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Abstract: Despite their positive effects on the decarbonization of energy systems, renewable energy
sources can dramatically influence the short-term scheduling of distributed energy resources (DER)
in smart grids due to their intermittent and non-programmable nature. Renewables’ uncertainties
need to be properly considered in order to avoid DER operation strategies that may deviate from the
optimal ones. This paper presents a comprehensive tool for the scenario generation of solar irradiance
profiles by using historical data for a specific location. The tool is particularly useful for creating
scenarios in the context of the stochastic operation optimization of DER systems. Making use of the
Roulette Wheel mechanism for generating an initial set of scenarios, the tool applies a reduction
process based on the Fast-Forward method, which allows the preservation of the most representative
ones while reducing the computational efforts in the next potential stochastic optimization phase.
From the application of the proposed tool to a numerical case study, it emerged that plausible
scenarios are generated for solar irradiance profiles to be used as input for DER stochastic optimization
purposes. Moreover, the high flexibility of the proposed tool allows the estimation of the behavior
of the stochastic operation optimization of DER in the presence of more fluctuating but plausible
solar irradiance patterns. A sensitivity analysis has also been carried out to evaluate the impact
of key parameters, such as the number of regions, a metric, and a specific parameter used for the
outlier removal process on the generated solar irradiance profiles, by showing their influence on their
smoothness and variability. The results of this analysis are found to be particularly suitable to guide
users in the definition of scenarios with specific characteristics.

Keywords: scenario generation; scenario reduction; solar irradiance profiles; smart grid

1. Introduction

The sustainability objectives set by the European Green Deal require the increasing
use of generation systems based on renewable energy sources (RES), as well as the use of
electricity as the main energy vector. The pathway to reducing carbon emissions by 2030
will require efforts across society and sectors. With the European Green Deal as the main
plan to implement for promoting this change, the European Union (EU) finalized its master
program to fight carbon emissions, namely, the “Fit for 55” package [1]. Released in two
batches in July and December 2021, the package drafts of EU climate and energy legislation
underpin the bloc’s political pledge to cut emissions by at least 55% by 2030 compared
with 1990 levels. This target is more ambitious than the previous one of a 40% reduction
for 2030 and is the key to achieving carbon neutrality in the EU by 2050. In view of this
scenario, solar energy will become one of the key players in the electricity generation
sector, thanks to its viability in combating global warming and its effectiveness in reducing
pollution caused by fossil-fuel-based generation and diversifying the energy mix to ensure
energy security. In particular, the installed capacity of solar photovoltaics (PV) has grown
rapidly over the past decade due to the great improvements in PV technology performance,
reductions in cost, and the development of efficient business models that have fostered new
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investments in this technology. This trend is expected to continue in the future, affecting
not only large-scale centralized solar farms but, above all, small-/medium-scale PV at the
distribution level, where the number of PV applications owned by residential and industrial
prosumers (power producers and consumers) will also expand, driven by environmental
policies and economic incentives.

From a range of studies, solar PV is expected to contribute 36% to 69% of European
electricity consumption by 2050 [2], and its role is predominant in Energy Communities [3].
Due to the variability and intermittent nature of the solar PV output, such a high share of
solar PV will impact the overall system costs due to the increase in operating costs and the
infrastructure needed. This problem is aggravated by the inaccuracy of the methodologies
in modeling renewables’ uncertainties, which are related to the uncertainty of weather
conditions for RES [4], which represent a key factor to be properly handled in the smart
grid environment. In fact, they may influence how distributed energy resources (DER)
are scheduled in the short term to provide the available flexibility for system balancing
at all times [5–8]. If such uncertainties are not identified and handled properly in the
operation scheduling of DER, their operation strategies may deviate from the optimal ones
by causing a number of issues, such as an increase in operational costs or system stability
and security. Modeling RES uncertainties in the stochastic operation optimization of DER
is thus extremely important [9–12].

