and wind outputs using pumped hydro storage [19], robust scheduling
optimization in a multi-energy hybrid system to analyze the influence of uncertainty in
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solar and wind power [20], and assessment reliability based on the loss of load and the
expected energy not provided [21].

Several energy management strategies are proposed in the literature as well for effective
hybrid renewable energy system operation, such as that of Soliman, Alahmadi et al. [22,23],
who provided a high-order sliding mode control method and fuzzy logic control to manage
and control the energy inside a DC microgrid consisting of multiple energy sources, a
power control scheme to reduce the revenue losses and improve the generation profile [24],
a power management algorithm implemented to ensure smooth output power [25], and
integration of a hydropower station to analyze the ramp rate and grid energy exchange [26].

The economic significance of hydro-wind-solar systems, such as the effect of grid
and CO2 costs on hydro-wind-solar systems [27], the role of the storage cost in hybrid
renewable energy systems [28], and the execution of existing hydropower as a substitute
for diesel generators [29], are analyzed in the literature. Several hydro-wind-solar system
studies accomplished techno-economic analysis with different approaches, such as renew-
able energy electrification considering seasonal variations [30], bi-objective optimization
with different loads [31], scenario based techno-economic analysis [32], and flexible plant
modeling considering various conditions [33].

New energy power generation needs to consider the coordination of wind and solar
energy. Strengthening energy storage and multi-energy complementarity is an effective
means to coordinate the operation of a power grid [34]. However, the energy storage system
is limited by factors such as safety, service life, and investment. Thus, it is difficult to support
the demand for large-scale new energy consumption. Due to the significant randomness
and volatility of new energy sources such as wind energy and solar energy, after large-scale
new energy power generation is connected to a power system, the controllability of the
supply side of the system is reduced, and the power system presents strong randomness
in both supply and demand [35,36]. This bilateral randomness will not only have an
impact on the security and stability of the power system, but it will also cause non-optimal
exploitation of the primary resources (i.e., wind and insolation) [37,38], and the problem
of new energy consumption is prominent [39,40]. As a power source that can flexibly
adjust the output of generator sets [41,42], hydropower plays a good supporting role in
the integration of renewable energy power generation in a grid [43,44], and with many
of the above examples using pumped hydro storage for energy management, PHS is a
useful method for storing a lot of electricity, but it has a high initial capital cost and needs
good terrain. A flexible, dependable, and efficient distribution and transmission system
is required, given the rising trend of employing intermittent energy sources [45]. Large-
scale hydro-wind-solar hybrid systems could make important contributions to the global
transition to low-carbon energy systems [46].

When reviewing the development of optimal scheduling of pumped hydro storage,
wind power, and solar PV systems for a grid-connected system, for exploring the possi-
bilities and opportunities to scrutinize the sequential progress of optimal scheduling in
hydro-wind-solar hybrid systems, the literature have been reviewed thoroughly. In order
to turn up the potentiality and exploration of possibilities in the near future as well as in
the future, a study based on the seven points mentioned below comprehensive analysis
can be outlined as follows:

1. The prediction of power generation is very important for the operation of hydro-
wind-solar hybrid systems. Wind and solar power generation is random and difficult
to predict accurately. The common methods of wind and solar power generation and
their advantages and disadvantages are summarized, and the general direction of future
forecasting technology is pointed out.

2. According to the error between the forecast and the actual power generation value,
the risk brought by the error is considered. To ensure the balance of the entire energy
system and avoid a large amount of wasted resources, risk management is essential.

3. After the preliminary work is completed, it is necessary to consider the unit
combination according to the relationship between the load and the predicted value. Be-
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cause hydro-wind-solar hybrid systems are more complicated than a general single power
station, it is necessary to determine the type of power plant that generates electricity and
the proportion of the power plants involved.

4. Energy complementarity is a feature of hydro-wind-solar hybrid systems. According
to the season, climate, and other factors, a reasonable water level control rule and a general
long-term power generation plan should be formulated by using the regulated power
storage capacity of hydropower.

5. In the face of changing loads and real-time weather conditions, optimization
methods are used to determine flexible short-term scheduling plans.

6. Challenges are faced by renewable energy hybrid system generation.
7. Near-future actions and assessment are explained.
The optimal scheduling problem of the hydro-wind-solar system should fully consider

important factors such as the operation mode of the power system, the optimal scheduling
objective, the optimal scheduling strategy, and the operation constraints. The optimal
scheduling problem of a water-solar system should fully consider important factors such
as the operation mode of the power system, the optimal scheduling objective, the optimal
scheduling strategy, and the operation constraints. First, optimal scheduling of power
systems is not limited to day-ahead scheduling unit commitment (UC), security-constrained
unit commitment (SCUC), intraday scheduling, real-time economic dispatch (ED), or
security-constrained economic dispatch (SCED) and also covers various fields such as
power flow calculation, operation optimization, and the power market. Therefore, optimal
scheduling is large-scale and complex work. Although the research in each branch area
has commonalities, the objective functions, constraints, and problems to be solved in
each branch area are quite different. Secondly, the operation of clean energy based on
hydropower and wind power is still in the exploratory stage at the practical level. Facing
a series of problems, such as the description and prediction of power generation law in
large-scale stations, risk management and coordinate operation were analyzed. Theoretical
and technological breakthroughs are urgently needed.

Numerous literature reviews on renewable energy generation dispatch have been
conducted but not specifically for hydro-wind-solar systems. This study aims to present
a systematic summary of the research methods and characteristics of a hydro-wind-solar
hybrid system. This might serve as a guide for researchers looking into the most recent
hydro, wind, and solar power generation technology, the direction of hydro-wind-solar
hybrid system research, and the viability of large-scale hydro-wind-solar hybrid systems.
To this end, this paper analyzes the development of clean energy. Section 2 briefly analyzes
the characteristics of typical practical projects. Section 3 summarizes the key issues of
hydro-wind-solar hybrid system optimal scheduling. Section 4 sorts out the research status
of hydro-wind-solar renewable energy generation scheduling optimization. Section 5
analyzes the important future development direction of hydro-wind-solar hybrid systems.

2. Hydro-Wind-Solar Energy System and Practical Engineering

As many economies look to reduce their reliance on highly polluting fossil fuels during
the energy transition, the penetration of clean energy has increased significantly [47–49],
with 28% of the world’s electricity coming from renewable sources in 2018, 96% of which
came from hydro, wind, and solar technology. Renewables are expected to collectively
increase their share to provide 49% of global electricity generation by 2050. In 2020,
the newly installed capacity of renewable energy in Asia reached 167.61 GW, and the total
installed capacity reached 1286.31 GW, ranking first in the installed capacity of renewable
energy in the past 10 years, and it is the fastest growing region in the world. The total
installed capacity in Europe ranks second in the world with 600.50 GW at the end of
2020. North America ranks third in the world in terms of total installed capacity, being
at 421.70 GW at the end of 2020 (Figure 2). In 2021, China’s newly installed renewable energy
capacity was 134 million kW, accounting for 76.1% of the country’s newly installed power
generation capacity. Renewable energy power generation has grown steadily, reaching
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2.48 trillion kW and accounting for 29.8% of the total electricity consumption of the whole
society. Figure 3 shows the highest potential countries for onshore wind and utility-scale
PV capacity by capacity factor tranches [50]. Table 1 shows recent results on an integrated
basis for hydro, wind, and solar power up to 2020. New progress has been made in clean
energy consumption.

Figure 2. Changes in the total installed capacity of renewable energy by continent from 2012 to 2021.

Figure 3. Highest onshore wind (left chart) and utility-scale PV (right chart) capacity potential
countries and the CF tranche breakdown.

