A Comprehensive Review on Advances in TiO2 Nanotube (TNT)-Based Photocatalytic CO2 Reduction to Value-Added Products
Abstract
:1. Introduction
2. Scope and Overview of This Review
3. Fundamentals of TNT
4. Synthesis of TNT
5. Basics about Photocatalytic CO2 Reduction
6. Photocatalytic CO2 Reduction to Value-Added Products Solely Using TNT
7. Modified TNT for Improving Photocatalytic Performance
7.1. Metal Doping
7.2. Metal-Oxide Doping
7.3. Non-Metal Doping
7.4. Heterojunction
7.5. Sensitization
7.6. Carbon-Based Material Doping
8. Kinetic Modeling to Compute Rate of CO2 Photoreduction
9. Concluding Remarks and Future Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Derichter, R.K.; Ming, T.; Caillol, S. Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors. Renew. Sustain. Energy Rev. 2013, 19, 82–106. [Google Scholar] [CrossRef]
- Rahman, F.A.; Aziz, M.M.A.; Saidur, R.; Bakar, W.A.W.A.; Hainin, M.R.; Putrajaya, R.; Hassan, N.A. Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew. Sustain. Energy Rev. 2017, 71, 112–126. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmed, K.; Ismail, M. Predictive analysis of CO2 emissions and the role of environmental technology, energy use and economic output: Evidence from emerging economies. Air Qual. Atmos. Health 2020, 13, 1035–1044. [Google Scholar] [CrossRef]
- Sun, Y.; Hao, Q.; Cui, C.; Shan, Y.; Zhao, W.; Wang, D.; Zhang, Z.; Guan, D. Emission accounting and drivers in East African countries. Appl. Energy 2022, 312, 118805. [Google Scholar] [CrossRef]
- de Brito, J.F.; Bessegato, G.G.; Perini, J.A.L.; de Moura Torquato, L.D.; Zanoni, M.V.B. Advances in photoelectroreduction of CO2 to hydrocarbons fuels: Contributions of functional materials. J. CO2 Util. 2022, 55, 101810. [Google Scholar] [CrossRef]
- Al Jitan, S.; Palmisano, G.; Garlisi, C. Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2. Catalysts 2020, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.T.; Nichols, E.M.; Cao, Z.; Chang, C.J. Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis. Acc. Chem. Res. 2020, 53, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Ezugwu, C.I.; Liu, S.; Li, C.; Zhuiykov, S.; Roy, S.; Verpoort, F. Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels. Coord. Chem. Rev. 2022, 450, 214245. [Google Scholar] [CrossRef]
- Hou, H.; Zhang, X. Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chem. Eng. J. 2020, 395, 125030. [Google Scholar] [CrossRef]
- Albero, J.; Peng, Y.; García, H. Photocatalytic CO2 Reduction to C2+ Products. ACS Catal. 2020, 10, 5734–5749. [Google Scholar] [CrossRef]
- Adekoya, D.; Tahir, M.; Amin, N.A.S. Recent trends in photocatalytic materials for reduction of carbon dioxide to methanol. Renew. Sustain. Energy Rev. 2019, 116, 109389. [Google Scholar] [CrossRef]
- He, X.; Wu, M.; Ao, Z.; Lai, B.; Zhou, Y.; An, T.; Wang, S. Metal–organic frameworks derived C/TiO2 for visible light photocatalysis: Simple synthesis and contribution of carbon species. J. Hazard. Mater. 2021, 403, 124048. [Google Scholar] [CrossRef] [PubMed]
- Shtyka, O.; Shatsila, V.; Ciesielski, R.; Kedziora, A.; Maniukiewicz, W.; Dubkov, S.; Gromov, D.; Tarasov, A.; Rogowski, J.; Stadnichenko, A.; et al. Adsorption and photocatalytic reduction of carbon dioxide on TiO2. Catalysts 2021, 11, 47. [Google Scholar] [CrossRef]
- Zu, M.; Zhou, X.; Zhang, S.; Qian, S.; Li, D.S.; Liu, X.; Zhang, S. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices. J. Mater. Sci. Technol. 2021, 78, 202–222. [Google Scholar] [CrossRef]
- Low, J.; Qiu, S.; Xu, D.; Jiang, C.; Cheng, B. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction. Appl. Surf. Sci. 2018, 434, 423–432. [Google Scholar] [CrossRef]
- Reddy, B.V.N.; Reddy, B.V.S. Materials for Conversion of CO2. Biointerface Res. Appl. Chem. 2021, 12, 486–497. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Tao, F. Interface Modification of TiO2 Nanotubes by Biomass-Derived Carbon Quantum Dots for Enhanced Photocatalytic Reduction of CO2. ACS Appl. Energy Mater. 2021, 4, 13120–13131. [Google Scholar] [CrossRef]
- Celaya, C.A.; Méndez-Galván, M.; Castro-Ocampo, O.; Torres-Martínez, L.M.; Luévano-Hipólito, E.; Díaz de León, J.N.; Lara-García, H.A.; Díaz, G.; Muñiz, J. Exploring the CO2 conversion into hydrocarbons via a photocatalytic process onto M-doped titanate nanotubes (M = Ni and Cu). Fuel 2022, 324, 124440. [Google Scholar] [CrossRef]