Several works in the literature deal with different sources of uncertainties, such
as renewables, electricity consumption, electric vehicles, etc. [13–17]. The objective of
uncertainty-modeling methods is to evaluate the impact of uncertain input parameters
on system output parameters. These methods can be subdivided into several groups, as
suggested in [18,19]:

• Probabilistic: the probability density functions (PDFs) of the input parameters
are used;

• Possibilistic (fuzzy): the uncertainty of the input parameters is modeled with a mem-
bership function (MF);

• Hybrid probabilistic and possibilistic: both probabilistic and possibilistic approaches
are used;

• Based on Information Gap Decision Theory (IGDT): it measures the deviation of the
estimation error;

• Robust optimization: the uncertainty of the input parameters is described using
uncertainty sets;

• Interval analysis: the uncertain inputs can assume values in a known interval (similar
to the probabilistic approach with uniform PDFs).

The approaches to estimating solar irradiance can be grouped into linear, nonlinear,
Artificial Neural Network (ANN)-based, and Fuzzy Logic (FL) techniques [20]. For linear
and nonlinear models, the authors have created associations between solar irradiance and
other variables, such as meteorological ones [21–23]. In ANN-based approaches [24,25],
the usual inputs used are geographical coordinates, meteorological data, and information
related to the current date and time. In FL approaches, the input to the estimation model
is the classified sky condition. Moreover, other authors have applied statistical methods
to study the hourly variation in solar irradiance data considering different climatic loca-
tions [26] or empirical models to estimate solar irradiance on a monthly basis for different
locations [27,28]. In [29], the authors state that FL can yield better estimation results when
the data available for estimation are ambiguous and vague.

Among the probability distributions, beta is considered one of the most effective for
modeling solar irradiance [30–33] and is often employed in planning studies related to PV sys-
tems [34–36]. Other works propose the Weibull distribution for modeling solar irradiance [37].

The contribution of this paper is the presentation of a comprehensive tool to generate
solar irradiance profiles using a scenario generation approach and historical data for a
specific location. The methodology is general and highly replicable and can thus be applied
in several contexts for generating 24 h solar irradiance scenarios, which are useful for the
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stochastic operation optimization of DER. The tool has been completely implemented in
Python, and it is suitable for transformation into a Web Service to generate solar irradiance
profiles related to a particular geographical region and a time period of interest.

The historical hourly solar irradiance data were fitted using the beta distribution, and
the Roulette Wheel mechanism [38] was used to generate an initial set of scenarios; then,
a reduction process based on the Fast-Forward method [39,40] was applied in order to
preserve the most representative ones while reducing the computational efforts in the next
potential stochastic optimization phase. The generation and reduction phases are ruled by
certain parameters, such as the number of regions, a metric, and a specific parameter used
for an optional process for outlier removal that can be modified. Moreover, a sensitivity
analysis was performed to evaluate the impacts of the variations in these parameters on the
solar irradiance scenarios generated. The numerical results of the analysis show that these
parameters have a visible effect on the smoothness and variability of the generated scenarios.
Based on the current scientific literature, there are no previous works that examined these
aspects, thereby highlighting the importance of this study, which could be useful as a guide
for tuning the scenario generation process with the aim of obtaining scenarios with certain
characteristics. In the case study, the proposed tool is found to be efficient in generating
plausible scenarios for daily solar irradiance profiles with 1 h as the time-step to be used as
input for DER stochastic operation optimization purposes. Moreover, the high flexibility
of the proposed tool allows the estimation of the behavior of DER stochastic operation
optimization in the presence of more fluctuating—but plausible—solar irradiance profiles.
The current paper extends the results presented in [41] by including additional results in
the case study, as well as introducing a new verification system of the plausibility of the
reduced scenarios.

In the following, the dataset, data preprocessing, data fitting, and methods for scenario
generation and reduction are discussed in Section 2. The results of varying certain key
parameters in the scenario generation and reduction processes are presented in Section 3.
In Section 4, the sensitivity analysis is discussed, along with the obtained results.

2. Materials and Methods

The tool proposed in this paper is based on a statistical approach used to model
solar irradiance based on historical data. By using the Roulette Wheel method [38], an
initial set of scenarios is first generated, and then, through a reduction process, the most
representative ones are preserved.