Table 1. Installed capacity of hydro, wind, and solar power on an integrated basis by countries up
to 2020.

Base or Project Area River Basin Wind Power
(MW)

PV
(MW)

Xinjiang New Energy Base Xinjiang, China Burqin River 23,610 12,260
Qinghai Haixi New Energy Base Qinghai, China Upper Yellow River 8430 16,010
Yunnan Hydro-Wind-Solar
Comprehensive Development Base Sichuan, China Upper Jinsha River 4260 1910

Guizhou Hydro-Wind-Solar
Comprehensive Development Base Guizhou, China Yalong River 5800 10,570

Sichuan Hydro-Wind-Solar
Comprehensive Development Base Yunnan, China Lower Jinsha River 8810 3930

Southeastern Tibet Hydro-Wind-Solar
Comprehensive Development Base Tibet, China Lower Brahmaputra River, Upper

Salween River, Upper Lancang River 200 6000

Aşağı Kaleköy Santrali Turkey Aşağı Kaleköy - 80
Multi-Energie-Kraftwerk Sperenberg Kassel, Germany - 45 wind turbines 10
PHS-Integrated Hybrid PV-Wind
Power System Brack, Libya Pumped Hydroelectric Storage >5 >1
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The hydro-wind-solar hybrid power generation system can be roughly divided into
two categories: one is the integration of multiple energy forms in the grid, forming a
rich energy supply structure system, such as the EU Future Internet for Smart Energy
Project [51], EU Islands Project [52], Germany’s E-Energy Project [53], California’s electric
grid [54], Libya’s PHS-integrated hybrid PV-wind power system [55], and China’s Sichuan,
Hubei, Yunnan, Guizhou, and other places having large-scale installed capacity for three
types of power supplies, while the second is the hydro, wind, solar, and clean energy
bases for cascade utilization of river basins, such as the China Longyangxia Hydro-Solar
Hybrid Project [56,57], the Yalong River Basin Hydro-Wind-Solar Hybrid Project [58], the
Hongshui River Basin Hydro-Wind-Solar Hybrid Project [59], the Wujiang River Basin
Hydro-Wind-Solar Hybrid Project [60], and the Jinsha River Basin Hydro-Wind-Solar
Hybrid Project [61].

Taking the Yalong River Clean Energy Base as an example, The Yalong River Basin is
rich in wind and solar energy resources within 60 km between the two sides of the Yalong
River Basin. The water, wind, and solar resources are multi-complementary, and hydro,
wind, and solar power are seasonally complementary, while wind and solar energy can
form intraday complementarity during the day and night. With a total installed capacity
of 80 million kW, the base will become one of the largest green and clean energy bases
in the world, equivalent to four times the size of the Three Gorges Hydropower Station.
After the completion of comprehensive development, it can contribute 220 billion kW·h of
clean electricity per year, which is equivalent to saving about 120 million tons of raw coal
consumption and reducing carbon dioxide emissions by about 230 million tons.

However, the problem of integrated hydro-wind-solar consumption dominated by
the river basin has been prominent for a long time. Solar energy and wind energy have
intermittent and uncertain characteristics, and hydropower has characteristics such as wet
seasons and dry seasons, which affect the stability and power quality of the system. How
to effectively coordinate the power generation plan of large-scale hydropower, controllable
power supply, and uncontrollable wind and solar power stations, overcome the difficulties
of prediction, control, and dispatch, and ensure the safe and reliable operation of the system
have become the main challenges for China Southern Power Grid in implementing a water-
solar multi-energy hybrid system. The solution to this problem is crucial for expanding
the scale of clean energy and the quality and utilization efficiency of new energy power
generation in the later stages.

3. Key Issues in Optimal Scheduling of Hydro-Wind-Solar Hybrid Systems

In order to establish a hydro-wind-solar hybrid system (Figure 4), the control of
multiple power sources and the coordination and real-time scheduling between multiple
power sources must be solved. This section summarizes the key issues of scheduling
optimization of a hydro-wind-solar hybrid system. The realization of a multi-energy
complementary system first needs to pay attention to the form in which dozens or even
hundreds of wind and solar power plants participate in power generation scheduling,
how to predict and describe their power generation laws, and the risks brought about
by their uncertainties, in addition to to paying attention to the coordinated operation of
hydropower stations and large-scale wind power stations on multiple time scales.

3.1. Prediction and Description of Wind and Solar Power Generation

Affected by the natural environment, climatic conditions, and geographical space,
wind speed and light intensity have great variability and uncontrollability in time series,
resulting in strong volatility, intermittent, and uncertainty in the time and space distribution
of wind power and photovoltaic power generation [62–66]. How to accurately predict
and describe the output law of wind and solar power plants is one of the core issues in
promoting new energy consumption and speeding up the development and operation of
multi-energy complementary, involving the identification of power generation-influencing
factors [67–70]. There are many factors that affect the output power of wind and solar
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power generation systems. If each influence is considered, then this will increase the
complexity and difficulty of prediction. It is necessary to accurately analyze the factors that
are closely related to the output power and find the corresponding relationship to construct
a mathematical index so as to provide a premise for the prediction of wind and solar power
generation. Accurate renewable power generation forecasting is very important for the
scheduling optimization of hydro-wind-solar hybrid systems. The problems of medium-
and long-term forecasts and uncertainty are currently intractable. How to reasonably select
and improve the corresponding forecasting methods for different loads to ensure energy
output efficiency is still an issue worthy of in-depth discussion.

Figure 4. Schematic of a hybrid wind-PV-hydro power generation system.

3.2. Risk Management of Hydro-Wind-Solar Hybrid Systems

Due to the uncertainty of wind and solar power generation, large-scale direct grid
connection of new energy will disrupt the balance of a power system and cause a serious
impact on the power grid. Quantifying the uncertainty of the output of water, wind, and
photovoltaic power generation can allow one to directly analyze the characteristics of
power generation or study the error law of the predicted output [71]. Uncertainty is very
important in the operation of a hybrid energy system, and the uncertainty of a hybrid
energy system is basically considered in the usual research [35,72], but the risks brought
by uncertainty are mostly ignored. Hydro-wind-solar hybrid systems often face risks such
as load curtailment, no water for power generation at the end of the dry season, power
curtailment, output shortages, and spilled water [73–76].

The power balance of the power system is the basis for stable operation of the power
grid. However, the starting, stopping, and changing of power sources and loads, as well
as the interruption of transmission lines, can lead to power imbalances in the grid. When
the power grid is unbalanced, the voltage and frequency fluctuate, which may cause the
grid frequency and node voltage to exceed the limit and even cause serious accidents such
as grid oscillation and disconnection. When power is redundant, generation shedding is
a proven method for controlling the power system and returning to stable operation [77].
In a power system with high penetration rates of wind power and photovoltaic power,
wind and photovoltaic shedding are gradually applied to maintain the power balance of
the power system. In a power system with high penetration rates of wind power and
photovoltaic power, both are also gradually applied to maintain the power balance of the
power system. When the power is insufficient, because the short-term power boosting
capacity of the synchronous generator is limited, the load shedding method is often used
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to balance the power [78,79]. However, generation shedding is not conducive to the
restoration of the power grid, and the reconnection of generators to the grid may also cause
shocks. Load shedding has economic and reliability problems, and increasing the reserve
capacity of synchronous generators can reduce load shedding. However, its cost is high,
especially in a power system with a high proportion of new energy. The installed capacity
of synchronous generators has difficulty meeting the demand for a reserve. Accordingly, it
is of great practical significance to ensure the effective management and control of risks
while maximizing the benefits by using new energy to connect to the grid and adjust in a
random environment.

