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Abstract: Being the primary cause of inter-area oscillations and due to the fact that they limit the
generation’s output, Low-Frequency Electromechanical Oscillations (LFEOs) represent a real threat to
power system networks. Mitigating their effects is therefore crucial as it may lead to system collapse
if not properly damped. As rotor angle instability is the primary cause of LFEOs, this paper presents
a novel Model-Reference Adaptive Control (MRAC) scheme that enhances its stability. The proposed
scheme is tested using the Single-Machine Infinite Bus (SMIB) network. The results obtained validate
the proposed decentralized control architecture. The robustness of this oscillation damping controller
is verified through simulations in MATLAB/SIMULINK. With Gaussian noise added to the structure
of the generator to emulate small load variations responsible for the rotor angle instability, the results
of the simulations show that the rotor angle remains stable. Furthermore, when subjected to faults,
the recovery time is less than 500 ms.

Keywords: MRAC; oscillation damping; inter-area oscillations; Gaussian noise; small-signal stability;
SMIB; MATLAB/SIMULINK

1. Introduction
1.1. Background

Power systems are vulnerable to small-signal stability problems as a result of a lack
of damping or synchronizing torques [1–3], more notably inadequate damping of oscil-
lations [4]. This vulnerability is due to restricted transmission networks and the present
liberalized electrical framework, which pushes power systems closer to their intended
technological limits. Power systems are prone to Low-Frequency Electromechanical Os-
cillations (LFEOs) generated by small fluctuations in the system load. The shift from a
stable to an unstable state is undoubtedly induced by a change in the operating condition,
resulting in the appearance of contingencies such as ringdown oscillations. A rapid system
collapse is therefore expected if not properly damped [5]. As a consequence of the presence
of high damping observed in power systems with short lines, oscillations do not cause
any problem therein [6]. However, the system’s power transfer capability can be highly
affected as they represent, under certain operating conditions, a serious threat to the system
stability [6,7]. The stability of the rotor angle must be assured when it oscillates due to
LFEOs, and hence the ability of the interconnected synchronous machines to maintain
synchronism is crucial. The nature of a power system’s response to small disturbances
is heavily dependent on factors including the initial operating state, the strength of the
transmission system, and the type of generator excitation control employed. In the case of
generators connected radially to a large power system, the instability is caused by a lack of
sufficient synchronization torque in the absence of automated voltage regulators. This issue
changes into one of guaranteeing adequate oscillation damping when there are enough
acting voltage regulators. Additionally, oscillations of increasing amplitude are typically
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indicative of instability [4]. These small disturbances are classified by their interaction
characteristics as [6,8]:

• Inter-area mode oscillations;
• Local plant mode oscillations;
• Interplant mode oscillations;
• Torsional (sub-synchronous) mode oscillations;
• Control-mode oscillations.

Alternatively, they can be classified by the operating conditions of the power system as:

• Ambient (spontaneous) oscillations;
• Transient oscillations;
• Forced oscillations.

Inter-area oscillations have been the cause of major blackouts throughout the world [9],
with numerous ways to mitigating their impact having been explored since the 1960s.
A reasonably complete description of numerous blackouts across the world, including the
biggest three, namely, the 14 August 2003 US and Canada blackout, the 28 September 2003
Italian blackout, and the 4 November 2006 European Incident, is presented in [9]. From
a study of these events, the voltage collapse, cascade overload, frequency collapse, loss
of synchronism, and system separation were listed as causes, with the first two being the
major types of incidents leading to such contingencies [7]. Power system oscillations were
identified as both initiating and triggering events in all of these accidents. Consequently,
there is a need for a control strategy that can implement the necessary corrective action
within a short period of time after they occur [7]. The Wide-Area Measurement System
(WAMS), which is based on Phasor Measurement Units (PMUs) and the Global Positioning
System (GPS), was adopted as a result of the shortcomings of the previously employed
SCADA/EMS systems with their 1–5 s measurement intervals, which are unsuitable for
any real-time control. WAMS allows system operators to obtain more efficient and speedy
real-time system information and achieve real-time control [9]. The oscillations that cause
system collapse involve groups of generators in one location swinging against another
group in another location. They are referred to as inter-area oscillations. Those involving
generators within an area, also known as local oscillations, are generally damped accurately
by the standard Power System Stabilizers (PSSs) using generators’ speed or speed deviation
as inputs. Those stabilizers’ outputs feed the excitation system.