A scheme for describing the proposed tool is shown in Figure 1. In particular, the
dataset retrieved from the Photovoltaic Geographical Information System (PVGIS) [42]
(Section 2.1) is preprocessed by using an optional process for outlier removal and min–max
scaling, as described in Section 2.2. For each hour, a data-fitting process (Section 2.3) is
performed in order to obtain a probability distribution for each hour. From each hourly
probability distribution, a sample is extracted to obtain 24 randomly sampled values,
the so-called 24 h solar irradiance scenario (Section 2.4). This process is performed nS
times in order to obtain nS scenarios. In order to reduce the computational complexity of
the following optimization task, the generated scenarios have to be reduced by using an
approach that preserves the “information content” present in the original set of scenarios.
This is performed by using the procedure described in Section 2.5.
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Figure 1. Overall description of the proposed tool. In square parentheses, the parameters that affect
the considered step are reported.

2.1. Dataset Description

The hourly solar irradiance data from 2005 to 2016 for the city of Turin (Italy) were
gathered using PVGIS [42]. In order to model both the winter and summer seasons, January
and July were selected as months of interest.

The daily patterns of solar irradiance for the days in July and January from 2005 to
2016 are shown in Figures 2 and 3, respectively.

From the figures, it is possible to observe the great variability in each hour, which will
be modeled by means of a probability distribution that fits the data.
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represent values identified as outliers following Equation (1) with p = 1.5. To each hour is associated
a different color of box.
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Figure 3. Box-whisker plot of solar irradiance for the days in January from 2005 to 2016. The bold
points represent values identified as outliers following Equation (1) with p = 1.5. To each hour is
associated a different color of box.

2.2. Data Preprocessing

The hourly data for each considered month were normalized using min–max scaling
in order to map the values observed in the range [0, 1].

To reduce the variability in the observations, the outliers can be removed using the
Interquartile Range (IQR) method [43], according to which the values are considered
outliers—and hence removed—when they are outside of the following range:

[Q1 − p · IQR, Q3 + p · IQR] (1)

where Q1 and Q3 are the 1st and 3rd quartiles (25th and 75th percentiles), respectively;
IQR = Q3 −Q1; and p is a value that permits the expansion or restriction of the range and
hence the consideration of fewer or more values as outliers.

However, it is the user’s choice to enable (or not) the outlier removal process, as well
as the value of p.

2.3. Data Fitting

The normalized hourly irradiance data were fitted using several probability distribu-
tions, namely, Weibull, beta, logistic, and arcsine. Among the tested distributions, beta was
found to be the best fit for most hours in January and July, confirming what was observed
in the relevant literature for solar irradiance data [32,33].

Beta is a continuous probability distribution with support in [0, 1], and its PDF is
defined as in [44]:

fS(x, a, b) =
xa−1(1− x)b−1

B(a, b)
(2)

where B(a,b) is the beta function, formulated as:

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

(3)

where Γ(x) is the gamma function, formulated as:

Γ(x) =
∫ ∞

0
ux−1e−udu (4)

Different values of a and b allow uniform (a = 1, b = 1), bimodal (a < 1, b < 1), or
unimodal (a > 1, b > 1) distributions to be obtained. nR regions, or bins, are defined to
divide the support of the distribution.
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Figure 4 shows the fitting results of data related to the hour 12:00 p.m. in July using
the beta distribution and dividing its support into 7 regions.
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2.4. Roulette Wheel Method

The Roulette Wheel method [38] was used to extract a set of samples from the fitted
probability density functions with their supports divided into nR regions [45].

The probability of the occurrence of a particular region r (r ∈ {1, . . . , nR}) at time t (the
hour of the day, t ∈ {0, . . . , 23}) can be computed as the product of width wt,r (width of
region r at time t) and height ht,r (height of region r at time t): αt,r = wt,r · ht,r, appropriately
normalized as reported in Equation (5).

α̂t,r =
αt,r

∑nR
ρ=1 αt,ρ

(5)

The probabilities of the occurrence for all regions of a particular hour were sorted in
descending order and cumulated.

In order to sample from the beta distribution with its support divided into nR regions,
it is possible to sample a value from a uniform distribution ( v ∼ U(0, 1)) and, comparing
it with the cumulative probability of occurrence, select one of nR possible regions that v
belongs to (this method is also known as the Inverse Transform [46]).

The central value of the selected region is the value sampled from the beta probability
distribution with support divided into nR regions. The procedure described above was
performed for each hour, obtaining 24 sampled values that compose the scenario. To be
precise, not all 24 values were sampled in this way because, in some hours, the observed
solar irradiance was constantly zero, and this behavior was maintained in the scenario
generation process.