3.3. Optimal Dispatching of Hydro-Wind-Solar Hybrid Systems

The power station of the water-solar hybrid system has a large scale, and the power
generation scheduling of large-scale power station groups faces both technical problems,
such as unified management and maintenance of massive operation information, as well
as basic theoretical problems, such as the accuracy of large-scale system optimization
modeling and calculation efficiency. However, with a single power station as the control
point, the interactions of direct dispatching of instructions will greatly affect the power
generation dispatching model’s construction and solution efficiency, and it is difficult
to accurately control the power generation law, which also brings great uncertainty to
the power generation planning and dispatching operation of a power grid. In this case,
cluster scheduling of power stations is an effective way to reduce the number of directly
dispatched power stations [80], but how to determine the appropriate number of clusters
and the power stations they contain is the main problem faced by this method. The specific
cluster division method is closely related to the actual engineering characteristics, such
as power supply composition, and the installed capacity, as well as the power generation
characteristics, so practical and effective methods are needed.

The key to the complementary operation of hydro and wind power lies in that the
reservoir has the regulation and storage capacity and hydropower has strong regulation
properties [81,82]. The power transmission characteristics of hydropower at “non-peak
regulation” and “anti-peak regulation” will increase the difficulty of peak regulation and
trough consumption pressure in a power grid. Therefore, how to rationally utilize the
storage capacity of a reservoir will be directly related to the long-term operation effect and
efficiency of a complementary system [83]. In this operation mode, not only should the
uncertainty of the flow be considered but also the short-term flexibility adjustment needs
and long-term power consumption needs of wind and solar power. Reconstructing the
long-term operation mode of the main stream cascade-controlled reservoir group and the
water level control rules of the key nodes before and at the end of the flood season is another
key problem in the complementary operation of water and wind power. The essence is a
stochastic optimization problem of large-scale multi-type power station groups under the
conditions of long, medium, and short multi-time scale coupling, runoff, and wind and
solar power generation with multiple uncertainties. Compared with the scheduling rule
optimization of a single-type hydropower system, this is more complex and difficult. It is
necessary to explore innovative ideas and solutions in model construction.

When the proportion of new energy installed reaches a certain degree, the influence of
power fluctuations increases significantly in the power grid load trough and peak periods,
which increases the demand for flexible adjustment of day-ahead and real-time dispatching.
This aggravates the difficulty of power balance in the whole cycle and the pressure of
power grid peak shaving and frequency modulation [84], which can easily cause the
problem of system stability [85]. From the perspective of short-term operation, the problem
of hydro-wind-solar complementarity and coordination is prominent. On the one hand,
the complementarity between hybrid energy sources cannot be ignored [86]. It is necessary
to consider the uncertainty of wind and solar power generation to accurately describe the
flexibility adjustment requirements of the system [87] (i.e., how much adjustable capacity
is needed to stabilize the fluctuation of new energy output). The flexibility index and its
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characterization method need to be studied. On the other hand, it is necessary to study the
day-ahead joint dispatch model and real-time coordinated control strategy of large-scale
new energy and adjustable hydropower stations, considering the target requirements of
system flexibility, new energy consumption, etc. to realize the efficient solution of the
model and determine day-ahead and real-time start-stop methods and the output plans of
a complementary system and its units.

Essentially, multi-energy coupling makes the operation of hydro-wind-solar hybrid
systems more complicated and increases the complexity of decision making during system
operation, such as the increase in the dimension of decision variables, multiple constraints
on optimization problems, and possible non-convex nonlinearity. In the scheduling of
hydro-wind-solar hybrid systems especially, the analysis and finding solutions to the
problem will become more difficult. The design of an energy scheduling framework under
multi-energy technology, the physical constraint modeling of multi-energy scheduling,
the establishment of a multi-energy elastic demand characteristic model, and the solution
of non-convex nonlinear energy scheduling optimization problems have become challenges
for the operation research of hydro-wind-solar hybrid systems.

4. The Research Status of Power Generation Scheduling Optimization for Hydro,
Wind, and Solar Renewable Energy

As mentioned above, prediction and description, risk management, multi-time scale
scheduling, and other problems need to be considered in the power generation of a hydro-
wind-solar hybrid system. Figure 5 gives an overview of the current research situation.
Table 2 lists the main research methods in the prediction and description of wind and solar
power generation, the risk management of a hydro-wind-solar hybrid system, and the
scheduling optimization of a hydro-wind-solar system. This section will introduce the
research status of power generation in a hydro-wind-solar complementary system.

Figure 5. General overview of research status.
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Table 2. Research status of optimal scheduling for hydro-wind-solar renewable energy complemen-
tary system.

Research Contents Important Methods and Indicators

Prediction and
description of
photovoltaic-wind
power generation

Generation impact factor
identification

Unit factor,
meteorological factor /

Prediction approach
selection

Physical Physical output model [88,89]
Statistical Time series method [90], fuzzy prediction [91]
Artificial intelligence Backpropagation [92], radial basis function [93]

Risk management of
hydro-wind-
photovoltaic
complementary
systems

Uncertainty quantitative
analysis Uncertain optimization Robust optimization [94], stochastic

optimization [95], polyhedral set

Assessment
method

Analytic method Fault tree analysis [96], state space method,
network method

Simulation method Monte Carlo method [97], state selection
method, Latin hypercube sampling [98]

Other methods Risk-averse decision making [99], stochastic
optimization method

Optimal scheduling
of hydro-wind-
photovoltaic
complementary
operation

Cluster
scheduling

Cluster division

Index of cluster structure strength: correlation
degree within the cluster, correlation degree
between clusters, cluster internal connectivity,
cluster scale, modularity
Index of cluster autonomy: active and reactive
power regulation capability, voltage sensitivity,
supply and demand matching degree
Multi-objective optimization

Long-term
scheduling

Scenario simulation
Discretization of continuous probability
distribution, auto-regressive moving
average model

Scenario reduction Method of forward selection,
clustering algorithm

Short-term
scheduling

Flexibility evaluation
Source side: gradeability, boot time, response
time, optimal start-stop time, output
steady state
Load side: net load ramp rate
Flexibility of power system

Optimization criteria Clean energy consumption criterion: minimum
curtailed electricity, energy maximization
Benefit criterion: minimum operating cost,
maximizing generation profit, minimum
network loss, maximum environmental benefit
Stability criterion: minimum output
fluctuation, minimum voltage deviation,
load follow

4.1. Research Status of Wind and Solar Power Generation Forecasting and Description

The prediction methods of wind and solar power generation can be divided into phys-
ical methods, statistical prediction methods, and artificial intelligence methods according
to principle (Figure 6). The former comprehensively considers the surrounding terrain
information, related physical information, and system power curve data of the wind and
solar power generation system. Then, it takes the meteorological forecast data as impor-
tant input, uses physical equations for prediction, and establishes a mapping prediction
model of the wind and solar power generation, wind speed, and light intensity [100–104].
The output model of the photovoltaic system based on the physical model can be described
as follows [88]:

pPV = ηSPV I(1− 0.005(Tout + 25)) (1)

When the photovoltaic panel area SPV (m2) and energy efficiency η are constant,
the photovoltaic output pPV (kW) is mainly determined by the solar radiation intensity I
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(kW/m2) and the outdoor ambient temperature Tout (°C) at that time. For wind turbines,
the physics-based output model can be described as follows[89]:

pWT =


0, vh 6 vci, vh > vco
c1 + c2vh + c3v2

h, vci 6 vh 6 vr
pr, vr 6 vh 6 vco

(2)

where vci and vco are the cut-in and cut-out wind speeds, respectively, vr is the rated wind
speed, pr is the rated power, and the wind turbine output pWT is mainly affected by the
current wind speed.

