The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis
Abstract
:1. Introduction
2. Conditioning and Energy Policy of the European Union and World
- -
- the reduction of greenhouse gas emissions by 55% compared to 1990 emissions;
- -
- at least a 32% share of RES in gross final energy consumption;
- -
- an increase in energy efficiency by 32.5%;
- -
- to complete the internal EU energy market.
- just transformation;
- a zero-emission energy system;
- good air quality.
- the optimal use of own energy resources;
- the development of electricity generation and network infrastructure;
- the diversification of supplies and the expansion of the network infrastructure of natural gas, crude oil and liquid fuels;
- the development of energy markets;
- the implementation of nuclear energy;
- the development of renewable energy sources;
- the development of heating and cogeneration resources;
- improved energy efficiency.
3. Materials and Methods
3.1. Data Sources
3.2. Methods
4. Results
4.1. Share of Renewable Energy Sources (RES) in the European Union (EU)
4.2. Electricity Production in Poland and the EU
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
°C | Degrees Celsius |
CAP | Common Agricultural Policy |
CO2 | Carbon dioxide |
EU | European Union |
GDP | Gross Domestic Product |
PEP | Polish energy policy |
PV | Photovoltaic |
PLN | Polish currency zloty |
RED | Renewable energy directive |
RES | Renewable Energy Sources |
UK | United Kingdom |
USA | United States of America |
References
- Ünler, A. Improvement of energy demand forecast using swarm intelligence: The case of Turkey with projections to 2025. Energy Policy 2008, 36, 1937–1944. [Google Scholar] [CrossRef]
- Kiran, M.S.; Özceylan, E.; Günfüz, M.; Paksoy, T. Swarm intelligence approaches to estimate electricity energy demand in Turkey. Knowl. Based Syst. 2012, 36, 93–103. [Google Scholar] [CrossRef]
- Toksan, M.D. Ant colony optimization approach to estimate energy demand of Turkey. Energy Policy 2007, 35, 3984–3990. [Google Scholar]
- Gustavsson, L.; Haus, S.; Lundblad, M.; Lundström, A.; Ortiz, C.A.; Sathre, R.; Le Truong, N.; Wikberg, P.-E. Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. Renew. Sustain. Energy Rev. 2017, 67, 612–624. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Kang, Y. Will Poland fulfill its coal commitment by 2030? An answer based on a novel time series prediction method. Energy Rep. 2020, 6, 1760–1767. [Google Scholar] [CrossRef]
- Kuchler, M.; Bridge, G. Down the black hole: Sustaining national socio-technical imaginaries of coal in Poland. Energy Res. Soc. Sci. 2018, 41, 136–147. [Google Scholar] [CrossRef]
- Widera, M.; Kasztelewicz, Z.; Prak, M. Lignite mining and electricity generation in Poland: The current state and future prospects. Energy Policy 2016, 92, 151–157. [Google Scholar] [CrossRef]
- Pactwa, K.; Woźniak, J.; Dudek, M. Coal mining waste in Poland in reference to circular economy principles. Fuel 2020, 270, 117493. [Google Scholar] [CrossRef]
- Perera, F.P. Multiple threats to child health from fossil fuel combustion: Impacts of air pollution and climate change. Environ. Health Perspect. 2017, 125, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chiu, Y.-H.; Lin, T.-Y. Coal production efficiency and land destruction in China’s mining industry. Resour. Policy 2019, 63, 101449. [Google Scholar] [CrossRef]
- International Energy Agency World Energy Statistics; International Energy Agency: Prais, France, 2017.
