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Abstract

:

For attack detection in the smart grid, transfer learning is a promising solution to tackle data distribution divergence and maintain performance when facing system and attack variations. However, there are still two challenges when introducing transfer learning into intrusion detection: when to apply transfer learning and how to extract effective features during transfer learning. To address these two challenges, this paper proposes a transferability analysis and domain-adversarial training (TADA) framework. The framework first leverages various data distribution divergence metrics to predict the accuracy drop of a trained model and decides whether one should trigger transfer learning to retain performance. Then, a domain-adversarial training model with CNN and LSTM is developed to extract the spatiotemporal domain-invariant features to reduce distribution divergence and improve detection performance. The TADA framework is evaluated in extensive experiments where false data injection (FDI) attacks are injected at different times and locations. Experiments results show that the framework has high accuracy in accuracy drop prediction, with an RMSE lower than 1.79%. Compared to the state-of-the-art models, TADA demonstrates the highest detection accuracy, achieving an average accuracy of 95.58%. Moreover, the robustness of the framework is validated under different attack data percentages, with an average F1-score of 92.02%.
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1. Introduction


As one of the national cyberphysical systems (CPS) infrastructures, the smart grid provides efficient, secure, and sustainable electricity in an increasingly power-demanding society. The application of sensing, communications, and distributed computing empowers the smart grid in monitoring and controlling; however, it renders the smart grid exposed to various cyberattacks and increases its vulnerability [1]. As reported in recent studies, cyberattacks on critical infrastructures could have severe social, economic, and physical impacts [2,3]. To address the importance of cybersecurity situation awareness in power systems, various machine learning (ML) detection mechanisms have been exploited extensively and demonstrated high accuracy and efficient computation in attack detection [4,5,6], such as k-nearest neighbors (kNN) and support vector machine (SVM).



Many ML-based attack detection models assume that the training and testing data are in the same space and have the same or similar independent distributions [7]. However, this assumption is unlikely to hold in most real-world CPS scenarios because of system dynamics and attack changes. For instance, in power systems, the system load demand is continuously changing, and the system topology may also be altered by normal operations. Meanwhile, the same-scheme attacks may happen at different times and target different buses, and new-scheme attacks are emerging as well. These variations will alter the data distribution and cause a well-trained ML detection model to perform poorly on a new dataset. Moreover, labeled attack data are extremely rare compared to labeled normal data in real-world power systems. Models trained on insufficient data are fragile, and a small change of the attack data distribution may cause a significant drop of detection accuracy.



Transfer learning (TL) is hence proposed to help solve these problems. This technique enables models to transfer the knowledge learned from a labeled domain to another unseen domain with distribution divergence [8]. Over the last few years, TL has shown remarkable achievements in image identification and semantic parsing tasks [9]. Recently, TL has also been introduced into highly dynamic CPS scenarios to enhance cybersecurity situation awareness [10]. However, these works have not considered a problem that might be referred to as transferability: when will a model suffer a severe performance drop and should TL be applied?



Meanwhile, there is another question to consider during TL: how to extract the internal spatial and temporal features of CPS data effectively to improve detection performance? This is because the spatiotemporal features have been proven to help discriminate attacks from normal data [11]. For instance, on the spatial side, the smart grid can be regarded as an image. To launch false data injection (FDI) attacks on a particular bus, measurements of several specific buses need to be manipulated simultaneously according to the physical topology [12]. Thus, exploiting these spatial correlations of measurement data is crucial for intrusion detection systems (IDS). Moreover, the temporal feature can be extracted from the measurement flow over a continuous period to enhance the detection of well-constructed attacks, such as FDI [13].



To tackle these two challenges, this work proposes a transferability analysis and domain-adversarial training (TADA) framework to mitigate the impact of distribution divergence and improve detection performance. The proposed framework has two steps. The first step is to leverage selected data divergence metrics and regression models to predict a detection accuracy drop and identify the tasks calling for TL. Then, the framework applies parallel long short-term memory (LSTM) networks and convolutional neural networks (CNN) to extract spatiotemporal features, and employ domain-adversarial training to reduce distribution divergence between two domains and enhance attack detection performance.



To evaluate the proposed framework, this work first obtains the 7-year load demand of ISO New England [14], then uses the load demand to generate multivariate time series data on the IEEE 30-bus system. The stealthy FDI attacks [12] are injected at different times and on different buses to generate attack data. With the synthesized datasets, the proposed framework is evaluated and compared to state-of-the-art ML models. The experiment results demonstrate that the TADA framework has high accuracy in accuracy drop prediction based on distribution divergence and can significantly improve attack detection performance by extracting spatiotemporal domain-invariant features against divergence from both temporal and spatial dimensions. The main contributions of this work are summarized as follows:




	1.

	
This work proposes a two-stage transfer learning framework, including a transferability analysis and spatiotemporal domain-adversarial training, which leverages a CNN and LSTM along with domain-adversarial training to extract spatiotemporal domain-invariant features and enhance attack detection performance.




	2.

	
This work proposes an ensemble method that combines different types of metrics to capture multiple data distribution information, predict accuracy drop, and justify the need for TL in cybersecurity situation awareness.