Efforts to mitigate such contingencies have led to various control mechanisms be-
ing proposed. While the use of decentralized schemes with controllers added at each
generating unit was proposed in some of those methods, others opted for centralized
architectures where a controller is usually added at the tie-line. However, the authors
of [10–12] used methods that can be classified as hybrids in a sense that their proposed
controllers comprised a small bit of each of the aforementioned architectures. Oscillation
damping controllers considered as having centralized architecture are often referred to as
Wide-Area Controllers. Such a controller was proposed by [13] in the form of an optimal
control scheme considering nonlinear dynamics associated with the DC-link capacitor
voltage. A Wide Area Damping Controller (WADC) based on the Network Predictive Con-
trol (NPC) was introduced by [14]. This work extended the authors’ previously proposed
Generalized Predictive Control (GPC) by taking into consideration and mitigating the im-
pact of communication delays of the wide-area signals from the Wide-Area Measurement
System (WAMS). A non-smooth optimization method was introduced by [15] in designing
a fixed-order Ricatti-based controller that is said to overcome the limitations of controllers
based on H∞, as proposed by [16] H∞-based control algorithms that have also been em-
ployed in decentralized oscillation damping architectures, as described in [17,18]. Other
decentralized controllers include [19,20]. While the first group proposed an adaptive fuzzy
sliding-mode control through a Wavelet Neural Network (WNN) sliding-mode control, the
latter presented an Adaptive Model Predictive Controller (AMPC).
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The application of adaptive control in power systems was first documented in the
1980s by [21], who conducted a comparison study between adaptive-based stabilizers and
those based on fixed gains and their impact on generator excitation control. The authors
chose not to employ algorithms with implicit identification, such as the MRAC, and instead
proposed clearly identifiable controllers such as the Optimal Linear Quadratic (LQ) and
Pole Assigned (PA) controllers while the adaptive controller is set as a transient gain stabi-
lizer. To enhance the dynamic stability of power systems, the authors in [22] proposed a
decentralized multivariable self-tuning adaptive control. A single-input/multiple-output
(SIMO) design was instead explored, with the excitation signal as the input and the ter-
minal voltage, shaft speed, and output power as the outputs. This contrasted with many
prior designs such as [21], where controllers were applied to the excitation based on a
SISO configuration. The authors of [21,22] both argued against the MRAC owing to the
difficulties in selecting an adequate reference model. However, as stated in [9], the third
and fourth-order representations of synchronous generators are sufficient for controller
design. The authors’ legitimate concern is therefore narrowed to selecting an appropriate
third or fourth-order reference model. Another interesting adaptive control strategy is
presented in [23]. Referred to as “Gain-Scheduled Sliding-Mode-Type Iterative Learning
Control”, it is a combination of Sliding-Mode (SM) control and Iterative Learning (IL)
control, which is a memory-based control approach aimed at systems that perform repeated
or periodic operations over a finite time domain [23]. MRAC occurrences in power system
stability can be found in [24], where it is employed for the design of an adaptive scheme for
a Permanent-Magnet (PM) Synchronous Motor, in [25] to improve the Low-Voltage Ride
Through (LVRT) capabilities for grid integration of wind energy systems, in [26] to improve
transient stability of Virtual Synchronous Generators (VSG), or in [27] to regulate the inner
grid and the outside photovoltaic (PV) voltage control loop.

