A Comprehensive Tool for Scenario Generation of Solar Irradiance Profiles
Abstract
:1. Introduction
- Probabilistic: the probability density functions (PDFs) of the input parameters are used;
- Possibilistic (fuzzy): the uncertainty of the input parameters is modeled with a membership function (MF);
- Hybrid probabilistic and possibilistic: both probabilistic and possibilistic approaches are used;
- Based on Information Gap Decision Theory (IGDT): it measures the deviation of the estimation error;
- Robust optimization: the uncertainty of the input parameters is described using uncertainty sets;
- Interval analysis: the uncertain inputs can assume values in a known interval (similar to the probabilistic approach with uniform PDFs).
2. Materials and Methods
2.1. Dataset Description
2.2. Data Preprocessing
2.3. Data Fitting
2.4. Roulette Wheel Method
2.5. Scenarios’ Reduction Process
Algorithm 1. Fast-Forward | |
Step 1 | |
1. | For each pair of scenarios ( and , the distance is computed by using the metric . The generic element of matrix in step 1 is: |
2. | |
3. | The metric usually used is the -Norm of , which can be defined as: |
4. | |
5. | Each scenario is associated with the weighted distance to any other scenario , where the weights are the probabilities of occurrence : |
6. | |
7. | For example, the values for scenarios and are the following: |
8. | Among the results, the index of the scenario with the minimum value of z is selected (): |
9. | |
10. | Then, is preserved (operatively, is removed from the indexes of scenarios to delete in step 1, ): |
11. | |
Step i | |
12. | Using the information from previous steps, the distance matrix is updated using Equation (12), new values of are computed using Equation (13), and a new scenario is selected to be preserved () using Equations (14) and (15): |
13. | |
14. | |
15. | |
16. | |
Step nP + 1 | |
17. | In the final step, the list of scenarios to remove is completed. Each scenario to be removed will be linked to a preserved scenario that will “substitute” it. In fact, is the index of the preserved scenario nearest to the removed scenario : |
18. | |
19. | The set of indexes of the removed scenarios that have as the nearest preserved scenario can be defined as follows: |
20. | |
21. | Using the optimal redistribution rule [40], the probability of the occurrence of the preserved scenario is computed: |
22. | |
23. | The probabilities of the occurrence of the removed scenarios nearest to are added to the initial value of . |
3. Numerical Results
3.1. Outlier Removal
3.2. Number of Regions
3.3. Metric
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ANN | Artificial Neural Networks |
DER | Distributed energy resources |
FL | Fuzzy Logic |
IGDT | Information Gap Decision Theory |
IQR | Interquartile Range |
MF | Membership function |
Probability density function | |
PV | Photovoltaic |
PVGIS | Photovoltaic Geographical Information System |
RES | Renewable energy sources |
Nomenclature | |
Probability of occurrence of a particular region r at time t | |
Normalized probability of occurrence of a particular region r at time t | |
Probability of occurrence of scenario | |
Γ(x) | Gamma function |
Metric used to compute the distance between two scenarios | |
Height of region r at time t | |
Number of preserved scenarios | |
Number of regions (bins) used to divide the support of the distribution | |
Number of generated scenarios | |
p | Parameter used to define outliers |
r | Number of considered regions () |
k-th scenario (signal containing 24 irradiance values) | |
t | Hour of the day () |
Width of region r at time t | |
Weighted distance of scenario from all other scenarios in step m | |
B(a,b) | Beta function with parameters a and b |
C | Matrix containing the distances between all pairs of scenarios |
(k,u)th entry of matrix C, representing the distance between scenarios and in step m | |
Set of indexes of the removed scenarios that have as the nearest preserved scenario | |
List of indexes of deleted scenarios in step m | |
1st quartile, 25th percentile of observed values | |
3rd quartile, 75th percentile of observed values | |
Binary variable that describes whether region r of scenario is selected at time t |
References
- ‘Fi1. Fit for 55’: Delivering the EU’s 2030 Climate Target on the Way to Climate neutralitycom(2021) 550 Final, Brussels, 14.7.2021. Available online: https://ec.europa.eu/info/sites/default/files/chapeau_communication.pdf (accessed on 30 October 2022).
