Impact on Thermal Energy Needs Caused by the Use of Different Solar Irradiance Decomposition and Transposition Models: Application of EN ISO 52016-1 and EN ISO 52010-1 Standards for Five European Cities
Abstract
:1. Introduction
2. Methods
3. Case Study
3.1. Locations
3.2. Geometry and Opaque Surfaces
3.3. Transparent Surfaces
3.4. Other Assumptions
4. Results and Discussions
4.1. Statistical Descriptors
4.2. Impact of Solar Decomposition and Transposition Models on Calculated Energy Demand
4.2.1. Case Study with ggl = 0.28
4.2.2. Caso Study with ggl = 0.63
5. Conclusions
- The dev.s of the heating energy demands on the various orientations and for both case studies (ggl), show average values of uncertainty on the calculation of the total energy demand for heating below or slightly above 5%, thus acceptable.
- On the other hand, when calculating the cooling demand, in both case studies, the largest errors are obtained for the west orientation of the glazed area, with average uncertainty values on the calculation of the total energy demand for cooling of 16.4 percent. In contrast to the heating needs, considering also the other orientations, the average errors on the estimation of the cooling demand are considerably higher than 5% and therefore not acceptable.
- Focusing on the individual localities, while the estimation of the annual winter demand by varying the solar radiation split methods shows an average error of less than 5%, the individual city of Malaga shows errors on the winter demand estimation up to 10.6% with ggl = 0.28 and up to 19.6% with ggl = 0.63. This indicates that some of the split methods used are less appropriate to predict irradiance for the city of Malaga.
- On the other hand, comparing the dev.s with the respective average annual summer demand when varying the radiation split methods, an error on the estimation of the energy demand that is 5% higher for all locations is obtained for both the case study with ggl = 0.28 and with ggl = 0.63. This indicates that the solar radiation split methods for estimating cooling requirements severely affect the results of EN ISO 52016-1 [4], especially for De Bilt where the average error considering all orientations is 27.3%.
- Calculating the RMSE of both hourly heating and cooling needs and taking as baseline the results obtained using the R-P solar radiation split method contained in TRNSYS, for both ggl = 0.28 and ggl = 0.63, the model that deviates the most from these results is the one contained in EN ISO 52010-1 [16], i.e., the E-P* model.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
S | E | W | N | H | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Qnd | Qsol | Qnd | Qsol | Qnd | Qsol | Qnd | Qsol | Qnd | Qsol | |||