The rest of this paper is structured as follows. Section 2 reviews the related work about transferability analysis, spatiotemporal features extraction in IDS, and domain-adversarial training in IDS. Section 3 illustrates the proposed framework. Section 4 introduces the setup of the experiment. Section 5 discusses the experimental results and analysis. Section 6 draws conclusions and presents future work.




2. Related Work


2.1. Transferability Analysis


The goal of transferability analysis is to analyze whether a trained model will degrade significantly and thus require TL. Meila and Fort et al. [15,16] showed that the performance degradation of a trained mode was related to data distribution divergence between two domains. Thus, the data distribution divergence measurement plays a crucial role in predicting performance drop and triggering TL. Given its importance, researchers have invested much effort in leveraging metrics to evaluate distribution divergence. Elsahar et al. [17] used probability-related metrics and the H-divergence to predict the accuracy drop of natural language processing (NLP) models. Deng et al. [18] leveraged the Fréchet distance to predict the model accuracy for computer vision (CV) tasks. However, these works did not consider using the accuracy drop to decide whether TL should be applied to maintain acceptable accuracy.



Therefore, our previous paper [19] selected three commonly used metrics and evaluated each of them for predicting the accuracy drop and determining when to apply TL. However, that paper used each metric in isolation and did not consider combining different metrics to extract complementary distribution information. Different types of metrics can look at the datasets from different angles [20]. Ruder et al. [21] proved the importance of combining different metrics for measuring divergence, since each metric may only cover limited aspects of the data distribution information. Instead of using individual metrics in isolation, this paper systematically analyzes the divergence metrics published in the literature, compares the distribution information obtained from different metrics, and proposes an ensemble method that combines all metrics to further improve prediction performance. Specifically, this work uses different types of metrics as the features to train a neural network regression model, then applies the regression model to predict the accuracy drop and identify the need for TL. Moreover, this paper also considers the spatial and temporal features of CPS data and extends the previous paper by customizing the feature extractor with CNN and LSTM to extract spatial and temporal features. Furthermore, different from the previous paper that used balanced datasets, this work also considers a wide range of attack data percentages to validate the robustness of the proposed framework.




2.2. Spatiotemporal Domain-Adversarial Training for IDS


In recent years, various ML approaches, such as pretraining [22], incremental learning [23], and lifelong learning [24], have been proposed to preserve and extend the knowledge learned from previous tasks to new tasks. Durairaj et al. [22] introduced pretraining into a deep belief network (DBN) to enhance the FDI and denial of service detection performance. Nakagawa et al. [23] proposed an online and unsupervised scheme based on incremental learning to detect attacks in smart home IoT networks. However, these schemes do not consider reducing the data distribution divergence that leads to a performance drop. Thus, these approaches cannot solve the data distribution divergence problem considered in this paper. Instead, in our work, we want to use TL techniques to decrease the data distribution divergence and enhance detection performance.



Domain-adversarial training is a subcategory of TL techniques that reduces domain divergence and improves model generalization by extracting domain-invariant features [25]. Ganin et al. [26] introduced adversarial training into TL and established a domain-adversarial neural network (DANN) to improve the generalization of the trained models. Zhang et al. [7,8] further extended the DANN with customized classifiers and proposed a semisupervised domain-adversarial training model to detect attacks in power systems. Wei et al. [27] propose a DANN-based IDS to detect in-vehicle network variant attacks. However, these domain-adversarial training works did not consider extracting effective spatial and temporal features of the CPS data to enhance the attack detection performance. Instead, this work introduces a CNN and LSTM into domain-adversarial training to learn spatial and temporal features to further improve intrusion detection performance. Specifically, a CNN is responsible for extracting spatial features of power system data, and LSTM is used to learn the temporal features of time series data.



Some studies also used deep learning to extract effective spatial and temporal features to enhance attack detection performance [28,29]. He et al. [30] proposed a conditional deep belief network (CDBN) to detect FDI with historical measurements. They used a CDBN to learn high-dimensional temporal features from sensor measurements and detect FDI attacks. The approach proposed by Wang et al. [31] first used CNN to extract low-level spatial features from the CPS data, then leveraged LSTM to extract high-level temporal features. Considering that adversarial examples may cause misclassification by a deep neural network (DNN), Hyun et al. [32,33,34] proposed robust adversarial examples schemes using classification scores and AdvGuard. However, their uses of deep learning only focused on informative feature extraction. They did not consider that the distribution of extracted features may have changed significantly and may degrade the detector’s performance since IDS operates in dynamic CPS environments. This work combines deep learning and domain-adversarial training to extract deep domain-invariant features. In this way, the distribution divergence decreases, and thus a trained model can maintain high performance under dynamic operating environments.



Inspired by the current works in transferability analysis and spatiotemporal domain-adversarial training in IDS, this work proposes a transferability analysis and domain-adversarial training (TADA) framework to detect attacks in the smart grid. The TADA framework first leverages transferability analysis to identify the tasks that require TL, then uses domain-adversarial training to extract the spatiotemporal domain-invariant features to improve the attack detection performance against distribution divergence.