1.2. Contribution of this Manuscript

With power systems being highly nonlinear and prone to disturbances that are often
inherent to them, such as small variations in the system load, this paper extends the
knowledge in the existing literature by proposing a novel MRAC-based decentralized
algorithm. Though the results of the controller presented by [23] are promising, it may
not be robust enough to handle the non-stationary type of signals since the main type of
disturbances considered are LFEOs which are inherent to power system networks. The
proposed controller enhances the rotor angle stability and is thus suitable to mitigate the
effect of inter-area oscillations in power systems. Unlike the approaches presented in the
literature where controllers are designed based on a linearized model [28,29], the proposed
control algorithm is constructed from the nonlinear equations that describe the dynamics
of the synchronous generator. Furthermore, the reference model of a MRAC is a shaping
filter aimed at achieving a desired command following and can be chosen as a Linear
Time-Invariant (LTI) model that captures all of the performance specifications including
robustness [30]. A Linear Quadratic Regulator that provides optimally control gains is
therefore proposed to stabilize this model.

The novelties of this paper include:

• The application of adaptive control theory in the design of the proposed power system
inter-area oscillation damping controller.

• The application of an adaptive augmentation design approach for the controller design,
i.e., the nominal controller is augmented with an adaptive controller. This method is
more prevalent and more robust than a fully adaptive control design [30].

• The application of Linear Quadratic Regulator (LQR) control theory in the design
of the nominal controller. This regulator is aimed at stabilizing the time-invariant
reference model.

• The introduction of Gaussian noise as a disturbance to better emulate small variations
in the system load and to assess the performance of the proposed control scheme.
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1.3. Organisation of the Manuscript

The rest of the paper is organized as follows: Section 2 introduces the synchronous
generator dynamics and modelling, with the focus on fourth-order representation. Sec-
tion 3 presents the proposed MRAC-based oscillation damping controller. The simulation
results based on the proposed MRAC-based power system inter-area oscillation damping
controller are presented in Section 4. Section 5 covers the discussion of the results, while
Recommendations for future works and improvements are proposed in Section 6.

2. Synchronous Generator Dynamics and Modelling

The equation governing the motion of synchronous machines is based on this principle
of dynamics:

T = ι× α (1)

where T is the accelerating torque, ι is the moment of inertia, and α is the angular accelera-
tion.

From (1), the following expression can be derived:

2H
wsn

d2δm

dt2 = Pm(pu)− Pe(pu) (2)

where H is the ratio between the stored kinetic energy (in megajoules) at the synchronous
speed (wsn) over the machine ratio in MVA, δm is the angular displacement from the
synchronously rotating reference axis, Pm is the mechanical power, and Pe is the electrical
power. However, with the system inertia being the intrinsic capacity of online synchronous
machines to resist rapid changes in generation or load, the rising participation of renewable
generators such as wind and solar to power system networks is mentioned to lead to a
decrease in total system inertia [31]. This is resultant from the inability of these renewable
energy sources (RES) to provide sufficient inertia to the grid they are connected to [31–33].

In this paper. no RES penetration is considered.
Equation (2) is also referred to as the swing equation, and an inspection of the swing

curves of all machines in the system indicates whether they remain in synchronism after
a disturbance. Electromechanical oscillations are inherent to all power systems. Hence,
the analysis developed has the fundamental aim of understanding these phenomena
in qualitative terms. Consequently, reference can be made to the simplest scheme of a
generator (or area) connected to an infinite system; this scheme is valid in the case of
both local and inter-area oscillations [11]. It is also referred to as a Single Machine Infinite
Bus (SMIB). It is this very representation that is used to derive various orders of the
synchronous generator, with the word order referring to the set of differential equations
used to characterize SMIB. Higher orders such as the third, fourth, fifth, and seventh
can also be used to describe it, and details on these equations and the domains where
each is applied are found in [4,9,34]. The third-order model is said to be suitable for
studying control systems of generators and their synthesis, as well as the dynamic analysis
of small-signal stability [9]. As for the fourth-order model, it is sufficiently accurate to
analyse electromechanical dynamics [35]. As emphasized by [9], it is suitable to model the
generator in the full range of (local and inter-area) electromechanical oscillations. Hence,
fourth-order models will be utilized in the controller’s design.