Compared with the physical method, the statistical prediction method correlates the
historical operation data of wind power and photovoltaic power stations with historical
meteorological data and conducts statistical analysis of their correlation, based on which
the mapping relationship between wind and photovoltaic generation power and the meteo-
rological data is established [105–108]. Common examples include traditional statistical
methods represented by time series methods, modern statistical forecasting methods repre-
sented by artificial neural networks, and fuzzy forecasting methods. The time series method
uses a set of basic data of wind and solar power generation to form a digital sequence in
chronological order, which is processed by mathematical statistical methods to realize the
forecasting of future wind and solar output, such as the autoregressive integrated moving
average (ARIMA) [90]. The time series of wind and solar power generation has a seasonal
change trend, and a seasonal difference transformation can be applied to it.

A seasonal difference operator ∇S = 1− BS is introduced, where ∇D
s =

(
1− BS)D

with S as the period. Then, the seasonal ARIMA model is

ϕ(B)φ(Bs)∇d∇D
s yt = θ(B)Θ(Bs)at (3)

where ϕ(B) is a p-order autoregressive process, φ(Bs) is a p-order autoregressive model,
θ(B) describes a Q-order moving average process, Θ(Bs) is a q-order moving average model
to explain periodic factors, B is a hysteresis operator, and at represents an uncorrelated
stationary process with a mean value of zero.

Figure 6. Prediction method classification of wind and PV power output.

In addition to autoregressive models, there are also studies based on the Markov
chain model, Kalman filter (KF) model, data mining, wavelet transform, etc. for power
generation prediction. The authors of [109] first assumed that a short-term change in wind
speed is a stationary process and has Markov properties. By discretizing the historical
state and calculating the state transition matrix, the future wind speed state is predicted
according to the Markov property, and the predicted value of the wind speed is estimated
according to the empirical wind speed distribution. Kalman filtering can be regarded as
an autoregressive data processing method and does not require a stationarity assumption,
so it is very effective for new energy power generation forecasting. Since 1985, wind
power forecasting based on a Kalman filter has been studied [110]. The authors of [111]
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provided more accurate wind speed forecasts for both onshore and offshore wind data by
combining the ARIMA and KF techniques to obtain wind data on hills, offshore, and in
other regions. The research results in this area are very important for a system to build
a multi-energy complementary theory and method system. It is still necessary to combine
the engineering characteristics of hydro-wind-solar hybrid systems of different scales
and different compositions as well as the application requirements of actual dispatching
scenarios and learn from the existing achievements at home and abroad to carry out
adaptability research and constantly refine and summarize the results.

Artificial intelligence prediction (such as through neural networks, a biological in-
telligence algorithm, etc.) is a hot topic in hydro-wind-solar power prediction [112,113].
Among these methods, the artificial neural network (ANN) has been widely used in the
field of prediction in recent years [114–116] (see Equation (4) for its mathematical expres-
sion). The ANN is one of the most mature artificial intelligence algorithms at present. It
is a large-scale distributed processing system that simulates the information processing
mechanism of the human brain and has a remarkable effect on solving complex nonlinear
problems [117]. ANNs mainly include the backpropagation (BP) neural network, radial
basis function (RBF) neural network, and so on. The BP neural network is the most widely
used neural network at present. It has high self-learning and self-adaptive abilities, but the
selection of feature inputs and the composition of the sample space often lack consistency.
The essence of artificial neural network prediction is to use mathematical analysis to estab-
lish a mathematical model and simulate the characteristics of animal neural networks, as
well as train it repeatedly through distributed parallel information processing operations,
continuously adjust the connection mode and weight of each node in the artificial neural
network, and finally achieve the purpose of predicting and processing information:

ŷ(xt) =
∫
(xt; ω) (4)

where ŷ(xt) is the output variable or the predicted object. In deterministic prediction, it
is estimated as the expected value of the prediction, and it can also be in the form of
probabilistic prediction results, such as quantiles. Meanwhile, xt is the input variable, and
ω is the parameter in the neural network, mainly including weight and bias.

In addition, other neural network methods are also used in power prediction. For ex-
ample, in [118], a generative adversarial network (GAN) was applied to the scene genera-
tion of wind and solar power generation for the first time, where it could better simulate
the probability characteristics of day-ahead wind and solar power. However, its main
structure is two-dimensional convolution, which may make it difficult to fully characterize
the time series characteristics and key output events of wind and solar power, and thus it
cannot be directly used to simulate the monthly wind power with more high-dimensional
and complex time series characteristics. Ghoushchi et al. predicted a wind power plant’s
power output using weather and power plant parameters and employed an extended fuzzy
wavelet neural network (FWNN), achieving higher precision for short-term wind power
forecasting [119].

4.2. The Research Status of Hydro-Wind-Solar Hybrid System Risk Management

Risk is a comprehensive measure of the probability and severity of uncertain operating
scenarios. For quantitative analysis of uncertainty, through the uncertainty set, we can use
the method of describing the uncertain factors in the robust optimization theory to construct
a robust optimization model, and the construction method of the wind power’s uncertain
set can be given [120–122]. By adjusting the boundary of the uncertain set, the conservative
type of the robust optimization model can be controlled to realize the economy and safety
balance of decision making. The polyhedron set in the robust optimization method can also
be used to describe the uncertainty of the wind power output, and a robust conservative
regulation factor is introduced to reduce the conservatism of problem solving. It should be
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noted that the key point of constructing the output uncertainty set is how to select a robust
set to ensure the rationality of the decision results [123–126].

In practical running, hydro-wind-solar power systems should face various uncer-
tainties, such as routine overhauling or unit failure under natural disasters. Aside from
that, these faults show multi-dimensional uncertainties in occurring objects, periods, and
durations. In order to reasonably portray the uncertain operating states of components
in unexpected outages or failures, discrete state uncertainty sets have been constructed
for different fault uncertainties in hydro-wind-solar power systems [127]. Figure 7 dis-
plays the traditional methodologies frequently applied in power optimization problems
under uncertainty.

Figure 7. Uncertainty modeling techniques.

The risk management system of the hydro-wind-solar hybrid system can be established
under the framework of “risk identification–risk assessment–risk control”. The role of risk
identification is to identify various uncertain factors and potential safety hazards faced
by the power grid, collect data related to system load, and evaluate the impact scope of
hydraulic power, wind speed, and photovoltaics based on micro-meteorology.

The role of risk assessment is to evaluate the predicted power grid security risk
level and find the values of all kinds of operation risk indicators. Different from the
reliability assessment methods generally applied in the planning stage, risk assessment
is generally used in the real-time operation stage [128], and the main evaluation methods
are the analytical method and simulation method. Among them, the analytical methods
mainly include the fault tree analysis method, state space method, and network method.
The basic principle of the analytical method is to idealize the running process of the system,
describe the running process of the system with a mathematical model and then solve the
model. Finally, the required risk index is obtained.