- Kim, E.; Do, K.H.; Wang, J.; Hong, Y.; Putta Rangappa, A.; Amaranatha Reddy, D.; Praveen Kumar, D.; Kim, T.K. Construction of 1D TiO2 nanotubes integrated ultrathin 2D ZnIn2S4 nanosheets heterostructure for highly efficient and selective photocatalytic CO2 reduction. Appl. Surf. Sci. 2022, 587, 152895. [Google Scholar] [CrossRef]
- Xiao, T.; Chen, Y.; Liang, Y. Visible light responsive metalloporphyrin-sensitized TiO2 nanotube arrays for artificial photosynthesis of methane. React. Chem. Eng. 2022, 7, 917–928. [Google Scholar] [CrossRef]
- Xiao, T.; Chen, Y.; Liang, Y. Ni(II) Tetra(4-carboxylphenyl)porphyrin-Sensitized TiO2 Nanotube Array Composite for Efficient Photocatalytic Reduction of CO2. J. Phys. Chem. C 2022, 23, 9742–9752. [Google Scholar] [CrossRef]
- Ebhota, W.S.; Jen, T.C. Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast Tracking Hybrid Renewable Energy System. Int. J. Precis. Eng. Manuf. Green Technol. 2020, 7, 97–117. [Google Scholar] [CrossRef]
- Raza Abbasi, K.; Fatai Adedoyin, F. Do energy use and economic policy uncertainty affect CO2 emissions in China? Empirical evidence from the dynamic ARDL simulation approach. Environ. Sci. Pollut. Res. 2021, 28, 23323–23335. [Google Scholar] [CrossRef]
- Wang, S.; Han, X.; Zhang, Y.; Tian, N.; Ma, T.; Huang, H. Inside-and-Out Semiconductor Engineering for CO2 Photoreduction: From Recent Advances to New Trends. Small Struct. 2021, 2, 2000061. [Google Scholar] [CrossRef]
- Behera, A.; Kar, A.K.; Srivastava, R. Challenges and prospects in the selective photoreduction of CO2 to C1 and C2 products with nanostructured materials: A review. Mater. Horizons 2022, 9, 607–639. [Google Scholar] [CrossRef] [PubMed]
- Ismael, M. Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: A comprehensive review. Fuel 2021, 303, 121207. [Google Scholar] [CrossRef]
- Wang, J.; Guo, R.T.; Bi, Z.X.; Chen, X.; Hu, X.; Pan, W.G. A review on TiO2-x-based materials for photocatalytic CO2 reduction. Nanoscale 2022, 14, 11512–11528. [Google Scholar] [CrossRef] [PubMed]
- Shehzad, N.; Tahir, M.; Johari, K.; Murugesan, T.; Hussain, M. A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. J. CO2 Util. 2018, 26, 98–122. [Google Scholar] [CrossRef]
- Razzaq, A.; In, S.I. TiO2 based nanostructures for photocatalytic CO2 conversion to valuable chemicals. Micromachines 2019, 10, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismael, M. A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles. Sol. Energy 2020, 211, 522–546. [Google Scholar] [CrossRef]
- Zhang, W.; He, H.; Li, H.; Duan, L.; Zu, L.; Zhai, Y.; Li, W.; Wang, L.; Fu, H.; Zhao, D. Visible-Light Responsive TiO2-Based Materials for Efficient Solar Energy Utilization. Adv. Energy Mater. 2021, 11, 2003303. [Google Scholar] [CrossRef]
- Hou, X.; Aitola, K.; Lund, P.D. TiO2 nanotubes for dye-sensitized solar cells—A review. Energy Sci. Eng. 2020, 9, 921–937. [Google Scholar] [CrossRef]
- Al Zoubi, W.; Salih Al-Hamdani, A.A.; Sunghun, B.; Ko, Y.G. A review on TiO2-based composites for superior photocatalytic activity. Rev. Inorg. Chem. 2021, 41, 213–222. [Google Scholar] [CrossRef]
- Tio, R.; Synthesis, N.M. Radial TiO2 Nanorod-Based Mesocrystals: Synthesis, Characterization, and Applications. Catalysts 2021, 11, 1298. [Google Scholar]
- Padmanabhan, N.T.; Thomas, N.; Louis, J.; Mathew, D.T.; Ganguly, P.; John, H.; Pillai, S.C. Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere 2021, 271, 129506. [Google Scholar] [CrossRef]
- Anucha, C.B.; Altin, I.; Bacaksiz, E.; Stathopoulos, V.N. Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chem. Eng. J. Adv. 2022, 10, 100262. [Google Scholar] [CrossRef]
- Suárez, S.; Jansson, I.; Ohtani, B.; Sánchez, B. From titania nanoparticles to decahedral anatase particles: Photocatalytic activity of TiO2/zeolite hybrids for VOCs oxidation. Catal. Today 2019, 326, 2–7. [Google Scholar] [CrossRef]
- Ismael, M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 2020, 846, 156446. [Google Scholar] [CrossRef]
- Reghunath, S.; Pinheiro, D.; KR, S.D. A review of hierarchical nanostructures of TiO2: Advances and applications. Appl. Surf. Sci. Adv. 2021, 3, 100063. [Google Scholar] [CrossRef]