- Rahman, M.; Pudasainee, D.; Gupta, R. Review on chemical upgrading of coal: Production processes, potential applications, and recent developments. Fuel Process. Technol. 2017, 158, 35–56. [Google Scholar] [CrossRef]
- Nyga-Łukaszewska, H.; Aruga, K.; Stala-Szlugaj, K. Energy Security of Poland and Coal Supply: Price Analysis. Sustainability 2020, 12, 2541. [Google Scholar] [CrossRef] [Green Version]
- Gawlik, L.; Kaliski, M.; Kamiński, J.; Sikora, A.P.; Szurej, A. Hard coal in the fuel-mix of Poland: The long-term perspective. Arch. Min. Sci. 2016, 61, 335–350. [Google Scholar] [CrossRef] [Green Version]
- Stala-Szlugaj, K. The development of the market of qualified coal fuels in Poland. Miner. Resour. Manag. 2017, 33, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Dubiński, J.; Prusek, S.; Turek, M.; Wachowicz, J. Hard coal production competitiveness in Poland. Mining Ecology and Exploitation of the earth’s bowels. J. Min. Sci. 2020, 56, 322–330. [Google Scholar] [CrossRef]
- Blaschke, W.S.; Baic, I. Coal mining and coal preparation in Poland. Czas. Tech. 2016, 167–168, 40–45. [Google Scholar]
- Singh, A.S.N.; Mahapatra, A. Repeated wavelet transform based ARiMA model for very short-term wind speed forecasting. Renew. Energy 2019, 136, 758–768. [Google Scholar] [CrossRef]
- Dzikić, M.; Piwowar, A. Ecological and economic aspects of electric energy production using the biomass co-firing method: The case of Poland. Renew. Sustain. Energy Rev. 2016, 55, 856–862. [Google Scholar] [CrossRef]
- Balouch, S.; Abrar, M.; Abdul Muqeet, H.; Shahzad, M.; Jamil, H.; Hamdi, M.; Malik Abdul, S.; Hamam, H. Optimal Scheduling of Demand Side Load Management of Smart Grid Considering Energy Efficiency. Front. Energy Res. 2022, 10, 861571. [Google Scholar] [CrossRef]
- Digan, E.; Seker, F. The influence of real output, renewable and non-renewable energy, trade, and financial development on carbon emissions in the top renewable energy countries. Renew. Sustain. Energy Rev. 2016, 60, 1074–1085. [Google Scholar] [CrossRef]
- Johnsson, F.; Kjärstad, J.; Rootzén, J. The threat to climate change mitigation posed by the abundance of fossil fuels. Clim. Policy 2019, 19, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Perrera, F.; Nadeau, K. Climate change, Fossil Fuel Pollution, and Children’s Health. N. Engl. J. Med. 2022, 386, 2303–2314. [Google Scholar] [CrossRef] [PubMed]
- Rybak, A.; Rybak, A. Possible strategies for hard coal mining in Poland as a result of production function analysis. Resour. Policy 2016, 50, 27–33. [Google Scholar] [CrossRef]
- Srivastava, S.; Khokhar, F.; Madhav, A.; Pembroke, B.; Shetty, V.; Mutreja, A. COVID-19 Lessons for Climate Change and Sustainable Health. Energies 2021, 14, 5938. [Google Scholar] [CrossRef]
- Chomać-Pierzecka, E.; Kokiel, A.; Rogozińska-Mitrut, J.; Sobczak, A.; Soboń, D.; Stasiak, J. Analysis and Evaluation of the Photovoltaic Market in Poland and the Baltic States. Energies 2022, 15, 669. [Google Scholar] [CrossRef]
- Gil-Alana, L.; Gupta, R.; Perez de Gracia, F. Modeling persistence of carbon emission allowance process. Renew. Sustain. Energy Rev. 2016, 55, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Dubiński, J.; Prusek, S.; Turek, M. Key tasks of science in improving effectiveness of hard coal production in Poland. Arch. Min. Sci. 2017, 62, 597–620. [Google Scholar] [CrossRef] [Green Version]