3. Transferability Analysis and Domain-Adversarial Training


3.1. Problem Formulation


To elaborate on how the TADA framework addresses the aforementioned challenges, this work first defines several notations of TL. In TL, a domain  D  consists of a feature space  X  and a marginal probability distribution P(X). A task consists of a label space  Y  and an objective predictive function   f ( · )   from  X  to  Y  [10]. The objective function   f ( · )   also refers to conditional probability   P ( Y | X )   from a probabilistic view, which is learned from the training data [8]. This paper focuses on unsupervised TL, where the source domain is labeled, i.e.,    D S  =  {  (  x  S 1   ,  y  S 1   )  , . . . ,  (  x  S  n S    ,  y  S  n S    )  }   , and the target domain is unlabeled, i.e.,    D T  =  {  (  x  T 1   )  , . . . ,  (  x  T  n T    )  }   , where   x ∈  R  T × C    , T is the length of the time series, and C is the dimension of feature space. Unsupervised TL is a common situation in real power systems intrusion detection, as the IDS deployed in the smart grid needs to detect intrusions in real time, and the newly generated dataset is usually unlabeled.



This work assumes that source and target domains contain both normal and attack data, but the data distributions of the two domains are different. One case of data distribution divergence is considered in this paper, covariate divergence, where two domains have the same conditional distribution, i.e.,    P  D S    ( Y | X )  =  P  D T    ( Y | X )   , but their feature distributions are different, i.e.,    P  D S    ( X )  ≠  P  D T    ( X )   . Covariate divergence is a common case in the smart grid because of system and attack variations. For instance, power system topology and load demand changes may lead to system variations, and the same attack can occur at different times and on different buses. Specifically, this work considers a spatiotemporal TL problem, where attackers target the power systems during different periods when load demand has changed and inject intrusions on different buses in the power grid.



To tackle the aforementioned problems, this work aims to build a deep TL model that has the ability to learn spatiotemporal domain-invariant features to mitigate the impact of data distribution divergence. The challenges are when to apply TL and how to extract effective informative spatiotemporal features for CPS data during TL, which are tackled by the proposed transferability analysis and domain-adversarial training (TADA) framework in Figure 1. The framework has two steps: (1) this work first selects one metric from each divergence measurement category, then trains a neural network regression model using all metrics to approximate the relationship between divergence and accuracy drop. Afterward, the regression model is applied to predict the accuracy drop on the unlabeled target domains and identify the need for TL; (2) the TL is trained once the predicted accuracy drop falls in the predefined range. Specifically, a domain-adversarial training model with a CNN and LSTM is applied to extract spatiotemporal domain-invariant features, reduce distribution divergence, and improve detection performance against attacks at different times and locations.




3.2. Ensemble Metrics Transferability Analysis


3.2.1. Distribution Divergence Metrics


This work systematically analyzed different divergence measurement metrics and classified them into four categories by comparing the information each metric provides [20,21]. Considering different categories of metrics can capture various and complementary distribution information, this work chose one metric from each category that was shown to have good divergence measurement and performance prediction ability:



Geometry-based Metrics: Geometry-based metrics, such as Euclidean distance and Manhattan distance [20], use the statistical descriptions of data distribution, such as mean and standard deviation, to capture the geometry-related information. This work chose the cosine similarity since it has demonstrated effectiveness in measuring similarity between two domains [35]. The cosine distance (Cos) is defined as   1 − c o s i n e  s i m i l a r i t y  :


   D  C o s   = 1 − c o s  (  m →  ,  n →  )  = 1 −    m →  ·  n →    ∥ m ∥ · ∥ n ∥   ,  



(1)




where   m →   ans   n →   are two statistical vectors used to describe two distributions.



Domain-Discrimination-based Metrics: Domain-discrimination-based metrics look at datasets from the perspective of classifiers and train classifiers to extract the high-dimensional feature space information of the two distributions in a representation layer. The classifier is trained to discriminate the data domains between the source and target, and the divergence is characterized by the classification error. Among the available metrics, the proxy  A -distance (PAD) [17] performs best in measuring divergence and predicting the performance drop in tasks such as part-of-speech tagging [20], and thus was picked in this paper:


   P A D  = 2 ( 1 − 2  ϵ   G d    ) ,  



(2)




where   ϵ   G d     denotes the classifier’s error on the target domain.



Mutual-Information-Based Metrics: Mutual-information-based metrics look at datasets from an information theory perspective and capture the probability information between two distributions by measuring the amount of information required to convert one distribution to the other, such as the Kullback–Leibler (KL) divergence [20] and cross-entropy [21]. This work chose the Jensen–Shannon (JS) divergence as it is a symmetric variance of the KL divergence and has been proved to be a reliable indicator for measuring domain similarity in tasks such as sentiment analysis [36].


   D  J S    ( P | | Q )  =  1 2   D  K L    ( P | | M )  +  1 2   D  K L    ( Q | | M )  ,  



(3)




where    D  K L    ( P | | Q )  = ∫ p  ( x )  l o g   p ( x )   q ( x )   d x  ,   M =  1 2   ( P + Q )   .   p ( x )   and   q ( x )   are probability density functions of two distributions.



Higher-Order-Moment-Based Metrics: Higher-order-moment-based metrics, such as correlation alignment (CORAL) [20] and central moment discrepancy (CMD) [37], capture the moment information between two distributions. Maximum mean discrepancy (MMD) was chosen in this work since it has been extensively adopted to measure the domain discrepancy in domain adaptation works [38]:


   D  M M D    ( X | | Y )  =    1  n 1    ∑  i = 1   n 1   φ  (  x i  )  −  1  n 2    ∑  j = 1   n 2   φ  (  y j  )   H  ,  



(4)




where   φ ( x )   is a mapping which projects samples to the reproducing kernel Hilbert space (RKHS) [38].