- Shaikh, S.F.; Mane, R.S.; Min, B.K.; Hwang, Y.J.; Joo, O.S. D-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells. Sci. Rep. 2016, 6, 20103. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, X.; Chen, Q.; Xu, H.; Dai, M.; Zhang, M.; Wang, W.; Song, H. Microstructural modification of hollow TiO2 nanospheres and their photocatalytic performance. Appl. Surf. Sci. 2021, 535, 147641. [Google Scholar] [CrossRef]
- Chang, H.H.; Wei, L.W.; Huang, H.L.; Chang, H.Y.; Wang, H.P. Photocatalytic Reduction of CO2 by TiO2 Nanotubes. Nano 2022, 17, 2250032. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, S.; Sun, X.; He, X. Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. J. Nanosci. Nanotechnol. 2010, 10, 4551–4561. [Google Scholar] [CrossRef] [PubMed]
- Kouao, D.S.; Grochowska, K.; Siuzdak, K. The Anodization of Thin Titania Layers as a Facile Process towards Semitransparent and Ordered Electrode Material. Nanomaterials 2022, 12, 1131. [Google Scholar] [CrossRef]
- Lynch, R.P.; Ghicov, A.; Schmuki, P. A Photo-Electrochemical Investigation of Self-Organized TiO2 Nanotubes. J. Electrochem. Soc. 2010, 157, G76. [Google Scholar] [CrossRef]
- Tesler, A.B.; Altomare, M.; Schmuki, P. Morphology and Optical Properties of Highly Ordered TiO2 Nanotubes Grown in NH4F/o-H3PO4 Electrolytes in View of Light-Harvesting and Catalytic Applications. ACS Appl. Nano Mater. 2020, 3, 10646–10658. [Google Scholar] [CrossRef]
- Indira, K.; Mudali, U.K.; Nishimura, T.; Rajendran, N. A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications. J. Bio Tribo Corros. 2015, 1, 28. [Google Scholar] [CrossRef] [Green Version]
- Puga, M.L.; Venturini, J.; ten Caten, C.S.; Bergmann, C.P. Influencing parameters in the electrochemical anodization of TiO2 nanotubes: Systematic review and meta-analysis. Ceram. Int. 2022, 48, 19513–19526. [Google Scholar] [CrossRef]
- Bjelajac, A.; Petrović, R.; Vujancevic, J.; Veltruska, K.; Matolin, V.; Siketic, Z.; Provatas, G.; Jaksic, M.; Stan, G.E.; Socol, G.; et al. Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. J. Phys. Chem. Solids 2020, 147, 109609. [Google Scholar] [CrossRef]
- Bjelajac, A.; Petrović, R.; Djokic, V.; Matolin, V.; Vondraček, M.; Dembele, K.; Moldovan, S.; Ersen, O.; Socol, G.; Mihailescu, I.N.; et al. Enhanced absorption of TiO2 nanotubes by N-doping and CdS quantum dots sensitization: Insight into the structure. RSC Adv. 2018, 8, 35073–35082. [Google Scholar] [CrossRef] [Green Version]
- Mahdi, N.; Kumar, P.; Goswami, A.; Perdicakis, B.; Shankar, K.; Sadrzadeh, M. Robust polymer nanocomposite membranes incorporating discrete TiO2 nanotubes for water treatment. Nanomaterials 2019, 9, 1186. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, M.; Peng, T.; Zhang, C.; Li, T.; Hussain, I.; Wang, J.; Tan, B. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nat. Commun. 2019, 10, 676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Qiu, G.; Li, H.; Li, M.; Li, C.; Qian, L.; Yang, B. Boron-doped graphene/TiO2 nanotube-based aqueous lithium ion capacitors with high energy density. Electrochim. Acta 2020, 329, 135175. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Senthil Kumar, P.; Varjani, S.J.; Saravanan, A. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. J. CO2 Util. 2019, 33, 131–147. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Nguyen, D.L.T.; Nguyen, V.H.; Le, T.H.; Vo, D.V.N.; Trinh, Q.T.; Bae, S.R.; Chae, S.Y.; Kim, S.Y.; Le, Q. Van Recent advances in TiO2-based photocatalysts for reduction of CO2 to fuels. Nanomaterials 2020, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222–243. [Google Scholar] [CrossRef]
- Wang, J.; Lin, S.; Tian, N.; Ma, T.; Zhang, Y.; Huang, H. Nanostructured Metal Sulfides: Classification, Modification Strategy, and Solar-Driven CO2 Reduction Application. Adv. Funct. Mater. 2021, 31, 2008008. [Google Scholar] [CrossRef]
- Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z. Titanium dioxide: From engineering to applications. Catalysts 2019, 19, 191. [Google Scholar] [CrossRef] [Green Version]
- Savchuk, T.; Gavrilin, I.; Konstantinova, E. Anodic TiO2 nanotube arrays for photocatalytic CO2 conversion: Comparative photocatalysis and EPR study. Nanotechnology 2021, 33, 055706. [Google Scholar] [CrossRef]