The main advantages of the analytical method are that the physical concept is clear
and the calculation speed is fast, so it is generally suitable for small-scale systems, and it
is difficult to apply to large power systems with multi-energy sources. The simulation
method belongs to the category of stochastic optimization, which can directly study the
power distribution characteristics of hydro, wind, and photovoltaic power to help par-
ticipate in the load-side assessment. Common simulation methods include the Monte
Carlo method [97], Latin hypercube method [98], and state selection method. The typical
representative is the Monte Carlo method. According to whether the timing of the simu-
lated events is considered, the Monte Carlo simulation method can be divided into two
modes: non-sequential simulation and sequential simulation. In the large-scale application
of non-sequential simulation, the sampling efficiency and convergence speed of Monte
Carlo simulations are generally improved by reducing the sample variance. In practice,
the duration of each state of the reservoir, wind turbine, and photovoltaic panels is ran-
dom, so it is necessary to consider the limitations of applying sequential simulation to a
multi-state model. The limited samples obtained by the Latin hypercube method can de-
scribe the distribution of variables more accurately. Then, according to the predicted wind
and photovoltaic power generation and the simulated prediction error, a set of wind and
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photovoltaic power generation scenarios which can describe the uncertainty of prediction
are generated [129] (see Equations (5)–(7)):

Nh = Nh
f + eh (5)

Nw = Nw
f + ew (6)

Np = Np
f + ep (7)

where Nh
f , Nw

f , and Np
f are the predicted hydro, wind, and photovoltaic power outputs,

respectively, and eh, ew and ep are the forecast errors of the hydro, wind, and photovoltaic
power outputs simulated by the Latin hypercube method, respectively.

On the basis of risk identification and assessment, the probability or severity of the
risk can be reduced by implementing a risk-based control program. Figure 8 shows the
schematic diagram for the operation scheme of wind-solar-hydro power while consider-
ing the risks. In addition, risk-averse decision making [99] and stochastic optimization
methods [128] are also common methods for dealing with uncertainty in the investment
and management of hydro-wind-solar hybrid systems. For example, Columbia scholars
expressed the short-term power balance as a probability constraint, optimized a long-term
operation plan based on risk aversion, and greatly simplified the uncertainty of hydro,
wind, and photovoltaic power and load to improve the calculation efficiency and the safe
operation of the system [130]. Mazidi et al. presented a risk-averse decision-making tool to
guide the short-term operation of a distribution network operator that considered uncer-
tainties including wind generation, load demand, and electricity’s price [131]. Xiao et al.
established a risk-averse multi-objective optimization model to enhance the risk control
ability of a distribution network and further increased the penetration of renewable energy
in a power grid [132].

Figure 8. Schematic diagram for the operation scheme of wind-solar-hydro power considering risks.

4.3. The Research Status of a Hydro-Wind-Solar Hybrid System’s Dispatching Optimization

The cluster management mode of renewable energy power generation has its own ad-
vantages in solving large-scale renewable energy access and local consumption. The cluster
management mode has the characteristics of “weak coupling between groups to division of
labor and strong connections within groups to cooperate”, which can improve the stability
of the hydro-wind-solar hybrid system and the simplicity of scheduling [133,134]. Based
on this feature, the cluster division index is usually based on electrical distance, describing
the degree of coupling between nodes and focusing on the coupling of the cluster and
the utilization of the internal power supply of the cluster, such as the index reflecting



Energies 2022, 15, 8747 15 of 31

the strength of the cluster structure and the index reflecting the autonomous ability of
the cluster.

In addition, while considering the power quality, the economic related index is
also an important factor that cannot be ignored. Based on the above-mentioned indi-
cators, the cluster division criteria can be further constructed, and the constraint method
and weighing method are generally used to convert multi-objective optimization into a
single-objective optimization problem solution or establish a multi-objective programming
model [60,135–139]. The multi-objective optimization method is used to solve the problem
directly (see Equation (8) below):

max / min f (x) = max / min[ f1(x), . . . , fM(x)] (8)

where x =
[

x1 x2 · · · xn
]
∈ S is the decision variable and S is the n-dimensional

decision space. When M = 1, the above is a single-objective optimization problem, and
when M > 1, the above is a multi-objective optimization problem.

At present, multi-objective optimization methods are mainly metaheuristic methods,
which use the concept of the Pareto principle to obtain trade-off solutions, namely Pareto-
optimal solutions. Katsigiannis et al. [140] developed a multi-objective optimization model
to generate a Pareto front and minimize the total cost of energy and total greenhouse
gas emissions of an HRES during its lifetime by using a non-dominated sorting genetic
algorithm (NSGA). An optimization problem using PSO to solve the PV-wind capacity
coordination for a time-of-use rate for industrial users was introduced in [141] with the
aim of maximizing the economic benefits of investing in wind and PV generation systems.
Metaheuristic methods, such as genetic algorithms (GAs), particle swarm optimization
(PSO), and evolutionary algorithms (EAs), have gradually become effective tools to solve
multi-objective optimization problems due to their good convergence and search per-
formance. The use of metaheuristics for the planning of hydro-wind-solar systems can
effectively overcome the limitations of traditional algorithms and achieve the simultaneous
optimization of multiple objectives in solving problems.

The complementary coordination of hydro, wind, and solar energy can be analyzed
from two aspects: one is the coordination and optimization of multiple types of power
sources on a long-term scale, and the other is the short-term joint operation optimization
of multiple energy sources. Figure 9 shows the methodology for dispatching rules for the
hydro-wind-solar complementary power system.

In fact, under the condition of high permeability of renewable energy connected to
the grid, the net load (the load obtained by the electricity load without the output of new
energy) fluctuates most obviously during the month. It is important to carry out long-term
analysis and research on the water-solar hybrid system. This research has also attracted the
attention of scholars (Table 3).

On the one hand (the first category), the input of the hydro-wind-solar dispatch model
includes uncertain runoff, wind energy, and solar energy, which is a stochastic optimiza-
tion problem under multiple uncertainties (see Equation (9)). How to establish a suitable
stochastic dispatch model and how to construct an efficient solution algorithm is the fo-
cus and difficulty of this research. Many studies use scenario simulation to describe the
output scenarios of wind and solar power generation [142–145], determine quarterly or
monthly representative scenarios of wind and solar power generation, and serve as the
boundary conditions for the optimal operation of hydropower stations and reservoirs in
the complementary system. Deterministic or stochastic optimization techniques are used
to reconstruct power plant dispatching and operation rules. Based on a long series of
actual operating data, scene generation methods such as continuous probability distri-
bution discretization [146] and the autoregressive moving average (ARMA) model [147]
are adopted:

max
S

∑
s=1

Prs ·
{

T

∑
t=1

(
dt ∑N

n=1 Ps,n,t · ∆t−
dtEcurt

s,t − dtEshort
s,t

)}
(9)
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where Prs is the probability of scenario s, dt is the electricity price of a period t, Ps,n,t
represents the average output of the power station n in the period t under scenario s, ∆t is
the length of each time, Ecurt

s,t is the additional power generated by the system compared
with the planned generation, and Eshort

s,t represents the shortage of power generated by the
system compared with the planned generation.

Figure 9. Dispatching rules for the hydro-wind-solar hybrid system.

On the other hand (the second category), some studies directly construct a description
method for the multiple uncertainties of water, wind, and light or predict the output of
new energy and analyze the prediction error by using the predicted output and fluctuation
interval as the system input to establish a system with the maximum total benefit, mini-
mum abandoned power, and minimum water consumption [148,149]. At the same time,
the research on the solution algorithm of this complex model was carried out, and a multi-
stage and sub-module solution method was proposed [150,151]. Some scholars found
another way to combine intelligent algorithms to make up for each other’s shortcomings
and improve the efficiency and accuracy of the solution.

In fact, the hydraulic connection leads to multi-scale coupling and influence in the long-
term and short-term of the hydro-wind-solar hybrid system, and the mid- and long-term
power coordination results of hydropower are usually an important basis for determining
the boundary conditions of short-term complementary operation. Therefore, it is very
meaningful to establish a multi-time scale dispatch model to realize the optimal dispatching
of a power grid from multiple time levels.