- Breyer, C.; Khalili, S.; Bogdanov, D. Solar photovoltaic capacity demand for a sustainable transport sector to fulfil the Paris Agreement by 2050. Prog. Photovolt. Res. Appl. 2019, 27, 978–989. [Google Scholar] [CrossRef]
- Sæle, H.; Morch, A.; Buonanno, A.; Caliano, M.; di Somma, M.; Papadimitriou, C. Development of Energy Communities in Europe. In Proceedings of the 18th International Conference on the European Energy Market (EEM), Ljubljana, Slovenia, 13–15 September 2022. [Google Scholar]
- Fateh, D.; Eldoromi, M.; Birjandi, A.A.M. Uncertainty Modeling of Renewable Energy Sources. In Scheduling and Operation of Virtual Power Plants; Elsevier: Amsterdam, The Netherlands, 2022; pp. 193–208. [Google Scholar]
- Brenna, M.; Foiadelli, F.; Zaninelli, D.; Graditi, G.; Di Somma, M. The Integration of Electric Vehicles in Smart Distribution Grids with Other Distributed Resources. In Distributed Energy Resources in Local Integrated Energy Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 315–345. [Google Scholar] [CrossRef]
- Papadimitriou, C.; Patsalides, M.; Venizelos, V.; Therapontos, P.; Efthymiou, V. Assessing Renewables Uncertainties in the Short-Term (Day-Ahead) Scheduling of DER. In Distributed Energy Resources in Local Integrated Energy Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 347–387. [Google Scholar]
- Zakaria, A.; Ismail, F.B.; Lipu, M.H.; Hannan, M. Uncertainty models for stochastic optimization in renewable energy applications. Renew. Energy 2019, 145, 1543–1571. [Google Scholar] [CrossRef]
- Li, Y.; Han, M.; Yang, Z.; Li, G. Coordinating Flexible Demand Response and Renewable Uncertainties for Scheduling of Community Integrated Energy Systems with an Electric Vehicle Charging Station: A Bi-level Approach. IEEE Trans. Sustain. Energy 2021, 12, 2321–2331. [Google Scholar] [CrossRef]
- di Somma, M.; Graditi, G.; Heydarian-Forushani, G.; Shafie-khah, M.; Siano, P. Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environrmental aspects. Renew. Energy 2018, 116, 272–287. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, J.; Liu, P.; Li, Z.; Georgiadis, M.C.; Pistikopoulos, E.N. A two-stage stochastic programming model for the optimal design of distributed energy systems. Appl. Energy 2012, 103, 135–144. [Google Scholar] [CrossRef]
- Hong, F.; Cuiying, W.; Lu, L.; Xuan, L. Review of Uncertainty Modeling for Optimal Operation of Integrated Energy System. Front. Energy Res. 2022, 9, 641337. [Google Scholar] [CrossRef]
- Di Somma, M.; Buonanno, A.; Caliano, M.; Graditi, G.; Piazza, G.; Bracco, S.; Delfino, F. Stochastic Operation Optimization of the Smart Savona Campus as an Integrated Local Energy Community Considering Energy Costs and Carbon Emissions. Energies 2022, 15, 8418. [Google Scholar] [CrossRef]
- Ashtari, A.; Bibeau, E.; Shahidinejad, S.; Molinski, T. PEV Charging Profile Prediction and Analysis Based on Vehicle Usage Data. IEEE Trans. Smart Grid 2011, 3, 341–350. [Google Scholar] [CrossRef]
- Ali, S.; Lee, S.-M.; Jang, C.-M. Statistical analysis of wind characteristics using Weibull and Rayleigh distributions in Deokjeok-do Island—Incheon, South Korea. Renew. Energy 2018, 123, 652–663. [Google Scholar] [CrossRef]
- Shoaib, M.; Siddiqui, I.; Amir, Y.M.; Rehman, S.U. Evaluation of wind power potential in Baburband (Pakistan) using Weibull distribution function. Renew. Sustain. Energy Rev. 2017, 70, 1343–1351. [Google Scholar] [CrossRef]
