Effect of Synthesis Conditions on Capacitive Properties of Porous Carbon Derived from Hemp Bast Fiber
Abstract
:1. Introduction
- -
- development of a technology for the production of carbon from hemp bast fiber;
- -
- investigation of the effect of carbon synthesis modes on the structure, spectra, porosity, electrical conductivity at different voltage frequencies and temperatures, and electrochemical properties.
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Billon, P.; Kristoffersen, B. Just cuts for fossil fuels? Supply-side carbon constraints and energy transition. Environ. Plan. A: Econ. Space 2020, 52, 1072–1092. [Google Scholar] [CrossRef]
- Hirschnitz-Garbers, M.; Araujo, S.A.; Hinzmann, M. Exploring perspectives on climate-resource-nexus policies: Barriers and relevance in different world regions. J. Sustain. Dev. Energy Water Environ. Syst. 2022, 10, 1–28. [Google Scholar] [CrossRef]
- Mehdi, R.; Khoja, A.H.; Naqvi, S.R.; Gao, N.; Amin, N.A.S. A Review on Production and Surface Modifications of Biochar Materials via Biomass Pyrolysis Process for Supercapacitor Applications. Catalysts 2022, 12, 798. [Google Scholar] [CrossRef]
- Liu, H.; Kim, H. Ecological Footprint, Foreign Direct Investment, and Gross Domestic Production: Evidence of Belt & Road Initiative Countries. Sustainability 2018, 10, 3527. [Google Scholar] [CrossRef] [Green Version]
- IEA. World Energy Outlook. Flagship Report—2021; International Energy Agency: Paris, France, 2021. Available online: https://www.iea.org/reports/world-energy-outlook-2021 (accessed on 7 October 2022).
- Mara, D.; Nate, S.; Stavytskyy, A.; Kharlamova, G. The Place of Energy Security in the National Security Framework: An Assessment Approach. Energies 2022, 15, 658. [Google Scholar] [CrossRef]
- Bazaluk, O.; Slabyi, O.; Vekeryk, V.; Velychkovych, A.; Ropyak, L.; Lozynskyi, V. A Technology of Hydrocarbon Fluid Production Intensification by Productive Stratum Drainage Zone Reaming. Energies 2021, 14, 3514. [Google Scholar] [CrossRef]
- Ilin, S.; Adorska, L.; Samusia, V.; Kolosov, D.; Ilina, I. Conceptual bases of intensification of mining operations in mines of Ukraine. based on monitoring and condition management of mine hoisting systems. E3S Web Conf. 2019, 109, 00030. [Google Scholar] [CrossRef] [Green Version]
- Falshtynskyi, V.; Lozynskyi, V.; Saik, P.; Dychkovskyi, R.; Tabachenko, M. Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Min. Miner. Depos. 2016, 10, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Bazaluk, O.; Velychkovych, A.; Ropyak, L.; Pashechko, M.; Pryhorovska, T.; Lozynskyi, V. Influence of heavy weight drill pipe material and drill bit manufacturing errors on stress state of steel blades. Energies 2021, 14, 4198. [Google Scholar] [CrossRef]
- Shatskyi, I.; Vytvytskyi, I.; Senyushkovych, M.; Velychkovych, A. Modelling and improvement of the design of hinged centralizer for casing. In Proceedings of theThe 23rd edition of IManEE 2019 International Conference, Pitesti, Romania, 22–24 May 2019; Volume 564, p. 12073. [Google Scholar] [CrossRef]
- Tutko, T.; Dubei, O.; Ropyak, L.; Vytvytskyi, V. Determination of Radial Displacement Coefficient for Designing of Thread Joint of Thin-Walled Shells. In Advances in Design, Simulation and Manufacturing IV; Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D., Eds.; DSMIE 2021. Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2021; pp. 154–196. [Google Scholar] [CrossRef]
- Bembenek, M.; Prysyazhnyuk, P.; Shihab, T.; Machnik, R.; Ivanov, O.; Ropyak, L. Microstructure and Wear Characterization of the Fe-Mo-B-C—Based Hardfacing Alloys Deposited by Flux-Cored Arc Welding. Materials 2022, 15, 5074. [Google Scholar] [CrossRef]
- Carvalho, F.P. Mining industry and sustainable development: Time for change. Food Energy Secur. 2017, 6, 61–77. [Google Scholar] [CrossRef]
- Bazaluk, O.; Dubei, O.; Ropyak, L.; Shovkoplias, M.; Pryhorovska, T.; Lozynskyi, V. Strategy of Compatible Use of Jet and Plunger Pump with Chrome Parts in Oil Well. Energies 2022, 15, 83. [Google Scholar] [CrossRef]