- Raskar, N.; Dake, D.; Khawal, H.; Deshpande, U.; Asokan, K.; Dole, B. Development of oxygen vacancies and surface defects in Mn-doped ZnO nanoflowers for enhancing visible light photocatalytic activity. SN Appl. Sci. 2020, 2, 1403. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J. The Oxygen Vacancy Defect of ZnO/NiO Nanomaterials Improves Photocatalytic Performance and Ammonia Sensing Performance. Nanomaterials 2022, 12, 433. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Shen, Q.; Guan, R.; Xue, J.; Liu, X.; Jia, H.; Li, Q.; Wu, Y. Oxygen vacancy self-doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. J. CO2 Util. 2020, 35, 205–215. [Google Scholar] [CrossRef]
- Kar, P.; Zeng, S.; Zhang, Y.; Vahidzadeh, E.; Manuel, A.; Kisslinger, R.; Alam, K.M.; Thakur, U.K.; Mahdi, N.; Kumar, P.; et al. High rate CO2 photoreduction using flame annealed TiO2 nanotubes. Appl. Catal. B Environ. 2019, 243, 522–536. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Cui, G.; Lu, H.; Abanades, S. Remarkable CO2 photoreduction activity using TiO2 nanotube arrays under favorable photothermal conditions driven by concentrated solar light. Appl. Phys. Lett. 2021, 119, 123906. [Google Scholar] [CrossRef]
- Santos, J.S.; Fereidooni, M.; Marquez, V.; Arumugam, M.; Tahir, M.; Praserthdam, S.; Praserthdam, P. Single-step fabrication of highly stable amorphous TiO2 nanotubes arrays (am-TNTA) for stimulating gas-phase photoreduction of CO2 to methane. Chemosphere 2022, 289, 133170. [Google Scholar] [CrossRef]
- Pan, H.; Sun, M.; Wang, X.; Zhang, M.; Murugananthan, M.; Zhang, Y. A novel electric-assisted photocatalytic technique using self-doped TiO2 nanotube films. Appl. Catal. B Environ. 2022, 307, 121174. [Google Scholar] [CrossRef]
- Hu, X.; Xie, Z.; Tang, Q.; Wang, H.; Zhang, L.; Wang, J. Enhanced CH4 yields by interfacial heating-induced hot water steam during photocatalytic CO2 reduction. Appl. Catal. B Environ. 2021, 298, 120635. [Google Scholar] [CrossRef]
- Sescu, A.M.; Favier, L.; Lutic, D.; Soto-Donoso, N.; Ciobanu, G.; Harja, M. TiO2 doped with noble metals as an efficient solution for the photodegradation of hazardous organic water pollutants at ambient conditions. Water 2021, 13, 19. [Google Scholar] [CrossRef]
- Juárez-Cortazar, D.E.; Torres-Torres, J.G.; Hernandez-Ramirez, A.; Arévalo-Pérez, J.C.; Cervantes-Uribe, A.; Godavarthi, S.; de los Monteros, A.E.E.; Silahua-Pavón, A.A.; Cordero-Garcia, A. Doping of TiO2 Using Metal Waste (Door Key) to Improve Its Photocatalytic Efficiency in the Mineralization of an Emerging Contaminant in an Aqueous Environment. Water 2022, 14, 1389. [Google Scholar] [CrossRef]
- Vargas Hernández, J.; Coste, S.; García Murillo, A.; Carrillo Romo, F.; Kassiba, A. Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2. J. Alloys Compd. 2017, 710, 355–363. [Google Scholar] [CrossRef]
- Prakash, J.; Samriti; Kumar, A.; Dai, H.; Janegitz, B.C.; Krishnan, V.; Swart, H.C.; Sun, S. Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications. Mater. Today Sustain. 2021, 13, 100066. [Google Scholar] [CrossRef]
- Anucha, C.B.; Altin, I.; Bacaksız, E.; Kucukomeroglu, T.; Belay, M.H.; Stathopoulos, V.N. Enhanced photocatalytic activity of CuWO4 doped TiO2 photocatalyst towards carbamazepine removal under UV irradiation. Separations 2021, 8, 25. [Google Scholar] [CrossRef]
- Qian, X.; Yang, W.; Gao, S.; Xiao, J.; Basu, S.; Yoshimura, A.; Shi, Y.; Meunier, V.; Li, Q. Highly Selective, Defect-Induced Photocatalytic CO2 Reduction to Acetaldehyde by the Nb-Doped TiO2 Nanotube Array under Simulated Solar Illumination. ACS Appl. Mater. Interfaces 2020, 12, 55982–55993. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.H.; Wu, H.Y.; Bai, H. Photocatalytic reduction of NO2 and CO2 using molybdenum-doped titania nanotubes. Chem. Eng. J. 2015, 269, 60–66. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, Y.; Liu, W.; Wang, A.; Zhang, T. Single-atom catalyst: A rising star for green synthesis of fine chemicals. Natl. Sci. Rev. 2018, 5, 653–672. [Google Scholar] [CrossRef] [Green Version]
- Hiragond, C.B.; Powar, N.S.; Lee, J.; In, S.I. Single-Atom Catalysts (SACs) for Photocatalytic CO2 Reduction with H2O: Activity, Product Selectivity, Stability, and Surface Chemistry. Small 2022, 18, 2201428. [Google Scholar] [CrossRef]
- Pan, H.; Wang, X.; Xiong, Z.; Sun, M.; Murugananthan, M.; Zhang, Y. Enhanced photocatalytic CO2 reduction with defective TiO2 nanotubes modified by single-atom binary metal components. Environ. Res. 2021, 198, 111176. [Google Scholar] [CrossRef]