kWh | ||||||||||||
De Bilt | Heating | B-L | 2214.0 | 217.0 | 2332.4 | 153.3 | 2207.6 | 201.0 | 2357.1 | 154.5 | 2182.5 | 210.2 |
E-P* | 2280.6 | 182.6 | 2313.8 | 196.4 | 2310.9 | 170.4 | 2343.4 | 201.0 | 2211.4 | 210.2 | ||
P-P | 2185.1 | 241.9 | 2276.4 | 208.1 | 2264.0 | 163.9 | 2363.3 | 153.8 | 2185.5 | 210.2 | ||
R-P | 2141.0 | 262.9 | 2304.4 | 157.0 | 2122.1 | 249.4 | 2326.7 | 158.5 | 2162.2 | 209.2 | ||
Cooling | B-L | −7.8 | 16.9 | −4.6 | 9.8 | −19.3 | 47.1 | −3.5 | 5.9 | −31.5 | 65.3 | |
E-P* | −9.1 | 18.6 | −7.9 | 12.9 | −9.1 | 27.3 | −4.5 | 6.1 | −29.7 | 65.3 | ||
P-P | −9.1 | 18.5 | −11.7 | 12.6 | −13.8 | 39.6 | −3.4 | 5.2 | −31.5 | 65.3 | ||
R-P | −9.6 | 17.6 | −5.7 | 10.1 | −28.9 | 55.8 | −4.6 | 6.5 | −33.2 | 65.2 | ||
Malaga | Heating | B-L | 423.1 | 55.7 | 583.3 | 102.8 | 488.8 | 56.1 | 613.6 | 83.0 | 444.6 | 98.3 |
E-P* | 480.3 | 53.5 | 540.8 | 161.6 | 541.7 | 75.0 | 566.5 | 145.7 | 462.6 | 98.3 | ||
P-P | 375.3 | 84.8 | 517.6 | 162.8 | 520.3 | 42.6 | 609.5 | 76.5 | 436.0 | 98.3 | ||
R-P | 401.6 | 60.2 | 595.3 | 89.4 | 425.3 | 74.0 | 605.4 | 86.2 | 457.7 | 89.5 | ||
Cooling | B-L | −388.3 | 266.6 | −354.5 | 202.4 | −516.4 | 441.6 | −305.3 | 147.3 | −704.1 | 653.0 | |
E-P* | −409.7 | 300.1 | −417.1 | 278.7 | −419.1 | 327.3 | −344.6 | 198.0 | −689.1 | 653.0 | ||
P-P | −394.6 | 273.8 | −451.4 | 292.9 | −445.1 | 366.1 | −301.8 | 148.1 | −700.6 | 653.0 | ||
R-P | −394.1 | 274.2 | −339.4 | 192.3 | −603.4 | 531.2 | −334.5 | 181.8 | −676.4 | 627.8 | ||
Paris | Heating | B-L | 1799.4 | 170.5 | 1916.1 | 140.8 | 1809.6 | 153.3 | 1937.8 | 131.2 | 1784.3 | 186.3 |
E-P* | 1856.1 | 147.7 | 1894.5 | 183.8 | 1888.6 | 141.5 | 1916.9 | 179.5 | 1806.7 | 186.3 | ||
P-P | 1766.8 | 196.5 | 1866.1 | 192.3 | 1851.8 | 128.3 | 1940.2 | 130.7 | 1784.6 | 186.3 | ||
R-P | 1735.1 | 208.6 | 1897.8 | 138.2 | 1725.3 | 201.2 | 1911.8 | 135.2 | 1767.9 | 183.7 | ||
Cooling | B-L | −48.4 | 53.5 | −40.3 | 37.0 | −77.3 | 117.3 | −33.6 | 27.2 | −111.4 | 162.6 | |
E-P* | −51.9 | 59.4 | −50.6 | 48.7 | −52.0 | 76.0 | −38.5 | 32.2 | −107.1 | 162.6 | ||
P-P | −50.7 | 57.0 | −60.7 | 49.9 | −62.6 | 99.2 | −33.1 | 26.2 | −111.0 | 162.6 | ||
R-P | −52.5 | 55.6 | −41.2 | 37.1 | −101.1 | 138.6 | −38.3 | 31.4 | −112.9 | 161.6 | ||
Rome | Heating | B-L | 1157.3 | 160.1 | 1290.2 | 109.4 | 1191.9 | 170.0 | 1317.9 | 114.1 | 1162.0 | 179.9 |
E-P* | 1219.3 | 133.1 | 1264.1 | 147.7 | 1263.8 | 148.7 | 1288.1 | 164.9 | 1181.9 | 179.9 | ||
P-P | 1122.7 | 184.6 | 1233.3 | 154.4 | 1233.3 | 135.8 | 1316.5 | 112.4 | 1159.4 | 179.9 | ||
R-P | 1116.0 | 186.7 | 1249.3 | 133.2 | 1199.0 | 159.2 | 1307.8 | 115.8 | 1154.9 | 179.9 | ||
Cooling | B-L | −251.8 | 165.5 | −235.8 | 157.9 | −340.7 | 269.1 | −208.4 | 107.4 | −439.5 | 415.8 | |