- Labeeuw, W.; Deconinck, G. Customer sampling in a smart grid pilot. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar]
- Li, J.; Zhou, J.; Chen, B. Review of wind power scenario generation methods for optimal operation of renewable energy systems. Appl. Energy 2020, 280, 115992. [Google Scholar] [CrossRef]
- Aien, M.; Hajebrahimi, A.; Fotuhi-Firuzabad, M. A comprehensive review on uncertainty modeling techniques in power system studies. Renew. Sustain. Energy Rev. 2016, 57, 1077–1089. [Google Scholar] [CrossRef]
- Alipour, M.; Jalali, M.; Abapour, M.; Tohidi, S. Uncertainty Modeling in Operation of Multi-carrier Energy Networks. In Planning and Operation of Multi-Carrier Energy Networks. Power Systems; Spinger: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Teke, A.; Yıldırım, B.H.; Çelik, Ö. Evaluation and performance comparison of different models for the estimation of solar radiation. Renew. Sustain. Energy Rev. 2015, 50, 1097–1107. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Sopian, K. A review of solar energy modeling techniques. Renew. Sustain. Energy Rev. 2012, 16, 2864–2869. [Google Scholar] [CrossRef]
- Yorukoglu, M.; Celik, A.N. A critical review on the estimation of daily global solar radiation from sunshine duration. Energy Convers. Manag. 2006, 47, 2441–2450. [Google Scholar] [CrossRef]
- Besharat, F.; Dehghan, A.A.; Faghih, A.R. Empirical models for estimating global solar radiation: A review and case study. Renew. Sustain. Energy Rev. 2013, 21, 798–821. [Google Scholar] [CrossRef]
- Elminir, H.; Azzam, Y.; Younes, F. Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models. Energy 2007, 32, 1513–1523. [Google Scholar] [CrossRef]
- Rahimikhoob, A. Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment. Renew. Energy 2010, 35, 2131–2135. [Google Scholar] [CrossRef]
- Aguiar, R.; Collares-Pereira, M. Statistical properties of hourly global radiation. Sol. Energy 1992, 48, 157–167. [Google Scholar] [CrossRef]
- Duzen, H.; Aydin, H. Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey). Energy Convers. Manag. 2012, 58, 35–46. [Google Scholar] [CrossRef]
- Teke, A.; Yıldırım, H.B. Estimating the monthly global solar radiation for Eastern Mediterranean Region. Energy Convers. Manag. 2014, 87, 628–635. [Google Scholar] [CrossRef]
- Korachagaon, I. Estimating Global Solar Radiation Potential for Brazil by Iranna-Bapat’s Regression Models. Int. J. Emerg. Technol. Adv. 2012, 2, 178–186. [Google Scholar]
- Khatod, D.K.; Pant, V.; Sharma, J. Evolutionary programming based optimal placement of renewable distributed generators. IEEE Trans. Power Syst. 2012, 28, 683–695. [Google Scholar] [CrossRef]
- Salameh, Z.; Borowy, B.; Amin, A. Photovoltaic module-site matching based on the capacity factors. IEEE Trans. Energy Convers. 1995, 10, 326–332. [Google Scholar] [CrossRef]
- Li, Y.; Zio, E. Uncertainty analysis of the adequacy assessment model of a distributed generation system. Renew. Energy 2012, 41, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Karaki, S.; Chedid, R.; Ramadan, R. Probabilistic performance assessment of autonomous solar-wind energy conversion systems. IEEE Trans. Energy Convers. 1999, 14, 766–772. [Google Scholar] [CrossRef]