The short-term optimal scheduling of a hydro-wind-solar hybrid system is mainly
studied from two aspects: flexibility evaluation and the short-term complementary operation
strategy of hydro, wind, and photovoltaic power. The objects of power system flexibility
evaluation (see Equation (10)) can be divided into the power supply side, load side, and
system flexibility. The evaluation indexes of power-side flexibility include the climbing
capacity, minimum start-stop time, start-up time, response time, and minimum stable
output, which are mainly used to compare the flexibility adjustment capacity of different
resources and are often used as input parameters for the dispatching model. The load-side
flexibility evaluation index includes the net load ramp rate and ramp acceleration, which
is mainly used to analyze the characteristics of the load curve and quantify the flexibility
demand. The system flexibility evaluation index has the flexibility insufficiency probability
and expectation, which can also be subdivided into the upregulation flexibility insufficiency
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probability and expectation and downregulation flexibility insufficiency probability and
expectation, which are mainly used to evaluate the overall flexibility level of the system.

Table 3. Summary of reviewed articles to show the status of long-term scheduling.

Type Ref. Solution Outcomes Remarks

The first
category [139] GFM-MOEA Maintained calculation accuracy and

reduced problem dimensions
Enhanced the reliability of the risk- informed
complementary operation strategy

[146] SDP, Fortran
90

Improved the long-term complementary
operation The results of operations are relatively rough

[152] CPLEX Determined the optimal working position
and capacity of each power plant

Provided guidance for mid-to-long term
dispatching

[153] GLPK Found a key constraint in systems with
high penetration of renewables

The uncertainty of new energy output and
input data is not considered

[154] NSGA-II Proposed model optimizing both quality
and quantity of hydro and PV power

Analyzed the complementary operations in
different typical years

the second
category

[57]
Dynamic
programming
technique

Maximized the total generation output
and system reliability

Explored the long-term operating rules
required for a hydro-PV system

[86] Solver Trade-off effects and influencing
mechanism identified

Operation behaviors under multiple
uncertainties should be investigated

[150] MOCS No conflict between maximizing energy
production and power supply reliability

Represented short-term constraints in
long-term energy models

[151] DP Estimated the expected net revenue of the
PV plant

Optimized the size of a PV plant using
cost–benefit analysis and considered
variations in downstream water level

[155] Solver Proposed a model for decision making in
electricity market

The extension should focus on rolling
optimization with updating the forecasting in
different time scales

[156] PVGIS
platform

Assessed hydrological and solar
irradiation information on a monthly scale

Examined the degree of time
complementarity between small hydropower
stations and PV systems

The wind-solar complementary short-term scheduling model is mainly divided into
two categories. The first category is using the uncertainty description method described
above to describe the output of wind power and photovoltaic power [157] and then couple
it with conventional power sources such as hydropower to construct a joint scheduling
model. The optimization criteria of the model usually include three aspects: the first is the
clean energy consumption criterion [158], the second is the benefit criterion [159], and the
third is the system’s stable operation criterion [160]. The second category is realizing the
joint dispatching of wind and solar power stations and adjustable power sources through
constraints, which is usually described as reasonably scheduling constraints to optimize
the operation plan of complementary regulatory power sources such as hydro-wind-solar
power. The common method is to allocate a reasonable reserve capacity according to the
fluctuation in prediction error to ensure the power balance in real-time operation and to
borderize the uncertainty problem:

SUR
t = ∑S

s=1

(
DUR

s,t − CAUR
s,t

)
Prs

SDR
t = ∑S

s=1
(

DDR
s,t − CADR

s,t
)

Prs
(10)

where SUR
t is the expectation of insufficient flexibility upregulation, which refers to the

expectation of the difference between the demand for flexibility and the capacity for
flexibility due to insufficient capacity at time t, SDR

t is the expectation of insufficient
flexibility downregulation, which refers to the expectation of the difference between the
flexibility adjustment demand and the flexibility adjustment ability caused by an insufficient
adjustment ability at time t, DUR

s,t and DDR
s,t represent the flexibility to adjust to demand, and
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CAUR
s,t and CADR

s,t denote the flexibility upregulation ability and flexibility downregulation
ability, respectively.

In the complementary joint operation of hydropower, wind power, and solar power,
hydropower stations, wind farms, and photovoltaic power stations are operated and man-
aged as three different stakeholders. Distributed optimization is very important for solving
multi-energy coupling optimization problems. It has the advantages of saving comput-
ing resources and ensuring user information security. Common distributed optimization
algorithms include the dual method, consistency method, and alternating direction of
multipliers method (ADMM). At present, the ADMM only has a theoretical convergence
guarantee for solving two-block or three-block coupled convex optimization problems,
and its convergence rate is also very sensitive to the penalty parameters. Therefore, the im-
proved ADMM has also received a lot of attention and research, such as the fast ADMM
and adaptive ADMM.

These research results can be summarized as two types: (1) studying the joint dispatch-
ing strategy from the perspective of a power generation company [40,161–163], which aims
to minimize the power output fluctuation or maximize the generation revenue of the hybrid
system, and (2) studying the coordinated dispatching of the whole power system [164–167],
including renewable energy sources, with the aim to increase the penetration of renewable
energy sources, minimize the system operation cost, or reduce the probability of power
supply loss through the complementarity of hydropower and other renewable energy [168].
Table 4 summarizes the short-term optimal scheduling outcomes, solutions, and critical
remarks of hydro-wind-solar hybrid systems based on the above classifications.

Table 4. Summary of reviewed articles to show the status of short-term scheduling.

Type Ref. Solution Outcomes Remarks

The first
category [90] ARMA Maximized the power generation Ensured more reasonable power

transmission planning

[163] GCH Proposed a double-layer model The distinct constraints and the operating
errors should be considered

[162] ARMA Established a coordinated model in the
energy and ancillary service markets Increased the expected benefits for the system

[40] MOCS Increased the power generation and
decreased the power output fluctuation

The uncertainty of new energy output and
input data is not considered

[157] GA The uncertainty of new energy output and
input data is considered The solution process needs to be strengthened

[137] NSGA-II The Pareto frontier of power generation
and output fluctuations is obtained

The complementary role of hydropower in
the coordination is discussed

[161] Solver Improved the stability of power output
for hydro-wind-solar systems

The required hydropower compensation
capacities in different quarters are discussed

the second
category

[36] Gurobi 6.5 Minimized the system operation cost Derived relatively stable operation cost in the
presence of uncertainties

[167] MATPOWER Minimized operating costs for the
hybrid system

Tracked wind-photovoltaic power’s and load
demand’s effective variations

[165] GAMS Optimized the electricity generated by
each reservoir

Damped the fluctuations of renewable
energies and minimized energy cost

[164] Three-stage
algorithm

Minimized the operating cost and
renewable energy loss of the power

Summarized specific scheduling strategies in
different natural scenarios

[166] Solver 85% of the cost benefits of the optimal
grid expansion can be captured

Grid bottlenecks inside each country are not
considered in the model

The modeling and solving ideas of multi-energy complementary optimal scheduling
can be divided into two categories: (1) solution methods based on a linear model [169–171]
and (2) solution methods based on a nonlinear model [172–174]. Among them, the solv-
ing methods based on nonlinear models, such as the particle swarm optimization algo-
rithm [175], genetic algorithm [176,177], and differential evolution algorithm [178], have
the advantage of high modeling accuracy, but the algorithm has weak convergence, a
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slow solution speed, and high dependence on specific solvers. The effectiveness of the
algorithm requires the modelers to be highly skilled, which will cause the model to be less
versatile. On the contrary, a linear model needs to linearize the device in the modeling
process, sacrificing the accuracy of the model for its solving speed. This kind of model
has many mature solvers, such as the commercial solvers Cplex, Gurobi, and Mosek, and
open-source solver such as Scip, GLPK, and Lpsolve. These solvers encapsulate the solving
process such that the scheduler does not have to pay attention to the solving process and
can concentrate on the construction of the model. Therefore, the linearized model is still the
mainstream of industrial applications, such as microgrid [179], a park-integrated energy
linear programming model.