- Burchart-Karol, D.F.; Fugiel, A.; Czaplicka-Kolarz, A.; Turek, M. Model of environmental life cycle assessment for coal mining operations. Sci. Total Environ. 2016, 562, 61–72. [Google Scholar] [CrossRef]
- Woźniak, J.; Krysa, Z.; Dudek, M. Concept of government subsidized energy prices for a group of individual consumers in Poland as a means to reduce smog. Energy Policy 2020, 144, 111620. [Google Scholar] [CrossRef]
- Kiulia, O. Decarbonization perspectives for the Polish economy. Energy Policy 2018, 118, 69–76. [Google Scholar] [CrossRef]
- Brauers, H.; Oei, P.-Y. The political economy of coal in Poland: Drivers and barriers for a shift away from fossil fuels. Energy Policy 2020, 144, 111621. [Google Scholar] [CrossRef]
- Bai, X.; Ding, H.; Lian, J.; Ma, D.; Yang, X.; Sun, N.; Xue, W.; Chang, Y. Coal production in China: Past, present, and future projections. Int. Geol. Rev. 2018, 60, 535–547. [Google Scholar] [CrossRef]
- Wang, N.; Wen, Z.; Liu, M.; Guo, J. Constructing an energy efficiency benchmarking system for coal production. Appl. Energy 2016, 169, 301–308. [Google Scholar] [CrossRef]
- Xu, C.; Xu, G.; Zhao, S.; Dong, W.; Zhou, L.; Yang, Y. A theoretical investigation of energy efficiency improvement by coal pre-drying in coal fired power plants. Energy Convers. Manag. 2016, 122, 580–588. [Google Scholar] [CrossRef]
- Badera, J.; Kocoń, P. Local community opinions regarding the socio-environmental aspects of lignite surface mining: Experience from central Poland. Energy Policy 2014, 66, 507–516. [Google Scholar] [CrossRef]
- Vaněk, M.; Bora, P.; Maruszewska, E.W.; Kašparková, A. Benchmarking of mining companies extracting hard coal in the Upper Silesian Coal Basin. Resour. Policy 2017, 53, 378–383. [Google Scholar] [CrossRef]
- Paska, J.; Surma, T. Electricity generation from renewable energy sources in Poland. Renew. Energy 2014, 7, 286–294. [Google Scholar] [CrossRef]
- Czyżewski, B.; Guth, M. Impact of policy and factor intensity on sustainable value of European agriculture: Exploiting trade-offs of environmental, economic, and social efficiency at the regional level. Agriculture 2021, 11, 78. [Google Scholar] [CrossRef]
- Czyżewski, B.; Majchrzak, A. Market versus agriculture in Poland–macroeconomic relations of income, prices, and productivity in terms of the sustainable development paradigm. Technol. Econ. Dev. Econ. 2018, 24, 318–334. [Google Scholar] [CrossRef] [Green Version]
- Flach, B.; Lieberz, S.; Bolla, S. Biofuels Annual. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Biofuels%20Annual_The%20Hague_European%20Union_E42022-0048.pdf (accessed on 17 November 2022).
- PEP 2040. Polityka energetyczna Polski do 2040 R (Energy Policy of Poland to 2040). Ministerstwo Klimatu i Środowiska. GUS Załącznik do uchwały nr 22/2021 Rady Ministrwó z dnia 2 lutego 2021. Available online: https://www.gov.pl/web/klimat/zalozenia-do-aktualizacji-polityki-energetycznej-polski-do-2040-r (accessed on 10 November 2022). (In Polish)
- Tsao, Y.-C.; Thanh, V.-V.; Lu, J.-C.; Wei, H.-H. A risk-sharing-based resilient renewable energy supply network model under the COVID-19 pandemic. Sustain. Prod. Consum. 2021, 25, 484–498. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics#Share_of_renewable_energy_more_than_doubled_between_2004_and_2020 (accessed on 10 November 2022).
- Statistics Poland. GUS 2020. Available online: https://www.ure.gov.pl/ (accessed on 10 November 2022).