3.2.2. Regression Models


Using the aforementioned metrics, this work measured the distribution divergence with labeled historical data in the source domain, then trained a neural network regression model with ensemble metrics:


  Δ A c c =   f  e n s e m b l e     (  d  C o s   ,  d  P A D   ,  d  J S   ,  d  M M D   )   ,  



(5)




where   f  e n s e m b l e    is a fully connected neural network with all selected metrics as the input.



This paper also trained a linear regression model for each single metric, and compared the ensemble metrics method to the single metric method for predicting the accuracy drop. The single metric method was defined as:


  Δ A c c =   w 1  d  +  w 0  ,  



(6)




where   Δ A c c   denotes the accuracy drop, d is the measured divergence, and   w 0   and   w 1   denote the model parameters.



The regression models were leveraged to predict the accuracy drop based on the measured divergence for the unlabeled target domains. As shown in Step 1 of Figure 1, if the predicted drop is too small, the trained model can retain a good detection performance on the new target domain, so there is no need to apply TL since the improvement is trivial. Meanwhile, if the predicted drop is too large, the model will suffer severe performance degradation, and TL may not be able to improve the model to acceptable performance. It is recommended to train a new model since the divergence is beyond what TL can handle. If the predicted drop is neither too small that TL is unnecessary nor too large that is beyond transferable, TL will be leveraged to improve the detection accuracy. This paper mainly focuses on the last scenario, where the TL is necessarily triggered, and proposes an effective domain-adversarial training approach by considering spatiotemporal features in the smart grid.





3.3. Spatiotemporal Domain-Adversarial Training


The domain-adversarial training of the proposed framework aimed to extract the domain-invariant representations to reduce the divergence between source and target domains. In this way, the model trained on the labeled source domain could also generalize well to the unlabeled target domain. Our model built on a DANN [26], which consists of three networks, namely, a feature extractor, a label predictor, and a domain discriminator, as shown in Step 2 of Figure 1. Moreover, a gradient reversal layer (GRL) was added between the feature extractor and the domain discriminator to make the domain discriminator perform poorly. By training three networks simultaneously, the feature extractor tried to minimize the label predictor loss and maximize the domain discriminator loss, thereby extracting domain-invariant and label-discriminative features. The total loss function was constructed as:


  L  (  θ f  ,  θ y  ,  θ d  )  =  ∑  i = 1  m   L  y  i   (  θ f  ,  θ y  )  − λ  ∑  j = 1  n   L  d  j   (  θ f  ,  θ d  )  ,  



(7)




where   L y   is the label predictor loss,   L d   is the domain discriminator loss,  λ  is the adaptation factor used to tune the trade-off between two network losses [26], and the minus sign indicates the adversarial training.



This work further customized the design of the feature extractor to extract the deep spatiotemporal features from CPS data. Motivated by the success of deep learning on CV and NLP tasks, the feature extractor in this work consisted of a CNN and LSTM to extract domain-invariant spatial and temporal features, as depicted in Figure 1. The CNNs were used to extract the cross-measurement correlation of CPS data since they can extract effective spatial features [28]. The LSTM networks, which are capable of learning long-term dependencies [13], worked on mining the context information of the sequential measurement flow. A parallel combination of three layers of CNNs and two layers of LSTM networks was adopted in this work because extensive experiments conducted by Zhang et al. [39] proved that this combination could extract effective spatiotemporal features. A feature fusion layer was leveraged to merge the extracted spatial and temporal features as spatiotemporal features, and feed them to the label predictor and domain discriminator.



Typically, the raw measurements from different smart meters at time index t are a one-dimensional (1-D) vector:


   v t  =  [  m  t  1  ,   m  t  2  ,  . . . ,   m  t  C  ]  ,  



(8)




where   m  t  i   is the reading of the ith measurement. For an observation period   [ t ,  t + N ]  , there is a measurement flow with   N + 1   vectors, and each vector contains C measurements. To extract temporal features with LSTM, this work adopted a sliding window to divide measurement flow into individual segments. Each segment had a fixed length of time series vectors and was defined as:


   s j  =   [  v t  ,   v  t + 1   ,  . . . ,   v  t + T − 1   ]  T  ,  



(9)




where T is the fixed sliding window size, and   s j   denotes the jth segment fed into the feature extractor. Each segment was fed into the CNNs and LSTM networks in parallel.



The CNNs were responsible for learning spatial features. Following [29], this work employed three layers of 1-D CNNs to extract the spatial features of each vector in the segment   s j  :


   r k  = C o n v 1 D  (  v k  )  ,  



(10)




where   r k   is the extracted spatial features corresponding to the measurement vector   v k  . To be comparable to the temporal features in terms of size, the extracted spatial features in the same segment were fed into a global average pooling (GAP) layer. The GAP can reduce the computational burden and avoid overfitting, thus enhancing the generality of spatial features. The final spatial features could be expressed as:


   f  s p a t i a l   =  G  G A P    (  r t  ,   r  t + 1   ,  . . . ,   r  t + T − 1   )  ,  



(11)




where   G  G A P    is the pooling layer.   f  s p a t i a l    denotes a single vector representing the spatial features.