5. The Prospect of Power Generation Scheduling Optimization for Hydropower, Wind,
and Solar Renewable Energy

The previous section introduced the current situation of power generation in a hydro-
wind-solar hybrid system, and this section analyzes and looks forward to the hydro-wind-
solar hybrid operation problems summarized above.

5.1. The Prospect of Wind and Solar Power Generation Forecasting and Description

A single forecasting method has advantages in dealing with specific forecasting prob-
lems, while the random volatility of new energy power systems puts forward higher
requirements for the generalization performance of forecasting methods. The combination
method based on multiple forecasting models can integrate the advantages of multiple
methods and realize the flexible application of multiple scenarios [180]. The combination
forecasting method refers to the forecasting method formed by the weighted combination
of physical methods, statistical methods, artificial intelligence methods, and other different
forecasting methods based on the characteristics of photovoltaic power data and meteoro-
logical data. The combination forecasting method can maximize the prediction advantages
of each single forecasting method and improve the forecasting accuracy of wind energy
and photovoltaic power.

The types of combinations are generally as follows. First, there is combined prediction
of the physical forecasting method and statistical forecasting method. The weather forecast
information is first obtained based on a numerical weather forecast and then processed and
selected. Finally, the needed data are sent to the statistical forecasting model established by
historical data training to predict the power output. Second, there is combination forecasting
of multiple statistical forecasting methods. Its essence is to combine the weights of multiple
single forecasting methods. First, two or more single prediction models are selected
through error analysis, and the constraint objective function is established according to the
optimal weight allocation rule. Then, the weight coefficients of each forecasting method
are obtained by realizing the optimal solution under the constraint conditions. Finally,
the combination forecasting model is formed by superposition. The third type is the
comprehensive application of different artificial intelligence technologies, such as fuzzy
inference adaptive neural networks for ultra short-term wind energy prediction, where a
genetic algorithm used to train the model of fuzzy wind speed, light intensity, and wind
power. To a certain extent, the comprehensive use of various methods can improve its
convergence speed and solve problems such as local minimization.

At present, the prediction model is mainly the classical network structure, which has
the potential to improve the prediction accuracy. The network structure optimization of
the prediction model needs to be further explored to improve the accuracy of the algo-
rithm. The temporal and spatial scales of the data used in the research are mostly small.
The subsequent research can collect photovoltaic and wind power data with a larger time
range, more spatial distribution, and unstructured data by arranging experimental platforms
in multiple regions to achieve more universal photovoltaic and wind power output power
prediction. Further research on forecasting methods to achieve multi-step forecasting in
advance is also a challenge to be faced by hydro-wind-solar projects in the future.
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On the basis of the aggregation of wind and photovoltaic power stations, the gener-
ation output characteristics need to be further analyzed, and the following methods can
meet the needs of different complementary operation modes. The first one is to fit the
probability distribution while considering the time-varying characteristics of the output.
The output process of wind and solar power generation is random and non-stationary, so
it may be more conducive to predict the power generation law by considering the time-
varying characteristics to establish a probability distribution. The second is the scenario
description method of uncertain power output of power plant clusters. In order to avoid
the influence of the change in installed capacity on the results, the installed utilization
data sample will be constructed based on the long series of actual output data and the
corresponding installed capacity, and the quantile regression theory can be introduced
to construct a nonparametric probability prediction model. The appropriate distribution
function is used to describe the output random variables. The quantile matrix is obtained,
and the output scene set is generated by combining the predicted output sequence. For the
clusters composed of different types of power stations, the idea of a Cartesian product can
be used to determine the combined scene set. It should be noted that when the number
of scenes leads to too much computation, it is necessary to introduce techniques such as
scenario reduction for dimensionality reduction.

5.2. The Prospect of Hydro-Wind-Solar Hybrid System Risk Management

The key to the power generation of a hydro-wind-solar complementary system lies in
the uncertainty of wind and solar output. For the risk management of grid-connected oper-
ation of a hybrid system, the power prediction error of wind and solar power is considered
by reliability or the risk index. The quantitative description method of uncertain output of
a power plant cluster is carefully studied, such as through the power shortage probability
and system load loss index. The focus of these methods is how to determine the constraint
boundary to realize the rationality and practicability of a hydro-wind-solar hybrid system.
In the process of risk assessment, the single analytical method and simulation method
have the disadvantages of low sampling efficiencies and poor computational convergence,
and the combination of various methods seems to be more widely used in model solu-
tions. For example, the mixed method of the Monte Carlo method and analysis method
can reduce the sample variance to a certain extent and improve the sampling efficiency.
However, there is no unified conclusion on how to realize the organic combination of the
two probability methods, and further research is still needed.

In the current research, most of the research work on the risk transfer of fluctuating
energy generation through the Internet adopts a linear propagation path. However, in the
actual process, there are hierarchical, network, and chaotic transmission paths. The risk
transfer probability and loss caused by different risk transmission paths are different. In fu-
ture research, it is necessary to refine the risk transmission path, conduct research under
different path conditions, and use different calculation models and theories when calcu-
lating losses. Moreover, in the process of risk decision making, there is a transformation
loss between the qualitative concept and quantitative representation, so how to find a
mathematical model with a better conversion efficiency and effect to meet the needs of
practical projects is also an additional challenge in the future.

In order to carry out risk management of a hydro-wind-solar hybrid system more
accurately, the load shedding risk, voltage out-of-limit risk, line active power out-of-limit
risk, and overflow risk are introduced to comprehensively evaluate the operation risk of a
power system with hydraulic, wind, and photovoltaic energy. The influence of water and
landscape access on a power system’s operation risk is comprehensively analyzed from
the aspects of wind power, the photoelectric access node, hydropower access capacity, and
hydro-wind-solar replacement capacity. It can provide reference information for the safe
operation and operation planning of a power system with renewable energy.
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5.3. The Prospect of a Hydro-Wind-Solar Hybrid System’s Dispatching Optimization

The power generation scheduling of a hydro-wind-solar complementary system is
also green generation scheduling; that is, it also involves controlling the abandonment rate
of wind and solar power in a reasonable range to maximize power generation and achieve
the maximum output of green electricity.

In light of the huge number of power stations in the complementary system and the
difficulty of centralized dispatching, the aggregation strategy of wind and solar power
stations can be introduced to explore suitable aggregation criteria and integrate multiple
wind power stations and photovoltaic power stations by taking advantage of the level of
high-convergence power station clusters able to be scheduled, such as spatial smoothness
and time complementarity, and by taking wind and wind power station clusters as the
object to achieve complementary coordination with a hydropower system. Considering
that the aggregation effect of wind and solar power is closely related to the size of the
power station, how to divide the clusters of wind and solar power plants is very important.
According to the distribution characteristics of wind and photovoltaic power stations in
the multi-energy complementary project, the feasible idea is to comprehensively consider
the zoning characteristics, output correlation, time-varying characteristics of wind speed
and illumination, etc. step by step from a single power group to the whole wind-solar
convergence, research the aggregation effect analysis method of the wind-solar power
station, and establish the aggregation criterion of the power station group.

From the perspective of long-term operation, the short-term complementary ability
of water, wind, and photovoltaic power depends to a large extent on the long-term water
level control of hydropower station reservoirs. Through reasonable water level control
rules, according to the electricity scale and power fluctuation in different periods of the
landscape, the reasonable energy storage of each stage of the hydropower system can
be determined, thus providing accurate boundary conditions for daily hydro-wind-solar
power compensation. Therefore, considering the multiple uncertainties of wind and
solar power generation and runoff, the research on the long-term coordinated control of
hydropower station with a complementary system can be carried out with two ideas.