2.1. Fourth-Order Model Representation of Synchronous Generators

As illustrated in [11,34,36], the fourth-order model representation of the synchronous
generator can be seen as an extension of the third-order model, with the damper winding
in the q-axis taken into consideration. This can be written as [11]:

.
x1 = ω0x2 (3a)

.
x2 =

1
J
(Tm − Te − Dx2) (3b)
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.
x3 =

1
T′qo

(
−x4 +

(
xq − x′q

)
iq

)
(3c)

.
x4 =

1
T′do

(
E f d − x3 −

(
xd − x′d

)
id

)
(3d)

where

id =
e′q −V cos δ

x′q

iq =
V sin δ− e′d

x′q

Pe ∼=
V
x′d

e′q sin δ− V
x′q

e′d cos δ +
V2

2

(
1
x′q
− 1

x′d

)
sin(2δ)

T′qo: q-axis open-circuit time constant
.
e′q: q-axis transient emf
.
e′d: d-axis transient emf
Let

X =


x1
x2

x3
x4

 =


δ
ω

e′d
e′q

 and U =

[
u1
u2

]
=

[
EFD
Pm

]
(4a)

The state-space representation can be written as in Equation (4b):

.
X =


0 1 0 0

0 −D
J 0 0

0 0 − 1
x′q T′qo

(
x′q + xq − x′d

)
0

0 0 0 − 1
T′do

(
xd
x′d

)




δ

ω

e′d
e′q

+


0 0

0 − 1
J

0 0
1

T′do
0


[

EFD

Pm

]
+



0
1
J

(
e′dV
x′q

cos δ− e′qV
x′d

sin δ− V2

2 sin 2δ

(
1
x′q
− 1

x′d

))
V

T′qo

(
xq−x′d

x′q

)
sin δ

V
T′do

(
xd
x′d
− 1
)

cos δ


(4b)

2.2. Synchronous Generator Modelling

Ambient inter-area oscillations occur in power systems due to poor damping and are
mainly excited by constantly varying loads. “Inter-area oscillation is a complex and nonlin-
ear phenomenon, and its damping characteristic is dictated by the strength of the transmis-
sion path, the nature of loads, the power flow through interconnections and the interaction
of the loads with the dynamics of generators and their associated controls” [6,37,38].

While ordinarily stable, with enough stress, oscillations may cause the Hopf bifur-
cation to occur where the real parts of the complex conjugate eigenvalue pair cross the
imaginary axis making the system unstable [6,39]. Because of the high impedance, the
generator’s amortisseur windings lose their effect on inter-area oscillation damping. The
same is true for adverse interactions between automated controls, particularly Automatic
Voltage Regulators (AVRs) [7]. Regardless of the potential adverse effects of the automated
controls, when the transmission path is weak, the uncontrolled system damping for these
type of oscillations is frequently low [9]. Additionally, when the interconnecting lines’
loading increases, the damping decreases. This is due to the increasing angle difference
between oscillating generator groups, with the voltage oscillations at each generator termi-
nal causing the AVRs to act, resulting in negative damping [6,9]. To mitigate the effect of
such oscillations, knowledge of the system characteristics is of the utmost importance. The
system characteristics through its rotor angle are presented in Figure 1 with the focus being
on the fourth-order representation model since it encompasses the third. Furthermore, this
representation will be the only one utilized for the remainder of this paper.
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Figure 1. Synchronous generator rotor angle when EFD = 1, Pm = 1, and no initial conditions.