- Ovetska, O.; Ovetskyi, S.; Vytiaz, O. Conceptual principles of project management for development of hydrate and other unconventional gas fields as a component of energy security of Ukraine. E3S Web Conf. 2021, 230, 01021. [Google Scholar] [CrossRef]
- Ayoo, C. Towards Energy Security for the Twenty-First Century. In Energy Policy; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Ani, P.C.; Nzereogu, P.U.; Agbogu, A.C.; Ezema, F.I.; Nwanya, A.C. Cellulose from waste materials for electrochemical energy storage applications: A review. Appl. Surf. Sci. Adv. 2022, 11, 100298. [Google Scholar] [CrossRef]
- Ariyamparambil, V.J.; Kandasubramanian, B. A mini-review on the recent advancement of electrospun MOF-derived nanofibers for energy storage. Chem. Eng. J. Adv. 2022, 11, 100355. [Google Scholar] [CrossRef]
- Szroeder, P.; Sagalianov, I.Y.; Radchenko, T.M.; Tatarenko, V.A.; Prylutskyy, Y.I.; Strupiński, W. Effect of uniaxial stress on the electrochemical properties of graphene with point defects. Appl. Surf. Sci. 2018, 442, 185–188. [Google Scholar] [CrossRef]
- Szroeder, P.; Sahalianov, I.; Radchenko, T.; Tatarenko, V.; Prylutskyy, Y. The strain- and impurity-dependent electron states and catalytic activity of graphene in a static magnetic field. Optical Materials 2019, 96, 109284. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.; Ran, S.; Sun, W.; Zhu, Z. Biomass-Derived sustainable carbon materials in energy conversion and storage applications: Status and opportunities. A mini review. Electrochem. Commun. 2022, 138, 107283. [Google Scholar] [CrossRef]
- Ma, L.L.; Liu, W.J.; Hu, X.; Lam, P.K.; Zeng, J.R.; Yu, H.Q. Ionothermal carbonization of biomass to construct sp2/sp3 carbon interface in N-doped biochar as efficient oxygen reduction electrocatalysts. Chem. Eng. J. 2020, 400, 125969. [Google Scholar] [CrossRef]
- Jurkiewicz, K.; Pawlyta, M.; Burian, A. Structure of carbon materials explored by local transmission electron microscopy and global powder diffraction probes. J. Carbon Res. 2018, 4, 68. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.; Li, Z.; Liu, Y. Surface chemical functional groups modification of porous carbon. Recent Pat. Chem. Eng. 2008, 1, 27–40. [Google Scholar] [CrossRef]
- Frackowiak, E.; Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937–950. [Google Scholar] [CrossRef]
- Candelaria, S.L.; Garcia, B.B.; Liu, D.; Cao, G. Nitrogen modification of highly porous carbon for improved supercapacitor performance. J. Mater. Chem. 2012, 22, 9884–9889. [Google Scholar] [CrossRef]
- Sevilla, M.; Yu, L.; Zhao, L.; Ania, C.O.; Titiricic, M.M. Surface modification of CNTs with N-doped carbon: An effective way of enhancing their performance in supercapacitors. ACS Sustain. Chem. Eng. 2014, 2, 1049–1055. [Google Scholar] [CrossRef] [Green Version]
- Kotsyubynsky, V.; Rachiy, B.; Boychuk, V.; Budzulyak, I.; Turovska, L.; Hodlevska, M. Correlation between structural properties and electrical conductivity of porous carbon derived from hemp bast fiber. Fuller. Nanotub. Carbon Nanostructures 2022, 30, 873–882. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Wu, W.; Xu, W.Z.; Chowdhury, M.B.I.; Jhawar, A.K.; Machin, D.; Charpentier, P.A. High-Surface-Area Mesoporous Activated Carbon from Hemp Bast Fiber Using Hydrothermal Processing. J. Carbon Res. 2018, 4, 38. [Google Scholar] [CrossRef] [Green Version]
- Gunasekaran, S.S.; Badhulika, S. High-performance solid-state supercapacitor based on sustainable synthesis of meso-macro porous carbon derived from hemp fibres via CO2 activation. J. Energy Storage 2021, 41, 102997. [Google Scholar] [CrossRef]
- Rosas, J.M.; Bedia, J.; Rodríguez-Mirasol, J.; Cordero, T. HEMP-derived activated carbon fibers by chemical activation with phosphoric acid. Fuel 2009, 88, 19–26. [Google Scholar] [CrossRef]
- Shatskyi, I.; Ropyak, L.; Velychkovych, A. Model of contact interaction in threaded joint equipped with spring-loaded collet. Eng. Solid Mech. 2020, 8, 301–312. [Google Scholar] [CrossRef]