The first is to explore the stochastic optimal dispatching method of hydropower
coupled with wind and solar power’s uncertain output, including the modeling criteria
and efficient solving methods. At the level of centralized control of the river basin, the joint
operation of cascade hydropower, wind power, and photovoltaic power can be further
discussed. By taking the cascade hydropower stations and the wind and photovoltaic power
stations with the same stakeholders as the object, the maximum comprehensive benefit
expectation model of a hydro-wind-solar hybrid system with long-term and short-term
multi-time-scale coupling will be constructed.

The second idea is to study the key water level control rules of a hydropower station
reservoir group with the complementary operation of water, wind, and solar power. Start-
ing from the cascade and cross-basin stages, we will focus on the water level control of
the main time nodes before a flood, at the end of a flood, and at the end of the year under
the condition of complementary water, wind, and photovoltaic power. In the first stage,
the dispatching level of a single river basin is mainly based on the combined scene of long
series runoff and wind and photovoltaic power stations. The water level at the critical
time nodes of the controlled hydropower station will be taken as the optimization object.
Multi-objective evaluation criteria such as the maximum comprehensive power generation
benefit and the minimum abandoned power of the hydro-wind-solar hybrid system will
be constructed, and the multi-objective optimization algorithm is used to simulate the
long-series optimal dispatching, and the non-inferior critical water level set of cascade
hydropower stations is deduced, while the reasonable water level control intervals before a
flood, at the end of a flood, and at the end of the year are analyzed and determined. Ac-
cording to the water level control rules of the main hydropower stations, the reasonable
energy storage control range of the cascade hydropower stations is further analyzed to
guide the joint operation of the cascade hydropower stations and the hydro-wind-solar
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power stations so as to stabilize the wind-solar fluctuation and realize the safe operation of
the hydro-wind-solar hybrid system.

The short-term scheduling of renewable energy generally makes the mid-and long-
term scheduling decision as the boundary constraint; that is, when the available water in
the current scheduling period is given, an appropriate dispatching model is selected for
optimization, and the water consumption in each scheduling period of the power station is
allocated reasonably so as to determine the short-term scheduling operation strategy. One of
the core tasks of the short-term operation of the hydro-wind-solar hybrid system is how to
use the flexible regulation ability of hydropower to stabilize the intermittence and volatility
of the new energy output. Therefore, it is necessary to carry out quantitative research on
the flexibility needed to absorb new energy. We can proceed from two aspects. One is to
analyze the probability distribution of the actual output of the power station, quantify
the extreme value of the output or range of intraday fluctuations, and also compare and
analyze the predicted power and the actual value. This focuses on the distribution law of
power deviation to describe the flexibility regulation requirements in real-time operation.
The second is to build appropriate flexibility evaluation criteria, where it is necessary to
combine the flexibility requirements and scheduling capacity to formulate a quantitative
flexibility up-and-down margin or deficiency indicators and then establish a suitable
flexibility evaluation model according to the actual engineering characteristics of the
complementary system.

Based on the quantification of flexibility demand, the short-term joint modeling
method of hydro-wind-solar complementary operation can be studied in two ways. On the
one hand, the output and fluctuation extreme values of a wind and solar power station
cluster are described quantitatively, and the hydropower deterministic scheduling model
is innovated through constraint integration, focusing on solving the peak regulation dif-
ficulties caused by the fluctuation in the wind and solar power output at critical time
nodes, such as the load trough, peak, and maximum ramp or downgrade. On the other
hand, based on the stochastic programming theory, a stochastic dispatching model can
be constructed by combining the wind solar power output with hydropower to study the
output stability and adjustability of the complementary system by considering the full-cycle
power generation fluctuation of new energy sources. In addition, due to the time migration
ability of the energy storage system with electric power, the new energy storage system will
become a direct solution to a series of problems brought by the continuous improvement in
the penetration rate of new energy in the future.

At the present stage, there have been many theoretical studies on the operation
characteristics and economic benefits of hydro-wind-solar hybrid systems, but they are
still imperfect. In the future, it is necessary to combine, sort out, and expand these aspects
more comprehensively and build a comprehensive evaluation system for multi-energy
complementary systems to adapt to the scheduling optimization of large-scale hydro-wind-
solar hybrid systems.

By and large, for the hydro-wind-solar hybrid system, there are many cascade power
stations in a basin, and each cascade power station has different wind and solar resources.
In the actual project at this stage, the basin compensation between the mutual hydropower
stations has not yet been implemented. In addition, there is the development of new wind
and solar resources, peak regulation of the water potential, matching of corresponding electric
charges, energy storage, frequency regulation, and other auxiliary services. There is a large
number of stakeholders in the overall operation, and the stakeholders in the system are more
complex. At this level, how to achieve the balance of economic interests is still an issue
worthy of consideration and innovation, and it is also the main direction of future research.

6. Conclusions

Renewable energy sources such as hydro, wind, and solar power continue to develop
rapidly, even as economies are struggling under the pressure of the COVID-19 pandemic.
In particular, the issue of green recovery has been put forward to vigorously promote clean
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energy reform around the world, and the use of hydro-wind-solar hybrid renewable energy
systems is increasing day by day. In the future, second-generation energy systems dominated
by hydro-thermal power will gradually develop to the third generation of new power systems
with wind and solar power, as well as other new energy generation, as the main body. At the
same time, there will be a series of challenging theoretical and technical problems in power
generation forecasting, renewable energy consumption, complementary and coordinated
operation of multi-energy sources, and system stability control. No matter which link is
explored, the optimization method used will show limitations in a certain aspect. It can be
concluded that, thus far, there is not a superlative uncertainty handling technique.

This paper focuses on the generation scheduling problem of hydro-wind-solar hybrid
systems from the following aspects: (1) mainly analyzing the long-term and short-term
coordinated operation of the system, (2) focusing on the prediction and description of the
power generation law of wind and photovoltaic power stations, (3) the risk management of
hydro-wind-solar hybrid systems, and (4) the modeling and solution of joint dispatching of
a hydro-wind-solar power station group. This paper summarizes and analyzes the current
research and development situation of hydro-wind-solar hybrid systems and discusses
the research ideas of these problems one by one from different perspectives. It provides
a referential technical solution for the power generation scheduling of hydro-wind-solar
hybrid systems and helps to overcome the key problems in the dispatching and operation of
a new power system, which has a certain reference value for overcoming the challenges and
complexity in the research of safe operation and scheduling optimization of hydro-wind-
solar hybrid systems.The following is a look forward to the challenges and opportunities
in the future research of hydro, solar, and wind power generation dispatching to open up
ideas for scholars’ follow-up investigations:

1. Taking into account that the occurrence of uncertainty has specific time sequences
in power system scheduling, which means that the decision-making process for uncertainty
in the upcoming period should be based on the outcomes of the previous periods;

2. Scheduling issues could involve nonlinear objectives or constraints, which would
make the scheduling model non-convex;

3. Fault uncertainties attract more attention due to their potential for destruction, so
operators intend to contact a variety of sources to deal with unexpected failures;

4. Flexible operational approaches that take resource features into account;
5. Evaluation of comparative costs and the environment;
6. The use of current hydroelectric facilities as PHS;
7. Research-based networks;
8. Suitable geography;
9. The economics of hydro-wind-solar systems.

7. Patents

This section is not mandatory, but it may be added if there are patents resulting from
the work reported in this manuscript.
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