3. Proposed Model-Reference Adaptive Control for Power System Inter-Area
Oscillation Damping
3.1. Background

Designing a controller for a given system implies learning how that very system
behaves physically, and this is oftentimes achieved through its mathematical representa-
tion [30]. As shown in Equation (6), the synchronous generator dynamics possess parameter
variations that are due to their very nonlinear structure. Hence, reducing the system uncer-
tainty as much as practically possible is of the utmost importance. This section is structured
as follows. Firstly, an overview of the composition of such a controller is introduced.
Thereafter, the structure of the MRAC for the synchronous generator is presented. Two
classes of adaptive control schemes are generally identified: the direct and indirect meth-
ods [30,40,41]. Though either one of the classes are used in adaptive control architectures,
often, they are combined and referred to as composite [30,41], combined, or hybrid-direct
adaptive control [30,42]. Further reading in relation to the MRAC can be found in [30,40,43],
with Figure 2 showing the structure of the MRAC system. The proposed controller uses the
direct method.

Figure 2. Typical Model-Reference Adaptive Control structure.

The adaptive control is formulated as a tracking control problem where the adaptation
is aimed at tracking the error between a given reference model and the system output [30].
In a sense, the former is a shaping filter that is used to achieve the desired behaviour. This
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error can either be based on system states or output error. From the above, it is therefore
important that it is well designed. Considering that the objective of an adaptive control
system is to adapt to a given system’s uncertainty so that the tracking error is minimized
(e(t)→ 0), the states of this very system must follow the reference model perfectly, i.e.,
x(t)→ xm(t) [30].

3.2. Controller Design

Figure 3 depicts the steps followed in the design of the proposed controller. An LQR
controller is applied to the model matching reference model. The error dynamics are then
used in the adaptation law which, combined with the nominal controller (LQR), constitute
the control signal.

Figure 3. MRAC design architecture for power system inter-area oscillation damping structure.



Energies 2022, 15, 8762 8 of 15

Equation (6) can be rewritten as
.
x = AX + BU + f(x). This can be further modified as

in Equation (5):
.
x = f(x) + B

[
u + BT

(
BBT

)−1
Θ∗TΦ(x)

]
(5)

where B ∈ Rnx Rm is a full-rank, non-square wide matrix with n < m and rank(B) = n [30],
Θ∗ ∈ Rlx Rm is a constant, unknown matrix, and Φ(x) ∈ Rl is a vector of known and
bounded basis functions. BT(BBT)−1 is the right pseudo-inverse of the control matrix and(
BBT)−1 must exist to avoid singularity in the controller.
∃ (Adjustable control gains) Kx and Kr that satisfy the model matching conditions as

described in Equation (6a,b) [30]:

A + BKx = Am (6a)

BKr = Bm (6b)

LQR control theory is employed to find the optimal feedback matrix that will ensure
the stability of the chosen reference model. The derivations are shown in Appendix A.
Considering Equation (5), the adaptive controller is therefore designed as:

u = un + ua (7)

where
un = Kxx + Krr is the nominal controller.
ua = −BT(BBT)−1

ΘTΦ(x) is the adaptation component.
Defining Θ̃(t) = Θ(t) − Θ∗ as the estimation error, the closed-loop synchronous

generator model is expressed as:

.
x = (A + BKx)x + BKrr− BT

(
BBT

)−1
Θ̃TΦ(x) (8)

Thus, the closed-loop tracking error is described as:

.
e =

.
xm −

.
x = Ame + BT

(
BBT

)−1
Θ̃TΦ(x) (9)

Choosing the following Lyapunov candidate [30]

.
V = −ΓΦ(x)eTPB (10)

and from Barbalat’s lemma, the tracking error can be shown to be asymptotically stable
with e(t)→ 0, ∀t→ ∞ [30].

4. Simulation Results

The results are presented in the form of case studies starting from the steady state
condition. The performance of the proposed algorithm is assessed by setpoints change,
disturbances in the input signal, and faults at t = 3 s and t = 9 s, as well as the introduction of
internal disturbances. These are assumed to have the characteristics of Gaussian noise with
a variance of unity and a sample time of 0.001. Furthermore, they are aimed at replicating
low-frequency inter-area oscillations caused by small variations in loads. The simulations
are conducted with no initial conditions, and the initial set-points are EFD = 1 and Pm = 1.
Figures 4–9 show the system response for each of the case studies. With angle instability
being the root cause of inter-area oscillations, the system’s response in this section will refer
to the rotor angle’s response. A detailed summary of parameters used in the simulations
can be found in Appendix B.

