Low-Carbon Transition Pathway Planning of Regional Power Systems with Electricity-Hydrogen Synergy
Abstract
:1. Introduction
2. Prediction of Hydrogen Load and Uncertainty Parameter
2.1. Preditcion of Hydrogen Load
2.2. Equivalent Electric Load of Hydrogen
2.3. Investment Cost Forecasts for Key Equipment
3. Transition Path Planning Model with Electro-Hydrogen Synergy
3.1. Objective
3.2. Constractions
4. Case Study
4.1. Results of the Load Forecast
4.2. Forecasted Equipment Investment Costs
4.3. Comparative Analysis of Planning Paths
- Scenario 1: no hydrogen load is considered
- Scenario 2: considering hydrogen-equivalent electrical loads in industry, transport and heating
- Scenario 3: considering hydrogen load and hydrogen storage in power systems
4.3.1. Growth in Installed Capacity of Generations
4.3.2. Equipment of Hydrogen Energy System
4.3.3. Cost and Carbon Emission
4.3.4. Simulation Results of Daily Operation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Klatzer, T.; Bachhiesl, U.; Wogrin, S. State-of-the-art expansion planning of integrated power, natural gas, and hydrogen systems. Int. J. Hydrog. Energy 2022, 47, 20585–20603. [Google Scholar] [CrossRef]
- White, M.T.; Bianchi, G.; Chai, L.; Tassou, S.A.; Sayma, A.I. Review of supercritical CO2 technologies and systems for power generation. Appl. Therm. Eng. 2021, 185, 116447. [Google Scholar] [CrossRef]
- Zappa, W.; Junginger, M.; van den Broek, M. Is a 100% renewable European power system feasible by 2050? Appl. Energy 2019, 233–234, 1027–1050. [Google Scholar] [CrossRef]
- Yang, E.; Mohamed, H.O.; Park, S.-G.; Obaid, M.; Al-Qaradawi, S.Y.; Castaño, P.; Chon, K.; Chae, K.-J. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies. Bioresour. Technol. 2021, 320, 124363. [Google Scholar] [CrossRef]
- Wilberforce, T.; Olabi, A.; Sayed, E.T.; Elsaid, K.; Abdelkareem, M.A. Progress in carbon capture technologies. Sci. Total Environ. 2021, 761, 143203. [Google Scholar] [CrossRef] [PubMed]
- Parra, D.; Valverde, L.; Pino, F.J.; Patel, M.K. A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renew. Sustain. Energy Rev. 2019, 101, 279–294. [Google Scholar] [CrossRef]
- Witkowski, A.; Rusin, A.; Majkut, M.; Stolecka, K. Analysis of compression and transport of the methane/hydrogen mixture in existing natural gas pipelines. Int. J. Press. Vessel. Pip. 2018, 166, 24–34. [Google Scholar] [CrossRef]
- Thomas, J.M.; Edwards, P.P.; Dobson, P.J.; Owen, G.P. Decarbonising energy: The developing international activity in hydrogen technologies and fuel cells. J. Energy Chem. 2020, 51, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Rajalakshmi, N.; Balaji, R.; Ramakrishnan, S. Recent developments in hydrogen fuel cells: Strengths and weaknesses. In Sustainable Fuel Technologies Handbook, 14th ed.; Suman, D., Chaudhery, M.H., Eds.; Academic Press: New York, NY, USA, 2021; pp. 431–456. [Google Scholar] [CrossRef]
- Lin, R.; Lu, Y.; Xu, J.; Huo, J.; Cai, X. Investigation on performance of proton exchange membrane electrolyzer with different flow field structures. Appl. Energy 2022, 326, 120011. [Google Scholar] [CrossRef]
- Pan, G.; Gu, W.; Qiu, H.; Lu, Y.; Zhou, S.; Wu, Z. Bi-level mixed-integer planning for electricity-hydrogen integrated energy system considering levelized cost of hydrogen. Appl. Energy 2020, 270, 115176. [Google Scholar] [CrossRef]
- Aunedi, M.; Yliruka, M.; Dehghan, S.; Pantaleo, A.M.; Shah, N.; Strbac, G. Multi-model assessment of heat decarbonisation options in the UK using electricity and hydrogen. Renew. Energy 2022, 194, 1261–1276. [Google Scholar] [CrossRef]
- Net Zero by 2050, A Roadmap for the Global Energy Sector. Available online: https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf (accessed on 6 October 2022).