- Bórawski, P.; Bórawski, M.B.; Parzonko, A.; Wicki, L.; Rokicki, T.; Perkowska, A.; Dunn, J.W. Development of Organic Milk Production in Poland on the Background of the EU. Agriculture 2021, 11, 323. [Google Scholar] [CrossRef]
- Koutroumanidis, T.; Ioannou, K.; Arabatzis, G. Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks, and a hybrid ARIMA-ANN model. Energy Policy 2009, 37, 3627–3634. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.; An, J.; Mikhaylov, A.; Moiseev, N.; Danish, M.S.S. Renewable energy development and COVID-19 measures for sustainable development. Sustainability 2021, 13, 4418. [Google Scholar] [CrossRef]
- Hosseinin, S.E. An outlook on the global development of renewable and sustainable energy at the time of COVID-19. Energy Res. Soc. Sci. 2020, 68, 101633. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.I.; Kirikkaleli, D.; Adedoyin, F.F. Regime switching effect of COVID-19 pandemic on renewable electricity generation in Denmark. Renew. Energy 2021, 175, 797–806. [Google Scholar] [CrossRef]
- Nasir, T.; Raza, S.; Abrar, M.; Muqeet, H.A.; Jamil, H.; Qayyum, F.; Cheikhrouhou, O.; Alassery, F.; Hamam, H. Optimal Scheduling of Campus Microgrid Considering the Electric Vehicle Integration in Smart Grid. Sensors 2021, 21, 7133. [Google Scholar] [CrossRef]
- Szabo, J.; Fabok, M. Infrastructures and state building: Comparing the energy politics of the European Commission with the governments of Hungary and Poland. Energy Policy 2020, 138, 111253. [Google Scholar] [CrossRef]
- Sulich, A.; Sołoducho-Pelc, L. Renewable energy procedures’ strategies in the Videgrád group countries. Energies 2021, 14, 3048. [Google Scholar] [CrossRef]
- Siddique, A.; Shahzad, A.; Lawler, J.; Mahmoud, K.A.; Lee, D.S.; Ali, N.; Bilal, M.; Rasool, K. Unprecedented environmental and energy impacts and challenges of COVID-19 pandemic. Environ. Res. 2021, 193, 110443. [Google Scholar] [CrossRef] [PubMed]
- Rita, E.; Chizoo, E.; Cyril, U.S. Sustaining COVID-19 pandemic lockdown era air pollution impact through utylization of more renewable Energy resources. Helion 2021, 7, e07455. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nižetić, S.; Olcer, A.I.; Ong, H.C.; Chen, W.-H.; Chong, C.T.; Thomas, S.; Bandh, S.A.; Nguyen, X.P. Impacts of COVID-19 pandemic on the global energy system and the shift process to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 2021, 154, 112322. [Google Scholar] [CrossRef] [PubMed]
- Chomać-Pierzecka, E.; Sobczak, A.; Soboń, D. Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic. Energies 2022, 15, 2470. [Google Scholar] [CrossRef]
- Juszczyk, O.; Juszczyk, J.; Juszczyk, S.; Takala, J. Barriers for renewable energy technologies diffusion: Empirical Evidence from Finland and Poland. Energies 2022, 15, 527. [Google Scholar] [CrossRef]
- Shehhar, J.; Suri, D.; Somani, P.; Lee, S.J.; Arora, M. Reduced renewable energy stability in India following COVID-19: Insights and key policy recommendations. Renew. Sustain. Energy Rev. 2021, 144, 111015. [Google Scholar] [CrossRef]