Case Study 1. Steady state with no initial conditions.
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Figure 4. Rotor angle when EFD = 1, Pm = 1, and learning rate = 10.

Case Study 2. Setpoints change—EFD = 2.395 with no initial conditions.

Figure 5. Rotor angle when EFD = 2.395, Pm = 1, and learning rate = 10.

Case Study 3. Setpoints change—Pm = 0.77778 and no initial conditions.

Figure 6. Rotor angle when EFD = 1, Pm = 0.77778, and learning rate = 10.

Case Study 4. Added disturbances at t = 0 s and no initial conditions.
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A normally (Gaussian) distributed random signal with a variance of 1 and 0.001
sample time is added onto the system. In all subsequent test cases, and whenever internal
or external noise is added onto the system, the signal with the characteristics illustrated
in Figure 7a is utilized. Furthermore, to better emulate inter-area oscillations which are
inherent to a given power system, this noise is added at the very beginning of the simulation.
While external disturbances in this paper pertain to noise added onto the input signal,
internal disturbances pertain to those that make the very system.

(a) (b)

Figure 7. Synchronous generator subjected to Gaussian noise. (a) Gaussian noise characteristics; (b)
rotor angle when EFD = 1, Pm = 1, and learning rate = 10.

Case Study 5. Added fault at t = 9 s for a duration of ~300 ms—No setpoint change and no initial
conditions.

(a) (b)

Figure 8. Synchronous generator subjected to fault at t = 9 s. (a) Fault characteristics; (b) rotor angle
when EFD = 1, Pm = 1, learning rate = 10, and fault at t = 9 s.

Case Study 6. Two added faults at t = 3 s and t = 9 s for a duration of ~100 ms and ~300 ms,
respectively. Furthermore, setpoints have been changed and disturbances in the form of Gaussian
noise, whose characteristics are presented in Figure 8a, are added.

(a) (b)

Figure 9. Synchronous generator subjected to Gaussian noise and fault at t = 3 s and t = 9 s,
respectively. (a) t = 3 s fault characteristics; (b) rotor angle when EFD = 1, Pm = 1, learning rate = 10,
and faults.
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5. Discussion

To validate the proposed MRAC-based oscillation damping controller, the synchronous
generator was subjected to various contingencies. They varied from setpoint changes in its
two inputs, namely EFD and Pm, to faults. Furthermore, to emulate small variations in loads
that are mainly responsible for inter-area oscillations, internal disturbances were added.
Notwithstanding the type of disturbances, the rotor angle maintained a considerably stable
response, with an overshoot of less than 5%, a rise time less than 100 ms, non-existent
steady-state error, and a good recovery time of less than 800 ms. This recovery time was
achieved when the generator was subjected to disturbances in the form of a normally
(Gaussian) distributed random signal with a variance of 1 and 0.001 sample time, setpoint
changes, as well as faults. The latter were introduced at the third and ninth second for
a duration of 100 ms and 300 ms, respectively. The synchronous generator, through its
rotor angle, remained stable irrespective of the contingencies. Furthermore, considering
the time of interest is 3–5 s for standard power systems and 10 s for large ones with weak
interconnections, the proposed novel scheme is very robust. The various test cases together
with their results are summarized in Table 1. Characteristics such as the rotor angle’s rise
time, overshoot, and recovery time are presented therein. Nevertheless, this can be further
refined by taking into consideration the penetration of RES into power system grids as they
affect the overall system inertia.

Table 1. Simulation results of the proposed MRAC.