The LSTM networks were leveraged to extract the temporal features of multivariate time series measurements. Specifically, the LSTM networks had two LSTM layers, and each LSTM layer had T units since each segment contained T measurement vectors. Since this work was interested in segment-level intrusion detection, the output of the last unit in the second layer was selected to generate temporal features:


   h  t + T − 1  2  = L S T M  (  s j  )  ,  



(12)




where   h  t + T − 1  2   is the output of the last unit in the second layer.



Then, a fully connected layer was added to improve temporal feature representation [39]:


   f  t e m p o r a l   =  G  F C    (  h  t + T − 1  2  )  ,  



(13)




where   G  F C    is the fully connected layer.   f  t e m p o r a l    denotes a single vector representing the temporal features.



Finally, the spatial and temporal features extracted in parallel were merged as spatiotemporal features in the feature fusion layer:


   f  s p a t i o t e m p o r a l   =  [  f  s p a t i a l   ,   f  t e m p o r a l   ]  .  



(14)







Then, the spatiotemporal features were fed into the label predictor and domain discriminator for the domain-adversarial training. By training three networks simultaneously, the feature extractor could learn the domain-invariant and label-discriminative spatiotemporal features, thus improving the attack detection performance.





4. Experiments Setup


4.1. Data Generation


To evaluate the proposed framework on realistic CPS scenarios, seven-year practical load demand data of ISO New England from 2015 to 2021 were used for the normal data simulation, as shown in Figure 2. The load demand was normalized to the load value of the standard IEEE 30-bus system [40], as shown in Figure 3. Then, MATPOWER was implemented to generate 142 measurements over a 1-min interval, i.e.,   C = 142  , by performing the DC optimal power flow (DC-OPF) analysis. Gaussian noises were also added to the measurements with a mean of zero and a standard deviation of 0.02. Then, this work selected 60 min as the sliding window, i.e.,   T = 60  , to transform normal data into time series data.



The FDI [12], which can stealthily compromise measurements in a coordinated fashion, was chosen as the attack model to generate the attack data. This work constructed the attack vectors according to the system topology matrix H by   a = Hc  , and injected them into normal data  z  to synthesize the attack data by    z a  = z + a  . The false state  c  had a mean of zero and a standard deviation of 0.1. In this way, the FDI attacks could evade the bad data detection (BDD) and compromise the state estimation results, which could result in severe impacts such as insufficient generation, power outages, and monetary loss [1,4]. Moreover, this paper considered that the attack data percentage was not always consistent in real-world power systems. Based on the fact that the attack data are generally rare compared to the normal data in the smart grid [41], this paper set the attack data percentage range of [5%, 40%]. Meanwhile, considering many ML algorithms are tested and developed on balanced datasets, this work also set up relatively balanced datasets with an attack data percentage range of [45%, 55%]. Combining these two, this work had datasets with an attack data percentage range of [5%, 55%]. The attack data percentages were chosen in every 5% among [5%, 55%] to validate the robustness of the proposed framework, that is, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, and 55%.




4.2. Spatiotemporal TL Setup


This work assumed the power system could be attacked at different times and locations. In terms of attack times, considering the load demand of different seasons distinct, this work set up four cases from each year’s data, winter, spring, summer, and fall, to capture the temporal divergence, as shown in Table 1. Source domains were generated from the labeled historical normal and attack data from 2015 to 2018. Target domains contained unlabeled normal data and attack data from 2019 to 2021.



Regarding attack locations, it was assumed that the attackers could only target one bus each time considering the limited access ability of attackers in real-world scenarios. Following [3], this work found 15 attackable buses in the IEEE 30-bus system. Different attackable buses were targeted by FDI attacks for the attack location variations.



In the transferability analysis, following our previous paper [19], this work randomly chose two domains from the labeled historical data between 2015 and 2018 as a pair of training domain and validation domain. Then, this work measured the distribution divergence between two domains, and calculated the model’s accuracy drop from the training domain to the validation domain. Regression models with a single metric and ensemble metrics were trained to learn the relationship between the measured divergence and accuracy drop. Then, the trained regression models were leveraged to predict the accuracy degradation on the unlabeled target domain between 2019 and 2021. If the predicted accuracy degradation exceeded the predefined threshold, the second step of the proposed framework was applied to maintain the performance.




4.3. Comparison Models


The performance of the TADA framework was validated via comparing to three non-TL models and two state-of-art TL models. The three non-TL models were a multi-layer perceptron (MLP) and a linear SVM, chosen for their high performance and low computational complexity in intrusion detection [5,6], and a fully convolutional network (FCN) [29] for its ability to learn deep spatial features. For the state-of-art TL models, this work chose a DANN and the convolutional deep domain adaptation model for time series data (CoDATS) [42] for their capacity for domain adaptation.



This work adopted the accuracy and F1-score for the evaluation and comparison, which can be calculated as follows:


  Accuracy =   TP  +  TN   TP  +  TN  +  FP  +  FN   ,  



(15)




where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives, respectively. Since this work used imbalanced domains, examining the accuracy alone could sometimes be misleading. Hence, this work also introduced the F1-score, which is the harmonic mean of precision and recall:


   F 1 - score  =   2 × Precision × Recall   Precision  +  Recall   ,  



(16)




where   Precision =  TP  TP  +  FP    ,   Recall =  TP  TP  +  FN    .