The binary variable Wk,t,r is used to contain the information on whether region r is
selected for a scenario sk at hour t (Wk,t,r = 1) or not (Wk,t,r = 0).

The main assumption of the proposed model is that, at a specific hour, the solar irradi-
ance is independent of the values observed in the previous hours. With this assumption,
the probability of the occurrence of scenario sk, πk, is the product of the probabilities of the
regions that compose it [45]:

πk =
∏23

t=0 ∑nR
r=1
{

Wk,t,r · α̂t,r
}

∑nS
k=1 ∏23

t=0 ∑nR
r=1
{

Wk,t,r · α̂t,r
} , k = 1, . . . , nS (6)
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The independence assumption can be relaxed, considering that the solar irradi-
ance assumed at a particular hour depends on the solar irradiance values of previous
hours. The methodology described here is, however, still valid, and this extension is
reported elsewhere.

2.5. Scenarios’ Reduction Process

From an initial set of nS scenarios with their probabilities πk (with k = 1, . . . , nS), it is
necessary to obtain a reduced set of nP scenarios to use in the successive potential stochastic
optimization phase. The considered reduction method is the Fast-Forward method [39,40].
The algorithm creates a subset of scenarios with the minimum Kantorovich distance from
the initial set. After computing the distance (with respect to a metric defined as the mean
absolute distance, Euclidean distance, etc.) between all pairs of scenarios, the scenario with
the minimum weighted distance (the weights are the probabilities of the occurrence of
each scenario) from all of the other ones is selected. The probability of the occurrence of all
removed scenarios is absorbed by the preserved scenario that is nearest to them.

The main steps of the Fast-Forward algorithm are described in the Algorithm 1 box [39].

Algorithm 1. Fast-Forward

Step 1

1.
For each pair of scenarios (sk and su), the distance is computed by using the metric cT .
The generic element Ck,u of matrix C in step 1 is:

2. C[1]
k,u = cT(sk, su), k, u = 1, . . . , nS (7)

3. The metric usually used is the `q-Norm of RT , which can be defined as:

4. cT(sk, su) =

(
T

∑
t=1

∣∣∣sk
t − su

t

∣∣∣q) 1
q

(8)

5.
Each scenario su is associated with the weighted distance to any other scenario sk, where
the weights are the probabilities of occurrence πk:

6.
z[1]u =

nS

∑
k=1
k 6=u

πkC[1]
k,u, u = 1, . . . , nS (9)

7.

For example, the z values for scenarios s1 and s2 are the following:

z[1]1 = π2C[1]
21 + π3C[1]

31
+ π4C[1]

41 + . . .

z[1]2 = π1C[1]
12 + π3C[1]

32
+ π4C[1]

42 + . . .

8. Among the results, the index of the scenario with the minimum value of z is selected (u1):

9. u1 ∈ argminu∈{1,...,nS} z[1]u (10)
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Algorithm 1. cont.

10.
Then, su1 is preserved (operatively, u1 is removed from the indexes of scenarios to delete
in step 1, J[1]):

11. J[1] = {1, . . . , nS}\{u1} (11)

Step i

12.
Using the information from previous steps, the distance matrix is updated using
Equation (12), new values of z are computed using Equation (13), and a new scenario is
selected to be preserved (sui ) using Equations (14) and (15):

13. C[i]
ku = min

{
C[i−1]

ku , C[i−1]
kui−1

}
, k, u ∈ J[i−1] (12)

14.
z[i]u = ∑

k∈J[i−1]\{u}
πkC[i]

ku, u ∈ J[i−1] (13)

15. ui ∈ argminu∈J[i−1]z
[i]
u (14)

16. J[i] = J[i−1] \ {ui} (15)

Step nP + 1

17.
In the final step, the list of scenarios to remove J = J[nP ] is completed. Each scenario to
be removed will be linked to a preserved scenario that will “substitute” it. In fact, j(i) is
the index of the preserved scenario nearest to the removed scenario si:

18. j(i) ∈ argminj/∈JcT(si, sj), ∀i ∈ J (16)

19.
The set of indexes of the removed scenarios that have sj as the nearest preserved
scenario can be defined as follows:

20. J(j) = {i ∈ J : j = j(i)} (17)

21.
Using the optimal redistribution rule [40], the probability of the occurrence πj of the
preserved scenario sj is computed:

22. πj = πj + ∑
i∈J(j)

πi (18)

23.
The probabilities of the occurrence of the removed scenarios nearest to sj are added to
the initial value of πj.

3. Numerical Results

In this section, the numerical results of the scenario generation process carried out
considering different values of nR, metric, and p are presented.