- Zakeri, B.; Paulavets, K.; Barreto-Gomez, L.; Echeverri, L.G.; Pachauri, S.; Boza-Kiss, B.; Zimm, C.; Rogelj, J.; Creutzig, F.; Ürge-Vorsatz, D.; et al. Pandemic, War, and Global Energy Transitions. Energies 2022, 15, 6114. [Google Scholar] [CrossRef]
- Fei, L.; Shahzad, M.; Abbas, F.; Muqeet, H.A.; Hussain, M.M.; Bin, L. Optimal Energy Management System of IoT-Enabled Large Building Considering Electric Vehicle Scheduling, Distributed Resources, and Demand Response Schemes. Sensors 2022, 22, 7448. [Google Scholar] [CrossRef]
- Muqeet, H.A.; Javed, H.; Akhter, M.N.; Shahzad, M.; Munir, H.M.; Nadeem, M.U.; Bukhari, S.S.H.; Huba, M. Sustainable Solutions for Advanced Energy Management System of Campus Microgrids: Model Opportunities and Future Challenges. Sensors 2022, 22, 2345. [Google Scholar] [CrossRef]
- Muqeet, H.A.; Munir, H.M.; Javed, H.; Shahzad, M.; Jamil, M.; Guerrero, J.M. An Energy Management System of Campus Microgrids: State-of-the-Art Literature Review. Energies 2021, 14, 6525. [Google Scholar] [CrossRef]
- Rasheed, M.B.; Javaid, N.; Ahmad, A.; Jamil, M.; Khan, Z.A.; Qasim, U.; Alrajeh, N. Energy Optimization in Smart Homes Using Customer Preference and Dynamic Pricing. Energies 2016, 9, 593. [Google Scholar] [CrossRef] [Green Version]
- Deshwal, D.; Sangwan, P.; Dahiya, N. How will COVID-19 impact renewable energy in India? Exploring challenges, lessons and emerging opportunities. Energy Res. Soc. Sci. 2021, 77, 102097. [Google Scholar] [CrossRef]
- Gebreslassie, M.G. COVID-19 and energy access: An opportunity or a challenge for the African continent? Energy Res. Soc. Sci. 2020, 68, 101677. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, M.B.; Igliński, B.; Kujawski, W.; Iwański, P. Energy transition in Poland-Assessment of the Renewable Energy Sector. Energies 2021, 14, 2046. [Google Scholar] [CrossRef]
- Gharavnidisi, H.; Ghafurian, R. Smart Grid: The electric energy systems of the future. Proc. IEEE 2011, 99, 917–921. [Google Scholar] [CrossRef]
- Hamzaçebi, C. Forecasting of Turkey’s net electricity energy consumption on sectoral bases. Energy Policy 2007, 35, 2009–2016. [Google Scholar] [CrossRef]
- Tso, G.F.K.; Yau, K.K.W. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy 2007, 32, 1761–1768. [Google Scholar] [CrossRef]
- Produkcja Energii Elektrycznej W Polsce. Available online: https:///www.rynekelektryczny.pl/produkcja-energii-elektrycznej-w-polsce (accessed on 12 November 2022).
- Korski, J.; Tabór-Osadnik, K.; Wyganowska, M. Reasons of problems of the polish hard coal mining in connection with restructuring changes in the period 1988–2014. Resour. Policy 2016, 48, 25–31. [Google Scholar] [CrossRef]
- Mohideen, M.M.; Ramakrishna, S.; Prabu, S.; Liu, Y. Advancing green energy solution with the impetus of COVID-19 pandemic. J. Energy Chem. 2021, 59, 688–705. [Google Scholar] [CrossRef]
- Szpor, A.; Ziółkowska, K.; The Transformation of the Polish Coal Sector. International Institute for Sustainable Development. 2018. Available online: https://www.iisd.org/system/files/publications/transformation-polish-coal-sector.pdf (accessed on 17 November 2022).