4.4. Model Implementation


For the transferability analysis, this work deactivated the domain discriminator and used a serial connection between the feature extractor and the label predictor as the detection classifier to calculate the detection accuracy drop. The three layers of CNNs are set with kernel sizes of {8, 5, 3} and kernel numbers of {128, 256, 128}. Following [28], this work used grid research and found that combining an LSTM time step size of 60 (in minutes) and a hidden state size of 100 achieved robust detection performance. This work referred to [26] and gradually changed the adaptation factor  λ  in Equation (7) from zero to one to tune the trade-off between the label predictor loss and the domain discriminator loss. In this way, the domain discriminator loss was suppressed at the early training stage. Furthermore, an annealing learning rate that decreased from 0.01 to 0.001 was applied in this work.



This work used MATLAB R2020b and MATPOWER v7.1 to generate datasets. All models were implemented in Python v3.6, TensorFlow v2.4.0, Keras v2.4.3, and Scikit-learn v0.24.2. The hardware environment for training and testing was an AMD Ryzen 9 3900X 12-Core Processor 3.80 GHz with 32GB RAM, and an NVIDIA GeForce RTX 2070 Super GPU.





5. Results and Discussion


5.1. Evaluation of Transferability Analysis


The root-mean-square error (RMSE) and maximum absolute error (MaxAE) of each regression model in predicting the accuracy drop are shown in Figure 4. The first four are the performance of the single-metric method, and the last one is that of the ensemble method with all metrics.



To show the accuracy drop prediction ability of the transferability analysis, this work first compared the selected metrics with the baseline. The baseline divided the divergence of the historical data between 2015 and 2018 into small intervals, and calculated the mean accuracy drop in each small divergence interval as the expected accuracy drop. For the target dataset, if the measured divergence was located in a specific interval, the baseline took the expected accuracy drop of that interval as the predicted accuracy drop of the target domain. The RMSE and MaxAE of the baseline were 6.32% and 17.28%, respectively. All selected metrics outperformed the baseline in both RMSE and MaxAE. Among the four selected metrics with a linear regression, PAD and JS had the highest prediction performance, reducing RMSE and MaxAE significantly to under 2.88% and 8.27%, respectively. MMD performed slightly worse than PAD and JS, but still improved the baseline by 3.03% in RMSE and 7.31% in MaxAE. Cos performed worst among the selected metrics but still achieved smaller RMSE and MaxAE than the baseline.



Moreover, compared to using a single metric to predict the accuracy drop, the ensemble method provided better performance. The ensemble method achieved an RMSE as low as 1.79% and a MaxAE of 5.62%. This was because the ensemble method took advantage of different metrics that could capture complementary distribution information to further improve prediction performance [21]. Overall, the ensemble method decreased the RMSE to below 1.80%, indicating that the predicted accuracy drop with the ensemble metrics was close to the ground truth. This also implied that it was feasible to predict the models’ performance drop by distribution divergence.



The low RMSE and MaxAE of the selected metrics can be explained by the strong relationship between the divergence and accuracy drop. For example, the relationship of the accuracy drop and PAD divergence is presented in Figure 5. A strong relationship between the PAD divergence and accuracy drop can be observed: the Pearson correlation coefficient  ρ  is 0.87. According to [43],   ρ > 0.8   indicates a strong correlation between two variables.




5.2. FDI Detection Performance


Table 2 illustrates the accuracy of the TADA framework and five compared models in detecting FDI attacks in different seasons. The accuracy shown in Table 2 is the average of every 1080 experiments, where attacks were injected on individual buses of different locations. This work used the ensemble method to predict the accuracy drop of each case. Since FDI attacks may severely impact the power systems, this work set an accuracy drop of 10% as the threshold for activating TL. The target seasons where the actual accuracy drop was smaller than 10% are underlined. In these seasons, the accuracy drop was not significant enough to call for TL, because this small accuracy drop might be the normal accuracy variation. In this case, TL was unnecessary, because frequently applying TL can be costly but the performance boost would be trivial. Table 2 shows that the predicted accuracy drop of all the underlined seasons was less than 10%, indicating the ensemble method successfully identified all TL-unnecessary cases. Overall, the predicted accuracy drop was close to the actual accuracy drop. It can also be found that except for winter in Case 4, the source and target domain pairs demonstrated less accuracy drop if they were from the following pairs: the same-season pairs, winter and summer pairs, spring and fall pairs. This was because the load demand of the source and target domains from the aforementioned pairs was similar, as shown in Table 1. A similar load demand indicates less data distribution divergence and accuracy drop.



Among all methods, the SVM and MLP had the lowest detection accuracy, with an average accuracy of 72.55% and 74.10%, respectively. This was because they could neither learn deep spatiotemporal features nor use domain adaptation to mitigate the impact of distribution divergence. The FCN performed slightly better than the SVM and MLP with an average accuracy of 78.06%, because the FCN can leverage its CNN to extract spatial features within the smart grid measurements. However, the FCN was also a non-TL model, so it suffered performance degradation when facing significant distribution divergence. Moreover, compared to three non-TL models (SVM, MLP, and FCN), the TL models (DANN, CoDATS, and TADA) achieved a higher detection accuracy. This suggested that the three TL models could extract domain-invariant features to improve the classification accuracy, while the non-TL models failed to mitigate the impact of distribution divergence.