Due to the randomness of sampling from uniform random variables in the Roulette
Wheel method, two successive executions of the scenario generation process with the same
parameters could return different scenarios unless fixing the seed for sampling from the
uniform distribution. In order to compare the several generated scenarios with different
parameters, the same seed was used for all trials related to the same month.

3.1. Outlier Removal

Figures 5 and 6 show the results obtained by using nS = 1000, nP = 10, nR = 7, and
metric = `2-Norm and by varying p.
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3.2. Number of Regions

Figures 7 and 8 show the results obtained by considering nS = 1000, nP = 10, and
metric = `2-Norm without outlier removal and by varying nR.
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3.3. Metric

Figures 9 and 10 show the results obtained by using nS = 1000, nP = 10, and nR = 7
without outlier removal and varying the metric used to compare two scenarios. For that,
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several `q-Norms were tested (Equation (8)): `1-Norm (q = 1), `2-Norm (q = 2), `4-Norm
(q = 4), and `∞-Norm (Equation (19)).

cT(sk, su) = max
t

∣∣∣sk
t − su

t

∣∣∣ (19)
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4. Discussion

In order to show the impact of the parameters p, nR, and metric on the preserved
scenarios (in terms of smoothness and variability in the same hour), a sensitivity analysis
was performed.

For the estimation of the variability in the preserved scenarios, the average (for all
hours excluding those in which irradiance is always zero) of the difference between the
97.5th and 2.5th percentiles of the preserved scenarios was considered. The trends of
the average of the difference between the 97.5th and 2.5th percentiles for the different
trials described in Sections 3.1–3.3 for July (summer) and January (winter) are shown in
Figures 11 and 12, respectively.
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Figure 11. Trend of average of the difference between 97.5th and 2.5th percentiles for preserved
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graph indicates the values assumed by the varied parameters.
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Regarding the outlier removal process, when reducing p, more samples for each hour
are considered outliers (and hence removed). For the solar irradiance distributions with
small hourly IQRs and many values outside IQRs, as in July, where the average IQR is
about 111 W/m2 (Figure 2), removing outliers and reducing the value of p lead to generated
scenarios with small variability (Figure 5 and blue line in Figure 11). For the solar irradiance
distributions where hourly IQRs are high and few observations are outside IQRs, as in
January, where the average IQR is about 460 W/m2 (Figure 3), the outlier removal process
does not have, in general, a high impact (Figure 6 and the blue line in Figure 12).

Regarding the impact of the number of regions (nR), the variability is increased
for both seasons when nR is increased from 3 to 7 (Figures 7 and 8 and orange lines in
Figures 11 and 12). With a value of nR that is higher than 7, the variability is quite stable.
This can be explained by the fact that, even though the support of the beta distribution has
been divided using more regions, more of them have a low probability of occurrence and,
hence, do not impact the resulting variability.

Regarding the impact of several metrics for comparing two scenarios during the reduc-
tion process (Figures 9 and 10 and green lines in Figures 11 and 12), it is possible to observe
that very different results are obtained from different metrics in the two considered seasons
(e.g., `2-Norm produces scenarios with high variability in summer and low variability in
winter, `4-Norm produces scenarios with lower variability than `2-Norm in summer and
higher variability than `2-Norm in winter, etc.), and the variability obtained with `∞-Norm
is close to that obtained with `2-Norm.

The user of the method can select the best combination of the presented parame-
ters in order to obtain the best trade-off between the variability among preserved sce-
narios and their plausibility. To verify the plausibility of the preserved scenarios, the
user can plot them in the box-whisker plot obtained from the real solar irradiance data
(Figures 1 and 2) and verify that the generated values of hourly solar irradiance for the
particular scenario do not deviate too much from the boxes and whiskers. (In the box-
whisker plot, the box describes the range between Q1 and Q3, the upper whisker is on
Q3 + 1.5 · IQR, and the lower whisker is on Q1 − 1.5 · IQR. The values outside the range
defined by the whiskers can be considered outliers). In this case, this means that the
generated values of hourly solar irradiance for that scenario can be considered inliers with
respect to the observed data.