- Emam, A. Present and future: Does agriculture affect economic growth and the environment in the Kingdom of Saudi Arabia? Agric. Econ.-Czech 2022, 68, 380–392. [Google Scholar] [CrossRef]
Year | TWH | China (TWH) | % | USA (TWH) | % | India (TWH) | % | Russia (TWH) | % | Poland | % |
---|---|---|---|---|---|---|---|---|---|---|---|
1990 | 11,957.4 | 621.2 | 5.2 | 3232.8 | 27.0 | 287.8 | 2.4 | 1082.2 | 9.1 | 136.3 | 1.1 |
2000 | 15,555.2 | 1355.6 | 8.7 | 4052.3 | 26.1 | 571.4 | 3.7 | 877.8 | 5.6 | 145.2 | 0.9 |
2010 | 21,569.8 | 4207.2 | 19.5 | 4394.3 | 20.4 | 937.5 | 4.3 | 1038.0 | 4.8 | 157.7 | 0.7 |
2019 | 27,004.7 | 7503.4 | 27.8 | 4401.3 | 16.3 | 1558.7 | 5.8 | 1118.1 | 4.1 | 163.9 | 0.6 |
Year | Power Installed in Poland [MW], as at 31 December 2020 | ||||
---|---|---|---|---|---|
Installations Using Biogas | Installations Using Biomass | Installations Using the Energy of Solar Radiation | Installations Using Wind Energy | Installations Using Hydropower | |
2010 | 82.884 | 356.190 | 0.033 | 1180.27 | 937.044 |
2011 | 103.487 | 409.680 | 1.125 | 1616.361 | 951.390 |
2012 | 131.247 | 820.700 | 1.290 | 2496.74 | 966.103 |
2013 | 162.241 | 986.873 | 1.901 | 3389.541 | 966.103 |
2014 | 188.549 | 1008.245 | 21,004 | 3833.832 | 977.007 |
2015 | 212.497 | 1122.670 | 108.00 | 4582.036 | 981.799 |
2016 | 233.967 | 1281.065 | 187.25 | 5807.416 | 993.995 |
2017 | 235.373 | 1362.030 | 287.09 | 5848.671 | 988.377 |
2018 | 237.618 | 1362.870 | 561.98 | 5864.443 | 981.504 |
2019 | 245.366 | 1492.875 | 1539.26 | 5917.243 | 973.095 |
2020 | 255.699 | 1512.885 | 3954.96 | 6347.111 | 976.047 |
Changes 2010 = 100% | 208.5 | 324.7 | 11,984 | 437.8 | 4.2 |
Coefficient | Std Error | Student’s t-Test | p-Value | |
---|---|---|---|---|
Intersept | −3.229 | 1.253 | −2.628 | 0.046 |
X1—Installations using biogas | −6568.65 | 12765.2 | −0.514 | 0.628 |
X2—Installations using biomass | −880.39 | 1018.7 | −0.864 | 0.427 |
X3—Installations using the energy of solar radiation | 905.72 | 109.9 | 8.242 | 0.000 |
X4—Installations using wind energy | −36.11 | 371.12 | −0.097 | 0.926 |
X5—Installations using hydropower | 35,998.6 | 13643.2 | 2.639 | 0.046 |
Arithmetic means of the dependent variable | 257,487.3 | Standard deviation of dependent change | 790,048.4 | |
Sum of squares of residuals | 2.77 | Standard error of residuals | 235,513.2 | |
R-squared determination coefficient | 0.955 | Corrected R-square | 0.9111 | |
F(9, 197) | 21.506 | The p-value for the F-test | 0.002 | |
Likelihood logarithm | −147.35 | Critical Information Akaike criterion | 306.673 | |
Critical Bayesian Schwarz criterion | 309.060 | Critical Hannan–Quinn criterion | 305.168 |
Tests | Explained Variable-Electricity Production from Renewable Energy Sources | p Value |
---|---|---|
Durbin-Watson test | 2.56645 | 0.213 |
White test | 11.000 | 0.357 |
Breusch-Pagan test | 3.343 | 0.647 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bórawski, P.; Bełdycka-Bórawska, A.; Holden, L.; Rokicki, T. The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis. Energies 2022, 15, 8771. https://doi.org/10.3390/en15228771
Bórawski P, Bełdycka-Bórawska A, Holden L, Rokicki T. The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis. Energies. 2022; 15(22):8771. https://doi.org/10.3390/en15228771
Chicago/Turabian StyleBórawski, Piotr, Aneta Bełdycka-Bórawska, Lisa Holden, and Tomasz Rokicki. 2022. "The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis" Energies 15, no. 22: 8771. https://doi.org/10.3390/en15228771
APA StyleBórawski, P., Bełdycka-Bórawska, A., Holden, L., & Rokicki, T. (2022). The Role of Renewable Energy Sources in Electricity Production in Poland and the Background of Energy Policy of the European Union at the Beginning of the COVID-19 Crisis. Energies, 15(22), 8771. https://doi.org/10.3390/en15228771