- Zhang, Y.Z.; Zhang, X.P.; Lan, L.H. Robust optimization-based dynamic power generation mix evolution under the carbon-neutral target. Resour. Conserv. Recycl. 2022, 178, 106103. [Google Scholar] [CrossRef]
- Jin, X.-B.; Zheng, W.-Z.; Kong, J.-L.; Wang, X.-Y.; Bai, Y.-T.; Su, T.-L.; Lin, S. Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization. Energies 2021, 14, 1596. [Google Scholar] [CrossRef]
- Mi, Y.; Liu, C.; Yang, J.; Zhang, H.; Wu, Q. Low-carbon generation expansion planning considering uncertainty of renewable energy at multi-time scales. Glob. Energy Interconnect. 2021, 4, 261–272. [Google Scholar] [CrossRef]
- Du, E.S.; Sun, Y.L.; Zhang, N.; Chen, S.S.; He, G.X.; Kang, C.Q. Transmission Expansion Planning Model Facilitating Low-Carbon Power Sources’ Development. Power Syst. Technol. 2015, 39, 2725–2730. [Google Scholar] [CrossRef]
- Li, Z.; Chen, S.; Dong, W.; Liu, P.; Du, E.; Ma, L.; He, J. Low Carbon Transition Pathway of Power Sector Under Carbon Emission Constraints. Proc. CSEE 2021, 41, 3987–4001. [Google Scholar] [CrossRef]
- Writing Group of the General Report. General report of “the transformation strategy and pathway of low carbon development in China”. China Popul. Resour. Environ. 2020, 30, 1–25. [Google Scholar] [CrossRef]
- Liu, G.; Li, M.; Zhou, B.; Chen, Y.; Liao, S. General indicator for techno-economic assessment of renewable energy resources. Energy Convers. Manag. 2018, 156, 416–426. [Google Scholar] [CrossRef]
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrog. Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Internatinal Renewable Energy Agency. Green Hydrogen: A Guide to Policy Making. Available online: https://irena.org/publications/2020/Nov/Green-hydrogen (accessed on 5 November 2022).
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability 2021, 13, 298. [Google Scholar] [CrossRef]
- China Hyrogen Alliance. White Paper on China’s Hydrogen Energy and Fuel Cell Industry. 2019. Available online: http://h2cn.org.cn/publicati/215.html (accessed on 4 November 2022).
- National Bureau of Statistics of China. 2021 China Statistical Yearbook. Available online: http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm (accessed on 6 October 2022).
- Liu, W.J.; Sun, L.; Li, Z.L. Trends and future challenges in hydrogen production and storage research. Environ. Sci. Pollut. Res. 2020, 27, 31092–31104. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, J.; Bradley, T.; Winkler, E.; Gearhart, C. Predicting demand for hydrogen station fueling. Int. J. Hydrog. Energy 2022, 45, 32298–32310. [Google Scholar] [CrossRef]
- Huang, J.; Li, W.; Wu, X. Forecasting the Hydrogen Demand in China: A System Dynamics Approach. Mathematics 2022, 10, 205. [Google Scholar] [CrossRef]
- Fan, G.F.; Peng, L.L.; Hong, W.C.; Sun, F. Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression. Neurocomputing 2016, 173, 958–970. [Google Scholar] [CrossRef]
- Tahmasbi, R.; Hashemi, S.M. Modeling and Forecasting the Urban Volume Using Stochastic Differential Equations. IEEE Trans. Intell. Transp. Syst. 2014, 15, 250–259. [Google Scholar] [CrossRef]
Year | Gross Regional Output Value per Capita | Share of Primary Industry | Share of Secondary Industry | Share of Tertiary Industry | Gross Regional Product | Total Population | Urban Population | Rural Population | Total Retail Sales of Social Consumer Goods | Total Social Electricity Consumption |
---|---|---|---|---|---|---|---|---|---|---|
2007 | 10,346 | 14.3 | 47.3 | 38.4 | 2702.4 | 2548 | 822 | 1726 | 833.3 | 614.74 |
2008 | 12,110 | 14.6 | 46.3 | 39.1 | 3166.8 | 2551 | 856 | 1695 | 1023.6 | 677.76 |