- Khan, M.F.N.; Malik, T.N. Probablistic generation model for optimal allocation of PV DG in distribution system with time-varying load models. J. Renew. Sustain. Energy 2017, 9, 065503. [Google Scholar] [CrossRef]
- Hung, D.Q.; Mithulananthan, N.; Lee, K.Y. Determining PV Penetration for Distribution Systems With Time-Varying Load Models. IEEE Trans. Power Syst. 2014, 29, 3048–3057. [Google Scholar] [CrossRef]
- Hagan, K.E.; Oyebanjo, O.O.; Masaud, T.M.; Challoo, R. A probabilistic forecasting model for accurate estimation of PV solar and wind power generation. In Proceedings of the 2016 IEEE Power and Energy Conference at Illinois (PECI), Urbana, IL, USA, 19–20 February 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Afzaal, M.U.; Sajjad, I.A.; Awan, A.B.; Paracha, K.N.; Khan, M.F.N.; Bhatti, A.R.; Zubair, M.; Rehman, W.U.; Amin, S.; Haroon, S.S.; et al. Probabilistic Generation Model of Solar Irradiance for Grid Connected Photovoltaic Systems Using Weibull Distribution. Sustainability 2020, 12, 2241. [Google Scholar] [CrossRef]
- Rocke, D.M.; Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs. J. Am. Stat. Assoc. 2000, 95, 347. [Google Scholar] [CrossRef]
- Growe-Kuska, N.; Heitsch, H.; Romisch, W. Scenario Reduction and Scenario Tree Construction for Power Management Problems. In Proceedings of the 2003 IEEE Bologna Power Tech Conference Proceedings, Bologna, Italy, 23–26 June 2003; pp. 1–7. [Google Scholar]
- Heitsch, H.; Römisch, W. Scenario Reduction Algorithms in Stochastic Programming. Comput. Optim. Appl. 2003, 24, 187–206. [Google Scholar] [CrossRef]
- Buonanno, A.; Caliano, M.; Di Somma, M.; Graditi, G.; Valenti, M. Comprehensive method for modeling uncertainties of solar irradiance for PV power generation in smart grids. In Proceedings of the 2021 International Conference on Smart Energy Systems and Technologies (SEST), Vaasa, Finland, 6–8 September 2021. [Google Scholar]
- PVGIS. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html (accessed on 30 October 2022).
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Boston, MA, USA, 1977. [Google Scholar]
- Murphy, K.P. Probabilistic Machine Learning—An Introduction; The MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Pourghasem, P.; Sohrabi, F.; Abapour, M.; Mohammadi-Ivatloo, B. Stochastic multi-objective dynamic dispatch of renewable and CHP-based islanded microgrids. Electr. Power Syst. Res. 2019, 173, 193–201. [Google Scholar] [CrossRef]
- Rubinstein, R.Y.; Kroese, D.P. Simulation and the Monte Carlo Method, 3rd ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buonanno, A.; Caliano, M.; Di Somma, M.; Graditi, G.; Valenti, M. A Comprehensive Tool for Scenario Generation of Solar Irradiance Profiles. Energies 2022, 15, 8830. https://doi.org/10.3390/en15238830
Buonanno A, Caliano M, Di Somma M, Graditi G, Valenti M. A Comprehensive Tool for Scenario Generation of Solar Irradiance Profiles. Energies. 2022; 15(23):8830. https://doi.org/10.3390/en15238830
Chicago/Turabian StyleBuonanno, Amedeo, Martina Caliano, Marialaura Di Somma, Giorgio Graditi, and Maria Valenti. 2022. "A Comprehensive Tool for Scenario Generation of Solar Irradiance Profiles" Energies 15, no. 23: 8830. https://doi.org/10.3390/en15238830
APA StyleBuonanno, A., Caliano, M., Di Somma, M., Graditi, G., & Valenti, M. (2022). A Comprehensive Tool for Scenario Generation of Solar Irradiance Profiles. Energies, 15(23), 8830. https://doi.org/10.3390/en15238830