- Gao, Y.; Qian, K.; Xu, B.; Li, Z.; Zheng, J.; Zhao, S.; Ding, F.; Sun, Y.; Xu, Z. Recent advances in visible-light-driven conversion of CO2 by photocatalysts into fuels or value-added chemicals. Carbon Resour. Convers. 2020, 3, 46–59. [Google Scholar] [CrossRef]
- Shinde, G.Y.; Mote, A.S.; Gawande, M.B. Recent Advances of Photocatalytic Hydrogenation of CO2 to Methanol. Catalysts 2022, 12, 94. [Google Scholar] [CrossRef]
- Vu, N.N.; Kaliaguine, S.; Do, T.O. Plasmonic Photocatalysts for Sunlight-Driven Reduction of CO2: Details, Developments, and Perspectives. ChemSusChem 2020, 13, 3967–3991. [Google Scholar] [CrossRef]
- Zhu, Q.; Xuan, Y.; Zhang, K.; Chang, K. Enhancing photocatalytic CO2 reduction performance of g-C3N4-based catalysts with non-noble plasmonic nanoparticles. Appl. Catal. B Environ. 2021, 297, 120440. [Google Scholar] [CrossRef]
- Ibrahim, N.S.; Leaw, W.L.; Mohamad, D.; Alias, S.H.; Nur, H. A critical review of metal-doped TiO2 and its structure–physical properties–photocatalytic activity relationship in hydrogen production. Int. J. Hydrogen Energy 2020, 45, 28553–28565. [Google Scholar] [CrossRef]
- Kar, P.; Farsinezhad, S.; Mahdi, N.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res. 2016, 9, 3478–3493. [Google Scholar] [CrossRef]
- Khatun, F.; Abd Aziz, A.; Sim, L.C.; Monir, M.U. Plasmonic enhanced Au decorated TiO2 nanotube arrays as a visible light active catalyst towards photocatalytic CO2 conversion to CH4. J. Environ. Chem. Eng. 2019, 7, 103233. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J. Visible light driven type II heterostructures and their enhanced photocatalysis properties: A review. Nanoscale 2013, 5, 8326–8339. [Google Scholar] [CrossRef]
- Kavil, Y.N.; Shaban, Y.A.; Al Farawati, R.K.; Orif, M.I.; Zobidi, M.; Khan, S.U.M. Photocatalytic conversion of CO2 into methanol over Cu-C/TiO2 nanoparticles under UV light and natural sunlight. J. Photochem. Photobiol. A Chem. 2017, 347, 244–253. [Google Scholar] [CrossRef]
- Li, Q.; Zong, L.; Li, C.; Yang, J. Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films. Appl. Surf. Sci. 2014, 314, 458–463. [Google Scholar] [CrossRef]
- Shi, Z.; Tan, Q.; Wu, D. Enhanced CO2 hydrogenation to methanol over TiO2 nanotubes-supported CuO-ZnO-CeO2 catalyst. Appl. Catal. A Gen. 2019, 581, 58–66. [Google Scholar] [CrossRef]
- De Almeida, J.; Pacheco, M.S.; de Brito, J.F.; de Arruda Rodrigues, C. Contribution of CuxO distribution, shape and ratio on TiO2 nanotubes to improve methanol production from CO2 photoelectroreduction. J. Solid State Electrochem. 2020, 24, 3013–3028. [Google Scholar] [CrossRef]
- Goto, H.; Masegi, H.; Sadale, S.B.; Noda, K. Intricate behaviors of gas phase CO2 photoreduction in high vacuum using Cu2O-loaded TiO2 nanotube arrays. J. CO2 Util. 2022, 59, 101964. [Google Scholar] [CrossRef]
- Bilgin Simsek, E. Solvothermal synthesized boron doped TiO2 catalysts: Photocatalytic degradation of endocrine disrupting compounds and pharmaceuticals under visible light irradiation. Appl. Catal. B Environ. 2017, 200, 309–322. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Jheng, H.K.; Syu, S.E. Effect of non-metal doping on the photocatalytic activity of titanium dioxide on the photodegradation of aqueous bisphenol A. Environ. Technol. 2021, 42, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Delavari, S.; Amin, N.A.S.; Ghaedi, M. Photocatalytic conversion and kinetic study of CO2 and CH4 over nitrogen-doped titania nanotube arrays. J. Clean. Prod. 2016, 111, 143–154. [Google Scholar] [CrossRef]
- Parayil, S.K.; Razzaq, A.; Park, S.M.; Kim, H.R.; Grimes, C.A.; In, S.I. Photocatalytic conversion of CO2 to hydrocarbon fuel using carbon and nitrogen co-doped sodium titanate nanotubes. Appl. Catal. A Gen. 2015, 498, 205–213. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Bilal, M.; Hou, J.; Butt, F.K.; Ahmad, J.; Ali, S.; Hussain, A. Photocatalytic CO2 Reduction Using TiO2-Based Photocatalysts and TiO2 Z-Scheme Heterojunction Composites: A Review. Molecules 2022, 27, 2069. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, C.; Zuo, G.; Guo, Y.; Xiao, W.; Dai, Y.; Kong, J.; Xu, X.; Zhou, Y.; Xie, A.; et al. 0D/2D Co3O4/TiO2 Z-Scheme heterojunction for boosted photocatalytic degradation and mechanism investigation. Appl. Catal. B Environ. 2020, 278, 119298. [Google Scholar] [CrossRef]