- Kotsyubynsky, V.; Rachiy, B.; Budzulyak, I.; Boychuk, V.; Budzulyak, S.; Hodlevska, M. SAXS and Raman Study of the Structural Evolution in Hemp Bast Fiber Derived Porous Carbon. In Proceedings of the 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP), Odessa, Ukraine, 5−11 September 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, Y.; Li, Y.; Ling, L.; Wu, F.; Wu, C. Mille-feuille shaped hard carbons derived from polyvinylpyrrolidone via environmentally friendly electrostatic spinning for sodium ion battery anodes. RSC Adv. 2017, 7, 5519–5527. [Google Scholar] [CrossRef] [Green Version]
- Boychuk, V.; Kotsyubynsky, V.; Kachmar, A.; Budzulyak, S.; Budzulyak, I.; Rachiy, B.; Yablon, L. Effect of Synthesis Conditions on Pseudocapacitance Properties of Nitrogen-Doped Porous Carbon Materials. J. Nano Res. 2019, 59, 112–125. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cancado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. [Google Scholar] [CrossRef] [PubMed]
- Sing, K.S.; Williams, R.T. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 2004, 22, 773–782. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Sych, N.V.; Trofymenko, S.I.; Poddubnaya, O.I.; Tsyba, M.M.; Sapsay, V.I.; Klymchuk, D.O.; Puziy, A.M. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Appl. Surf. Sci. 2012, 261, 75–82. [Google Scholar] [CrossRef]
- Maity, K.P.; Patra, A.; Prasad, V. Influence of the chemical functionalization of carbon nanotubes on low temperature ac conductivity with polyaniline composites. J. Phys. D: Appl. Phys. 2020, 53, 125303. [Google Scholar] [CrossRef]
- Ardizzone, S.; Fregonara, G.; Trasatti, S. “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 1990, 35, 263–267. [Google Scholar] [CrossRef]
Sample | XRD | Raman Spectroscopy | Porosimetry | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2θ(002),° | d(002), nm | D(002),° | 2θ(10),° | LXRD,° | D Mode, cm−1 | G Mode, cm−1 | ID/IG | LR, nm | SBET, m2/g | Micropore Content, % | |
K1 | 22.05 ± 0.13 | 0.403 | 0.83 | 43.48 ± 0.05 | 5.6 | 1367 | 1590 | 0.67 | 20.5 | 984 | 33 |
KO1 | 23.43 ± 0.06 | 0.379 | 0.92 | 43.57 ± 0.05 | 5.2 | 1366 | 1591 | 0.76 | 18.0 | 1394 | 59 |
KN1 | 23.39 ± 0.04 | 0.380 | 0.56 | 43.40 ± 0.07 | 2.6 | 1370 | 1596 | 2.32 | 5.9 | 1052 | 44 |
KNO1 | 24.30 ± 0.03 | 0.366 | 0.90 | 43.20 ± 0.09 | 2.3 | 1368 | 1598 | 2.22 | 6.1 | 1274 | 38 |
K2 | 22.06 ± 0.09 | 0.403 | 0.75 | 43.34 ± 0.04 | 4.1 | 1369 | 1602 | 1.29 | 10.6 | 1185 | 85 |
KO2 | 23.57 ± 0.06 | 0.377 | 0.76 | 43.20 ± 0.04 | 3.5 | 1377 | 1596 | 1.74 | 7.8 | 1237 | 69 |
KN2 | 23.37 ± 0.04 | 0.381 | 0.56 | 43.42 ± 0.07 | 2.7 | 1368 | 1595 | 2.49 | 5.5 | 1355 | 69 |
KNO2 | 23.68 ± 0.05 | 0.376 | 0.90 | 43.44 ± 0.09 | 2.6 | 1366 | 1587 | 2.11 | 6.5 | 1678 | 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bembenek, M.; Kotsyubynsky, V.; Boychuk, V.; Rachiy, B.; Budzulyak, I.; Kowalski, Ł.; Ropyak, L. Effect of Synthesis Conditions on Capacitive Properties of Porous Carbon Derived from Hemp Bast Fiber. Energies 2022, 15, 8761. https://doi.org/10.3390/en15228761
Bembenek M, Kotsyubynsky V, Boychuk V, Rachiy B, Budzulyak I, Kowalski Ł, Ropyak L. Effect of Synthesis Conditions on Capacitive Properties of Porous Carbon Derived from Hemp Bast Fiber. Energies. 2022; 15(22):8761. https://doi.org/10.3390/en15228761
Chicago/Turabian StyleBembenek, Michał, Volodymyr Kotsyubynsky, Volodymyra Boychuk, Bogdan Rachiy, Ivan Budzulyak, Łukasz Kowalski, and Liubomyr Ropyak. 2022. "Effect of Synthesis Conditions on Capacitive Properties of Porous Carbon Derived from Hemp Bast Fiber" Energies 15, no. 22: 8761. https://doi.org/10.3390/en15228761
APA StyleBembenek, M., Kotsyubynsky, V., Boychuk, V., Rachiy, B., Budzulyak, I., Kowalski, Ł., & Ropyak, L. (2022). Effect of Synthesis Conditions on Capacitive Properties of Porous Carbon Derived from Hemp Bast Fiber. Energies, 15(22), 8761. https://doi.org/10.3390/en15228761