2009 | 12,872 | 14.7 | 45.1 | 40.2 | 3387.6 | 2555 | 891 | 1664 | 1183.0 | 705.51 |
2010 | 16,113 | 14.5 | 48.2 | 37.3 | 4120.7 | 2560 | 925 | 1635 | 1394.5 | 804.43 |
2011 | 19,595 | 13.5 | 47.4 | 39.1 | 5020.4 | 2564 | 953 | 1612 | 1648.0 | 923.45 |
2012 | 21,978 | 13.8 | 46.0 | 40.2 | 5650.2 | 2578 | 999 | 1579 | 1906.5 | 994.56 |
2013 | 24,539 | 14.0 | 45.0 | 41.0 | 6330.7 | 2582 | 1036 | 1546 | 2368.8 | 1073.25 |
2014 | 26,433 | 13.2 | 42.8 | 44.0 | 6836.8 | 2591 | 1080 | 1511 | 2668.3 | 1095.48 |
2015 | 26,165 | 14.1 | 36.7 | 49.2 | 6790.3 | 2599 | 1123 | 1477 | 2907.2 | 1098.72 |
2016 | 27,643 | 13.7 | 34.9 | 51.4 | 7200.4 | 2610 | 1166 | 1444 | 3184.4 | 1065.15 |
2017 | 28,496 | 11.5 | 34.3 | 54.1 | 7459.9 | 2626 | 1218 | 1408 | 3426.6 | 1164.37 |
2018 | 31,336 | 11.2 | 33.9 | 54.9 | 8104.1 | 2637 | 1258 | 1379 | 3428.3 | 1289.52 |
2019 | 32,994 | 12.0 | 32.8 | 55.1 | 8718.3 | 2647 | 1284 | 1363 | 3700.3 | 1288 |
2020 | 35,995 | 13.3 | 31.6 | 55.1 | 9016.7 | 2502 | 1307 | 1195 | 3632.4 | 1376 |
Year | Methanol (Tonnes) | Ammonia (Tonnes) | Crude Oil Processing Volume (104 tun) | Buses | Total City Gas Supply (Billion Cubic Metres) |
---|---|---|---|---|---|
2007 | 57,687 | 777,460.5 | / | / | / |
2008 | 62,062 | 658,704.5 | / | / | / |
2009 | 54,008.3 | 761,022.8 | / | / | / |
2010 | 50,514.72 | 763,833.1 | 1383.5 | 4382 | 7.29 |
2011 | 364,619.9 | 733,376 | 1613.5 | 4965 | 8.81 |
2012 | 564,232 | 431,337.9 | 1520.5 | 5214 | 11.21 |
2013 | 506,165.3 | 700,655.1 | 1554.2 | 5359 | 13.4 |
2014 | 727,115.9 | 575,393 | 1446.4 | 5488 | 15.92 |
2015 | / | / | 1424.3 | 5275 | 16.19 |
2016 | / | / | 1341.5 | 5233 | 16.86 |
2017 | / | / | 1440.8 | 5850 | 20.37 |
2018 | / | / | 1440 | 6519 | 23.51 |
2019 | / | / | 1465.6 | 7314 | 25.2 |
2020 | / | / | 1467.5 | 6408 | 25.44 |
Equipment | 2016 | 2018 | 2020 | 2022 |
---|---|---|---|---|
Alkaline electrolytic cell | 3000~4000 | 3000~4000 | 2000~3000 | 2000~3000 |
Hydrogen storage tank | 5000~6000 | 4000~5000 | 3000~4000 | 3000~4000 |
Fuel cell | 6000~7000 | 5000~6000 | 4000~5000 | 4000~5000 |
Power | 2016 | 2018 | 2020 | 2022 |
---|---|---|---|---|
Wind power | 2000~3000 | down24~30% | down 37~49% | 2000~3000 |
Photovoltaic power | 1000~3000 | down 24~30% | down 50~60% | 1000~3000 |
Hydroelectricity | 7000~8000 | down 0.2~1% | down 0.2~1% | 7000~8000 |
Thermal power | 4000~8000 | up 0~10% | up 10~30% | 4000~8000 |
Scenario | 1 | 2 | 3 |
---|---|---|---|
Investment cost/¥ | 1.4296 × 1012 | 1.5083 × 1012 | 1.4680 × 1012 |
O&M cost/¥ | 8.1523 × 1010 | 8.3701 × 1010 | 8.2015 × 1010 |
Total cost/¥ | 1.5111 × 1012 | 1.5921 × 1012 | 1.5499 × 1012 |
Carbon emission/tun | 15.1610 × 107 | 12.3655 × 107 | 11.7114 × 107 |
Emission reductions from hydrogen substitution/tun | / | 5.7736 × 1010 | 5.7736 × 1010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, L.; Mao, Y.; Yuan, T.; Li, G. Low-Carbon Transition Pathway Planning of Regional Power Systems with Electricity-Hydrogen Synergy. Energies 2022, 15, 8764. https://doi.org/10.3390/en15228764
Ran L, Mao Y, Yuan T, Li G. Low-Carbon Transition Pathway Planning of Regional Power Systems with Electricity-Hydrogen Synergy. Energies. 2022; 15(22):8764. https://doi.org/10.3390/en15228764
Chicago/Turabian StyleRan, Liang, Yaling Mao, Tiejiang Yuan, and Guofeng Li. 2022. "Low-Carbon Transition Pathway Planning of Regional Power Systems with Electricity-Hydrogen Synergy" Energies 15, no. 22: 8764. https://doi.org/10.3390/en15228764
APA StyleRan, L., Mao, Y., Yuan, T., & Li, G. (2022). Low-Carbon Transition Pathway Planning of Regional Power Systems with Electricity-Hydrogen Synergy. Energies, 15(22), 8764. https://doi.org/10.3390/en15228764