- Lai, Y.S.; Cheng, C.T.; Liou, J.L.; Jehng, J.M.; Dai, Y.M. The ZnO–Au-Titanium oxide nanotubes (TiNTs) composites photocatalysts for CO2 reduction application. Ceram. Int. 2021, 47, 30020–30029. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Y.; Li, D.; Han, X.; Liu, J. Efficient photocatalytic CO2 reduction by P–O linked g-C3N4/TiO2-nanotubes Z-scheme composites. Energy 2019, 178, 168–175. [Google Scholar] [CrossRef]
- Ikreedeegh, R.R.; Tahir, M. Photocatalytic CO2 reduction to CO and CH4 using g-C3N4/RGO on titania nanotube arrays (TNTAs). J. Mater. Sci. 2021, 56, 18989–19014. [Google Scholar] [CrossRef]
- Li, X.; Liu, H.; Luo, D.; Li, J.; Huang, Y.; Li, H.; Fang, Y.; Xu, Y.; Zhu, L. Adsorption of CO2 on heterostructure CdS(Bi 2S 3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem. Eng. J. 2012, 180, 151–158. [Google Scholar] [CrossRef]
- Cheng, M.; Bai, S.; Xia, Y.; Zhu, X.; Chen, R.; Liao, Q. Highly efficient photocatalytic conversion of gas phase CO2 by TiO2 nanotube array sensitized with CdS/ZnS quantum dots under visible light. Int. J. Hydrogen Energy 2021, 46, 31634–31646. [Google Scholar] [CrossRef]
- Gonçalves, B.S.; Palhares, H.G.; Souza, T.C.C.D.; Castro, V.G.D.; Silva, G.G.; Silva, B.C.; Krambrock, K.; Soares, R.B.; Lins, V.F.C.; Houmard, M.; et al. Effect of the carbon loading on the structural and photocatalytic properties of reduced graphene oxide-TiO2 nanocomposites prepared by hydrothermal synthesis. J. Mater. Res. Technol. 2019, 8, 6262–6274. [Google Scholar] [CrossRef]
- Bian, J.; Huang, C.; Wang, L.; Daoud, W.A.; Zhang, R. C dots loading and TiO2 nanorod length dependence of photoelectrochemical properties in C dots/TiO2 nanorod array nanocomposites Supporting Information. ACS Appl. Mater. Interfaces 2014, 6, 4883–4890. [Google Scholar] [CrossRef]
- Durga Devi, A.; Pushpavanam, S.; Singh, N.; Verma, J.; Kaur, M.P.; Roy, S.C. Enhanced methane yield by photoreduction of CO2 at moderate temperature and pressure using Pt coated, graphene oxide wrapped TiO2 nanotubes. Results Eng. 2022, 14, 100441. [Google Scholar] [CrossRef]
- Dhabarde, N.; Selvaraj, J.; Yuda, A.; Kumar, A.; Subramanian, V.R. Review of photocatalytic and photo-electrocatalytic reduction of CO2 on carbon supported films. Int. J. Hydrogen Energy 2022, 47, 30908–30936. [Google Scholar] [CrossRef]
- Zubair, M.; Kim, H.; Razzaq, A.; Grimes, C.A.; In, S.I. Solar spectrum photocatalytic conversion of CO2 to CH4 utilizing TiO2 nanotube arrays embedded with graphene quantum dots. J. CO2 Util. 2018, 26, 70–79. [Google Scholar] [CrossRef]
- Sim, L.C.; Leong, K.H.; Saravanan, P.; Ibrahim, S. Rapid thermal reduced graphene oxide/Pt-TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2. Appl. Surf. Sci. 2015, 358, 122–129. [Google Scholar] [CrossRef]
- Razzaq, A.; Grimes, C.A.; In, S. Il Facile fabrication of a noble metal-free photocatalyst: TiO2 nanotube arrays covered with reduced graphene oxide. Carbon N. Y. 2016, 98, 537–544. [Google Scholar] [CrossRef]
- Rambabu, Y.; Kumar, U.; Singhal, N.; Kaushal, M.; Jaiswal, M.; Jain, S.L.; Roy, S.C. Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes. Appl. Surf. Sci. 2019, 485, 48–55. [Google Scholar] [CrossRef]
- Thompson, W.A.; Sanchez Fernandez, E.; Maroto-Valer, M.M. Review and Analysis of CO2 Photoreduction Kinetics. ACS Sustain. Chem. Eng. 2020, 8, 4677–4692. [Google Scholar] [CrossRef]
- Ješić, D.; Lašič Jurković, D.; Pohar, A.; Suhadolnik, L.; Likozar, B. Engineering photocatalytic and photoelectrocatalytic CO2 reduction reactions: Mechanisms, intrinsic kinetics, mass transfer resistances, reactors and multi-scale modelling simulations. Chem. Eng. J. 2021, 407, 126799. [Google Scholar] [CrossRef]
- Liu, J.Y.; Gong, X.Q.; Alexandrova, A.N. Mechanism of CO2 Photocatalytic Reduction to Methane and Methanol on Defected Anatase TiO2 (101): A Density Functional Theory Study. J. Phys. Chem. C 2019, 123, 3505–3511. [Google Scholar] [CrossRef]
- Núñez, O.; Sattayamuk, D.; Saelee, T.; Yamashita, H.; Kuwahara, Y.; Mori, K.; Praserthdam, P.; Praserthdam, S. A closer look inside TiO2 (P25) photocatalytic CO2/HCO3− reduction with water. Methane rate and selectivity enhancements. Chem. Eng. J. 2021, 409, 128141. [Google Scholar] [CrossRef]