Among the three TL models, although the DANN could learn domain-invariant features, it had the lowest detection accuracy since it could not extract temporal or spatial features. The TADA framework outperformed the CoDATS by an average improvement of 4.56%. This was because the CoDATS could only learn temporal features, but the TADA framework could learn both temporal and spatial features in parallel to further improve FDI detection performance. Overall, the TADA framework demonstrated the highest accuracy in all cases. The best-case and the worst-case improvements reached +30.32% compared to the MLP during fall in Case 3, and +1.57% compared to the CoDATS during fall in Case 4. The results suggested that the TADA framework could not only take advantage of domain-adversarial training to extract domain-invariant features, but also leverage the LSTM and CNNs to learn spatiotemporal features, to achieve superior FDI detection performance against distribution divergence.



Considering this work used imbalanced datasets, the F1-score of the TADA framework and other compared models under different attack data percentages are shown in Figure 6. The results show that the detection performance of all methods was generally increasing as the percentage of attack data increased and datasets became more balanced. When the attack data percentage was less than 25%, the TADA framework demonstrated a significant improvement compared to the other models. The F1-score of the TADA framework did not further improve when the attack data percentage was higher than 25%, but it still outperformed the other models. Overall, the TADA framework showed the highest F1-score when the attack data percentage varied, which indicated that the TADA framework could achieve robust detection performance against variations in attack data percentage.




5.3. Visualization of Data Distribution


To vividly visualize the results of the domain-invariant feature extraction, Figure 7 employs t-SNE and presents normal and attack data distribution without and with domain-adversarial training. Specifically, for Figure 7a where the domain-adversarial training was not performed, this work deactivated the domain discriminator and used t-SNE to visualize the output of the feature fusion layer in Figure 1. For Figure 7b where the domain-adversarial training was performed, this work trained all three networks and visualized the output of the feature fusion layer. This work also plotted the decision boundary on the attack detection problem, which was given by the label predictor in Figure 1. Specifically, a sample was classified as attack data if the output of the label predictor was greater than 0.5. Otherwise, it was classified as normal data.



Figure 7a shows that without domain-adversarial training, the distributions of source and target data were different, especially for the attack data that were injected at different times and locations. Moreover, the decision boundary could distinguish between normal and attack data from the source domain but could not perfectly classify normal and attack data from the target domain. This was because the classifier was trained based on the labeled source domain, but the target domain had a different data distribution. After applying the domain-adversarial training, however, the distribution divergence between the two domains decreased. The source and target domains shared a similar distribution in the feature fusion layer, as shown in Figure 7b. Specifically, the attack data were clustered on the upper left, while the normal data were clustered on the lower right. Therefore, the label predictor trained on features extracted from the source domain could also generalize well to the target domain, thus achieving a high and robust detection performance. The results demonstrated that the TADA framework could effectively reduce distribution divergence and thus improve the detection performance.





6. Conclusions


This work studied the problems of when to apply TL and how to extract effective features during TL for attack detection in power systems. A two-step attack detection framework based on transferability analysis and unsupervised domain-adversarial training was proposed. The framework first used the distribution divergence to determine when TL should be applied, and then leveraged the spatiotemporal domain-adversarial training to enhance detection performance against attacks at different times and locations. The transferability analysis results demonstrated that the framework was capable of predicting the accuracy drop with an RMSE lower than 1.79% and determining whether to apply TL. The attack detection results showed that the TADA framework could extract effective spatiotemporal domain-invariant features to improve attack detection performance and achieved an average accuracy of 95.58%. The results also demonstrated that the TADA framework could achieve robust detection performance against variations of attack data percentages, with an average F1-score of 92.02%. In the future, we will further investigate more practical attack scenarios in the smart grid and extend the work to other CPS scenarios.
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Abbreviations


The following abbreviations are used in this manuscript:





	TADA
	Transferability analysis and domain-adversarial training



	CPS
	Cyberphysical systems



	IDS
	Intrusion detection system



	FDI
	False data injection



	BDD
	Bad data detection



	ML
	Machine learning



	TL
	Transfer learning



	DANN 
	Domain-adversarial neural network



	GRL
	Gradient reversal layer



	DAN
	Deep adaptation network



	DNN
	Deep neural network



	CDBN
	Conditional deep belief network



	CNN
	Convolutional neural network



	LSTM
	Long short-term memory



	GAP
	Global average pooling



	NLP
	Natural language processing



	CV
	Computer vision



	FCN
	Fully convolutional network



	CoDATS
	Convolutional deep domain adaptation model for time series data



	MLP
	Multilayer perceptron



	kNN
	k-nearest neighbors



	SVM
	Support vector machine



	PAD
	Proxy  A -distance



	KL
	Kullback–Leibler



	JS
	Jensen–Shannon



	CMD
	Central moment discrepancy



	CORAL
	Correlation alignment



	MMD
	Maximum mean discrepancy



	RKHS
	Reproducing kernel Hilbert space



	DC-OPF
	DC optimal power flow
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Figure 1. The proposed transferability analysis and domain-adversarial training (TADA) framework. 
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Figure 2. ISO New England seven-year load demand [14]. 
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Figure 3. IEEE 30-bus system [40]. 
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Figure 4. RMSE and MAE of accuracy drop prediction. 
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Figure 5. Scatter plot showing a strong relationship between PAD divergence and accuracy drop. Each dot represents a domain pair. The linear regression result is plotted in purple. 
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Figure 6. Comparison of F1-score of the TADA framework and other ML classifiers under different attack data percentages. 