EFD Pm
Gaussian

Noise Fault
Rise
Time
(ms)

Slew
Rate (/s)

Overshoot
(%)

Steady-
State

Error (%)

Recovery
Time
(ms)

Case 1 1 1 0 0 83.308 21.528 4.737 N/A N/A

Case 2 2.395 1 0 0 88.852 21.528 3.646 N/A N/A

Case 3 1 0.77778 0 0 83.314 9.525 4.737 N/A N/A

Case 4 1 1 Internal 0 86.433 9.301 4.737 N/A N/A

Case 5 1 1 0 Impulse t = 9 s 84.207 9.475 4.147 N/A N/A

Case 6 2.395 0.77778 Internal and to
input signal

Impulse t = 3 s
and t = 9 s 87.784 9.218 4.046 N/A ~350 &

~720

Another aspect to consider is saturation. From the simulations, the inputs are bounded
such that EFD, Pm ∈ [0.1, 4] without disturbance and EFD, Pm ∈ [0.7, 4] when disturbances
are introduced. This shown in Figure 10a–c.

(a)

Figure 10. Cont.
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(b)

(c)

Figure 10. Synchronous generator rotor angle with bounded inputs. (a) Inputs varied from 0.1 to 7
without disturbance; (b) inputs at 0.1 with Gaussian noise; (c) inputs at 0.7 with noise.

Therefore, the performance of the proposed controller cannot be guaranteed for in-
put values ∈ [5, ∞] without disturbance and for values ∈ ([−∞, 0 .7] ∪ [4,+∞]) when
subjected to disturbances. Moreover, the adaptation gain is limited to values ∈ [2, 100].

6. Recommendations

The control algorithm presented in this paper can be further refined so that robustness
is ensured with a fast adaptation. This can be achieved by utilising L1 adaptive control
theory. With this type of architecture, the adaptation is decoupled from robustness, and the
transient performance together with the said robustness are guaranteed in the presence of
fast adaptation [44]. As for its validation, an IEC-61850-based hardware-in-the-loop setup
in lieu of a simulation-based approach can be explored for real-time implementation. A
real-time hardware platform such as the Real-Time Digital Simulator would be ideal for
real-time implementation. Taking into consideration RES penetration, this work can be
further refined by leveraging the work of [31–33] to ensure that the inertia of the system is
maintained. Lastly, the controller presented in [23] can be explored for transient stability
and perhaps modified for small-signal rotor angle stability enhancement.
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Appendix A. Linear Quadratic Regulator

Given
.
xm = Amxm + Bmum, the quadratic optimal regulator problem implies finding

the matrix K of the optimal control vector um(t) = −Kxm(t) to minimize the performance
index. This optimal configuration is illustrated in Figure A1.

Figure A1. Optimal regulator.

From Figure A1,
.

xm is the reference model’s dynamics, with the performance index
expressed as [35]:

J =
∫ ∞

0
(xm

TQxm + um
T Rum)dt (A1)

where
Q : can be either a positive-definite Hermitian, a positive semi-definite Hermitian, or a

real symmetric matrix.
R : positive-definite Hermitian or real symmetric matrix.
The optimal matrix K of the optimal control vector can be expressed as [36]:

K =
(

TT
)−1

Bm
TP = R−1Bm

TP (A2)

with R = TTT.
Let P be a positive-definite Hermitian or real symmetric matrix, then the optimal

control law um(t) = −Kxm(t) can thus be given by:

um(t) = −R−1Bm
TPxm(t) (A3)

with the expression of P derived from the reduced-matrix Riccati equation below [36]:

Am
TP + PAm − PBmR−1BT

mP + Q = 0 (A4)
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Appendix B. Generator Parameters

Table A1. Synchronous generator parameters [9].

Acronym Value

xd 1.8 p.u
x′d 0.3 p.u
xq 1.7 p.u
x′q 0.55 p.u
x′′q 0.25 p.u
x′′d 0.25 p.u
D 0
H 6.5
S 900 MVA

T′qo 0.4 s
T′do 8 s
T′′do 0.03 s
T′′qo 0.05 s
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