- Khalilzadeh, A.; Shariati, A. Photoreduction of CO2 over heterogeneous modified TiO2 nanoparticles under visible light irradiation: Synthesis, process and kinetic study. Sol. Energy 2018, 164, 251–261. [Google Scholar] [CrossRef]
- Lu, X.; Luo, X.; Thompson, W.A.; Tan, J.Z.Y.; Maroto-Valer, M.M. Investigation of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational fluid dynamic and reaction kinetic modeling. Front. Chem. Sci. Eng. 2021, 16, 1149–1163. [Google Scholar] [CrossRef]
- Gong, E.; Ali, S.; Hiragond, C.B.; Kim, H.S.; Powar, N.S.; Kim, D.; Kim, H.; In, S.-I. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ. Sci. 2022, 15, 880–937. [Google Scholar] [CrossRef]
- Bjelajac, A.; Kopač, D.; Fecant, A.; Tavernier, E.; Petrović, R.; Likozar, B.; Janaćković, D. Micro-kinetic modelling of photocatalytic CO2 reduction over undoped and N-doped TiO2. Catal. Sci. Technol. 2020, 10, 1688–1698. [Google Scholar] [CrossRef]
- Tan, L.L.; Ong, W.J.; Chai, S.P.; Mohamed, A.R. Photocatalytic reduction of CO2 with H2O over graphene oxide-supported oxygen-rich TiO2 hybrid photocatalyst under visible light irradiation: Process and kinetic studies. Chem. Eng. J. 2017, 308, 248–255. [Google Scholar] [CrossRef]
- Tahir, M.; Amin, N.S. Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor. Appl. Catal. A Gen. 2013, 467, 483–496. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, M.; Xu, B.; Ma, D. How to Measure the Reaction Performance of Heterogeneous Catalytic Reactions Reliably. Joule 2019, 3, 2876–2883. [Google Scholar] [CrossRef]
- Pineda, M.; Stamatakis, M. Kinetic Monte Carlo simulations for heterogeneous catalysis: Fundamentals, current status, and challenges. J. Chem. Phys. 2022, 156, 120902. [Google Scholar] [CrossRef] [PubMed]
Review Type | Focused on | Application | Critically Reviewed | Reviewed Literature | Reference |
---|---|---|---|---|---|
Comprehensive | TiO2 nanotubes | Photocatalytic CO2 reduction to value-added products | Fabrication of TNTs, photocatalytic performance of TNTs, modification methods for improving CO2 photoreduction activity under visible light and kinetics of CO2 photoreduction | 2010–2022 | This study |
Critical | TiO2-based materials | Photocatalytic CO2 reduction | Fundamentals and recent developments of TiO2 photocatalyst, different modification techniques, future challenges for CO2 photoreduction | 2005–2017 | [28] |
Narrative | TiO2-based nanostructures | Photocatalytic CO2 conversion to valuable chemicals | Different structures of TiO2, photocatalytic performance and their favorable reaction conditions | 2008–2019 | [29] |
Narrative | TiO2-based photocatalysts | Conversion of CO2 | Preparation and surface modification of TiO2 | 1997–2018 | [6] |
Narrative | TiO2 nanoparticles | H2 production | Synthesis and characterization methods for doped-TiO2; influence of dopants for improving photocatalytic performance of TiO2 | 2005–2019 | [30] |
Narrative | TiO2-based materials | Solar fuel production | Fabrication strategies and performance of visible light-responsive TiO2-based materials for solar fuel production | 2010–2020 | [31] |
Comprehensive review | TiO2-based photocatalysts | H2 fuel production | Key operating parameters affecting the photocatalytic performance of TiO2-based photocatalysts | 2002–2020 | [26] |
Narrative | TNTs | Dye-sensitized solar cells | Fabrication methods of TNT photoelectrode; modification of TNTs for enhancing power conversion efficiency | 2001–2019 | [32] |
Narrative | TiO2-based composites | Degradation of organic pollutants | Modification methods and performance of doped TiO2-based photocatalysts | 2008–2020 | [33] |
Narrative | TiO2 nanorods | Applications as a photocatalyst and electrode | Synthesis and characterization of TiO2 nanorods; mechanism and photocatalytic activity of TiO2 nanorods | 2005–2021 | [34] |
Narrative | Graphene coupled TiO2 photocatalysts | Environmental applications | Fundamental mechanism, functionalization, and dynamics in TiO2-graphene Nanocomposites | 2000–2020 | [35] |
Perspective review | TiO2-x-based materials | Photocatalytic CO2 reduction | Recent progress in reduced TiO2 catalysts for photocatalytic CO2 reduction performance | 2012–2022 | [27] |