The scenarios obtained with nS = 1000, nP = 10, and nR = 7, `2-Norm metric and
without the outlier removal step are shown in Figure 13 for summer and Figure 14 for winter.
Figures 15 and 16 show the preserved scenarios plotted over the box-whisker plot of the
observed solar irradiance. In these images, it is possible to see that the preserved scenarios
are almost completely contained in the boxes (representing the IQR of the observed solar
irradiance), and almost all values that are outside the boxes are confined to the variability
range observed in the real data (the range between the two whiskers) and hence can be
considered plausible.
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5. Conclusions

In this work, a comprehensive tool to generate solar irradiance profiles is presented.
The proposed approach is based on a scenario generation process aimed at generating 24 h
solar irradiance scenarios using the historical data of solar irradiance for a specific location.

In the case study, the proposed method was applied to generate a set of daily solar irra-
diance scenarios for the months of January and July for the city of Turin (Italy). The Roulette
Wheel mechanism was used to generate the initial set of scenarios, and the Fast-Forward
method for the reduction process was applied to preserve the most representative scenarios
and reduce the computational efforts associated with the potential stochastic operation
optimization phase. The results demonstrate the flexibility of the method in generating
scenarios for solar irradiance and in assessing their plausibility. These characteristics make
the proposed approach an effective tool to be used for the stochastic operation optimization
of DER.

Moreover, the results of the sensitivity analysis show the influence of the variation
in the key parameters on the results in terms of increasing the variability and/or the
smoothness of the generated scenarios, which could be very effective in estimating the
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behavior of the stochastic operation optimization of DER in the presence of more fluctuating
but plausible solar irradiance patterns.

Given the generality of the proposed method, it can be easily adapted to model solar
irradiance profiles for different locations and use cases, and hence, it can serve as a guide
to users for the definition of scenarios with specific characteristics. Moreover, the proposed
pipeline can be implemented as a Web Service queryable by users in order to generate solar
irradiance scenarios with their probability of occurrence, which is fundamental for the
stochastic optimization of DER.

Author Contributions: Conceptualization, A.B., M.C. and M.D.S.; methodology, A.B.; software, A.B.;
data curation, A.B.; writing, review and editing, A.B., M.C., M.D.S., G.G. and M.V. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded under Project 1.7 “Tecnologie per la penetrazione efficiente del
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in the Section 2.1.
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Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Networks
DER Distributed energy resources
FL Fuzzy Logic
IGDT Information Gap Decision Theory
IQR Interquartile Range
MF Membership function
PDF Probability density function
PV Photovoltaic
PVGIS Photovoltaic Geographical Information System
RES Renewable energy sources
Nomenclature
αt,r Probability of occurrence of a particular region r at time t
α̂t,r Normalized probability of occurrence of a particular region r at time t
πk Probability of occurrence of scenario sk

Γ(x) Gamma function
cT Metric used to compute the distance between two scenarios
ht,r Height of region r at time t
nP Number of preserved scenarios
nR Number of regions (bins) used to divide the support of the distribution
nS Number of generated scenarios
p Parameter used to define outliers
r Number of considered regions (r ∈ {1, . . . , nR})
sk k-th scenario (signal containing 24 irradiance values)
t Hour of the day (t ∈ {0, . . . , 23})
wt,r Width of region r at time t
z[m]

u Weighted distance of scenario su from all other scenarios in step m
B(a,b) Beta function with parameters a and b
C Matrix containing the distances between all pairs of scenarios

C[m]
k,u (k,u)th entry of matrix C, representing the distance between scenarios sk and su in step m

J(j) Set of indexes of the removed scenarios that have sj as the nearest preserved scenario
J[m] List of indexes of deleted scenarios in step m
Q1 1st quartile, 25th percentile of observed values
Q3 3rd quartile, 75th percentile of observed values
Wk,t,r Binary variable that describes whether region r of scenario sk is selected at time t
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