Figure 6. Comparison of F1-score of the TADA framework and other ML classifiers under different attack data percentages.



[image: Energies 15 08778 g006]







[image: Energies 15 08778 g007 550] 





Figure 7. Distribution of normal and attack data in the feature fusion layer when (a) domain-adversarial training was not applied and (b) domain-adversarial training was applied. The circles represent normal data, while the dots represent the attack data. The green dots and circles correspond to data from the source domain, and the orange dots and circles correspond to the data from the target domain. The decision boundary is plotted in purple. 
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Table 1. Cases setup of temporal variation.






Table 1. Cases setup of temporal variation.





	
Cases

	
Seasons

	
Months

	
Source Domain from

Year 2015 to 2018

	
Target Domain from

Year 2019 to 2021




	
Mean of

Load (MW)

	
Standard Deviation

of Load (MW)

	
Mean of

Load (MW)

	
Standard Deviation

of Load (MW)






	
1

	
Winter

	
Mid-December to

mid-March

	
14,482.95

	
750.09

	
13,851.43

	
500.32




	
2

	
Spring

	
Mid-March to

mid-June

	
12,744.30

	
560.54

	
11,838.29

	
627.72




	
3

	
Summer

	
Mid-June to

mid-September

	
15,390.25

	
953.51

	
14,890.62

	
961.39




	
4

	
Fall

	
Mid-September to

mid-December

	
13,107.20

	
533.23

	
12,501.28

	
613.43
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Table 2. Comparison of the TADA framework and five ML classifiers in detecting FDI attacks in different seasons.
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Cases

	
Source

Seasons

	
Target

Seasons

	
Predicted

Drop

	
Actual

Drop

	
TADA

	
CoDATS

	
DANN

	
FCN

	
SVM

	
MLP

	
Best-Case

Margin

	
Worst-Case

Margin






	
1

	
Winter

	
Winter

	
8.97

	
8.89

	
97.31

	
93.86

	
91.17

	
86.68

	
79.56

	
81.03

	
+17.74

	
+3.44




	
Spring

	
26.01

	
25.20

	
94.87

	
87.69

	
85.69

	
72.44

	
67.65

	
66.93

	
+27.94

	
+7.18




	
Summer

	
11.47

	
11.23

	
95.74

	
93.31

	
89.13

	
79.82

	
74.13

	
75.57

	
+21.61

	
+2.43




	
Fall

	
20.97

	
20.65

	
94.84

	
90.93

	
85.51

	
71.41

	
66.02

	
69.27

	
+28.82

	
+3.91




	
2

	
Spring

	
Winter

	
18.55

	
18.74

	
96.68

	
89.14

	
88.16

	
77.30

	
71.74

	
70.42

	
+26.25

	
+7.54




	
Spring

	
12.81

	
13.02

	
96.05

	
93.00

	
89.74

	
81.50

	
75.66

	
78.91

	
+20.39

	
+3.04




	
Summer

	
19.62

	
19.14

	
95.42

	
90.49

	
88.03

	
70.23

	
67.72

	
71.04

	
+27.70

	
+4.93




	
Fall

	
6.26

	
6.36

	
97.89

	
93.21

	
90.23

	
86.22

	
78.85

	
82.69

	
+19.04

	
+4.68




	
3

	
Summer

	
Winter

	
17.28

	
17.62

	
95.08

	
90.55

	
86.03

	
78.55

	
72.15

	
73.56

	
+22.93

	
+4.53




	
Spring

	
28.21

	
27.19

	
92.90

	
89.47

	
84.39

	
70.83

	
64.86

	
66.98

	
+28.04

	
+3.43




	
Summer

	
7.19

	
7.29

	
96.87

	
89.79

	
90.12

	
85.07

	
79.25

	
81.89

	
+17.61

	
+6.75




	
Fall

	
23.17

	
23.80

	
94.99

	
86.57

	
82.80

	
71.50

	
68.19

	
64.67

	
+30.32

	
+8.42




	
4

	
Fall

	
Winter

	
11.76

	
11.49

	
96.52

	
90.78

	
91.06

	
84.12

	
78.53

	
78.10

	
+18.42

	
+5.46




	
Spring

	
14.48

	
14.75

	
94.98

	
93.30

	
90.04

	
78.42

	
74.35

	
76.44

	
+20.63

	
+1.68




	
Summer

	
24.77

	
23.92

	
93.08

	
89.68

	
81.19

	
72.99

	
67.32

	
67.40

	
+25.75

	
+3.39




	
Fall

	
9.20

	
9.09

	
96.08

	
94.51

	
92.56

	
81.91

	
74.76

	
80.70

	
+21.32

	
+1.57








The target seasons are underlined where the actual accuracy drop is smaller than a predefined threshold (10%) and thus the domain-adversarial training is unnecessary.
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