Mini review | TiO2-based Photocatalysts | Contaminant degradation | Different modification techniques; photocatalytic performance of TiO2 for removal of emerging contaminants | 2000–2021 | [36] |
Photocatalyst | Synthesis Method | Reactor | Reactant | Light Source | Product | Yield (µmol g−1 h−1) | Reference |
---|---|---|---|---|---|---|---|
Black TNTA | Electrochemical anodization | Gas-closed circulation system | CO2 + H2O | 300 W Xe lamp | CO | 185.4 | [62] |
Flame-annealed TNT | Electrochemical anodization | Stainless steel reactor with transparent quartz window | CO2 + H2O vapor | 50 W LED lamp | CH4 | 156.5 | [63] |
TNTA | Electrochemical anodization | Batch reactor with Fresnel lens and auto-tracking system | CO2 + H2O | Sunlight | CH4 C2H4 C2H6 | 861.1 100.8 53.3 | [64] |
Amorphous TNTA | Electrochemical anodization | Three-way quartz reactor | CO2 + H2O | UV-light bulbs | CH4 | 14.0 | [65] |
Self-doped TNT | Electrochemical anodization | Electric-assisted quartz reactor | CO2 + H2O vapor | UV LED lamp | CH4 C2H6 | 682.3 52.6 | [66] |
Modification Methods | Criteria of Utilized Metals or Materials | Benefits | Limitations |
---|---|---|---|
Metal Doping | Transition metals | Effective method to expand the optical response of TiO2-based nanocomposites. | Transition metals are expensive and rare as well as there is a possibility of metal leaching into the environment. |
Metal-oxide Doping | Alkaline-earth metal oxides | Utilized to improve charge separation, light absorption, and structural properties. | Leads to structural defects. |
Non-metal Doping | Mostly N and C | Narrow down the bandgap of TiO2 by introducing new energy states. | Act as recombination centers. |
Heterojunction | Semiconductor materials with narrow bandgap | Extends light absorption into visible range and separates reduction and oxidation sites. | This is complex approach with relatively lower stability. |
Sensitization | Highly light-sensitive materials | Applied to improve the light response. | Development of photosensitized composite is challenging task. |
Carbon-based Materials Doping | Chemically inert, nontoxic, and economically feasible | Extends light absorption into visible range, enhances electron–hole separation and improves CO2 adsorption on catalytic surface. | Inhibits light absorption by TiO2 materials. |
Composite Photocatalysts | TNT Fabrication Method | Photoreactor | Light Source | Product | % of Yield Increased than TNT | Reference |
---|---|---|---|---|---|---|
CQDs-TNTs | Hydrothermal method | Electrochemical workstation | 300 W Xe lamp | CO CH4 | 2.4 2.5 | [17] |
TNT-rGO-Pt | Electrochemical anodization | Circular stainless steel batch reactor | 400 W metal-halide lamp | CH4 | 2.8 | [105] |
GQD-TNTA | Anodization | Stainless steel reactor | 100 W Xe lamp | CH4 | 5.6 | [107] |
rGO-Pt-TNTA | Anodization | Gas–solid phase photoreactor | 500 W tungsten–halogen lamp | CH4 | 1.9 | [108] |
rGO-TNTA | Electrochemical anodization | Stainless steel cell | 100 W Xe light | CH4 | 4.4 | [109] |
GO-TNT | Electrochemical anodization | Cylindrical quartz reactor | 200 W UV-A lamp | CO | 2.3 | [110] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossen, M.A.; Solayman, H.M.; Leong, K.H.; Sim, L.C.; Yaacof, N.; Abd Aziz, A.; Lihua, W.; Monir, M.U. A Comprehensive Review on Advances in TiO2 Nanotube (TNT)-Based Photocatalytic CO2 Reduction to Value-Added Products. Energies 2022, 15, 8751. https://doi.org/10.3390/en15228751
Hossen MA, Solayman HM, Leong KH, Sim LC, Yaacof N, Abd Aziz A, Lihua W, Monir MU. A Comprehensive Review on Advances in TiO2 Nanotube (TNT)-Based Photocatalytic CO2 Reduction to Value-Added Products. Energies. 2022; 15(22):8751. https://doi.org/10.3390/en15228751
Chicago/Turabian StyleHossen, Md. Arif, H. M. Solayman, Kah Hon Leong, Lan Ching Sim, Nurashikin Yaacof, Azrina Abd Aziz, Wu Lihua, and Minhaj Uddin Monir. 2022. "A Comprehensive Review on Advances in TiO2 Nanotube (TNT)-Based Photocatalytic CO2 Reduction to Value-Added Products" Energies 15, no. 22: 8751. https://doi.org/10.3390/en15228751
APA StyleHossen, M. A., Solayman, H. M., Leong, K. H., Sim, L. C., Yaacof, N., Abd Aziz, A., Lihua, W., & Monir, M. U. (2022). A Comprehensive Review on Advances in TiO2 Nanotube (TNT)-Based Photocatalytic CO2 Reduction to Value-Added Products. Energies, 15(22), 8751. https://doi.org/10.3390/en15228751