E-P* | −263.3 | 185.7 | −273.4 | 206.4 | −269.2 | 196.0 | −226.6 | 134.1 | −428.5 | 415.8 | ||
P-P | −254.3 | 170.8 | −301.4 | 223.5 | −294.6 | 225.0 | −205.8 | 105.7 | −436.5 | 415.8 | ||
R-P | −257.4 | 171.3 | −275.0 | 196.2 | −330.5 | 260.9 | −210.4 | 109.1 | −439.3 | 415.8 | ||
Stockholm | Heating | B-L | 3029.0 | 252.8 | 3183.4 | 115.9 | 3043.5 | 262.0 | 3216.4 | 138.9 | 3047.2 | 228.9 |
E-P* | 3116.4 | 199.2 | 3162.3 | 158.6 | 3159.8 | 198.4 | 3198.8 | 191.1 | 3078.2 | 228.9 | ||
P-P | 2967.4 | 298.0 | 3098.5 | 166.6 | 3086.3 | 211.3 | 3211.9 | 132.4 | 3037.8 | 228.9 | ||
R-P | 2969.9 | 292.0 | 3067.0 | 189.7 | 3109.5 | 190.6 | 3201.5 | 139.8 | 3035.7 | 228.9 | ||
Cooling | B-L | −16.4 | 26.8 | −12.0 | 24.8 | −28.1 | 38.3 | −8.6 | 11.0 | −38.6 | 75.8 | |
E-P* | −16.8 | 28.0 | −16.0 | 30.8 | −15.4 | 24.9 | −11.0 | 13.6 | −35.9 | 75.8 | ||
P-P | −19.3 | 29.5 | −22.3 | 34.9 | −22.0 | 33.4 | −8.9 | 10.8 | −39.3 | 75.8 | ||
R-P | −20.0 | 29.6 | −24.3 | 36.2 | −20.6 | 31.9 | −9.6 | 11.2 | −40.1 | 75.8 |
S | E | W | N | H | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Qnd | Qsol | Qnd | Qsol | Qnd | Qsol | Qnd | Qsol | Qnd | Qsol | |||
kWh | ||||||||||||
De Bilt | Heating | B-L | 1903.1 | 209.5 | 2128.0 | 201.1 | 1918.5 | 220.8 | 2165.9 | 222.4 | 1893.8 | 255.3 |
E-P* | 2007.9 | 182.3 | 2074.4 | 254.9 | 2066.1 | 209.7 | 2115.3 | 294.0 | 1917.3 | 255.3 | ||
P-P | 1853.6 | 244.5 | 2040.0 | 274.5 | 2009.1 | 185.3 | 2173.4 | 223.1 | 1895.4 | 255.3 | ||
R-P | 1790.0 | 261.7 | 2101.4 | 200.3 | 1795.9 | 262.0 | 2136.2 | 222.3 | 1877.6 | 253.4 | ||
Cooling | B-L | −76.8 | 214.3 | −35.7 | 86.3 | −161.2 | 399.2 | −21.0 | 48.0 | −262.1 | 553.1 | |
E-P* | −81.0 | 216.4 | −66.2 | 111.6 | −69.1 | 231.8 | −35.5 | 53.9 | −255.2 | 553.1 | ||
P-P | −98.2 | 236.0 | −93.5 | 112.0 | −107.5 | 335.1 | −20.1 | 44.6 | −261.1 | 553.1 | ||
R-P | −97.3 | 228.3 | −41.3 | 88.0 | −235.1 | 473.7 | −27.7 | 53.8 | −267.0 | 552.7 | ||
Malaga | Heating | B-L | 226.7 | 28.2 | 453.2 | 119.9 | 312.5 | 48.0 | 501.7 | 109.5 | 264.7 | 35.9 |
E-P* | 287.7 | 31.1 | 372.8 | 192.8 | 373.4 | 64.7 | 407.0 | 192.6 | 278.1 | 35.9 | ||
P-P | 187.3 | 56.1 | 365.8 | 204.0 | 360.9 | 35.3 | 503.6 | 99.0 | 257.9 | 35.9 | ||
R-P | 202.2 | 27.2 | 475.4 | 102.4 | 239.0 | 54.0 | 492.4 | 110.0 | 283.4 | 34.2 | ||
Cooling | B-L | −835.5 | 1073.4 | −633.9 | 547.2 | −1117.3 | 1341.9 | −498.8 | 395.2 | −1668.6 | 1927.1 | |
E-P* | −866.9 | 1085.5 | −841.3 | 758.5 | −848.9 | 978.6 | −634.4 | 541.6 | −1649.1 | 1927.1 | ||
P-P | −926.4 | 1117.1 | −926.6 | 785.5 | −909.0 | 1106.6 | −494.6 | 395.4 | −1666.4 | 1927.1 | ||
R-P | −876.6 | 1106.1 | −597.4 | 521.5 | −1414.1 | 1648.1 | −577.3 | 484.1 | −1593.6 | 1850.9 | ||
Paris | Heating | B-L | 1539.1 | 152.6 | 1745.7 | 93.1 | 1571.9 | 165.9 | 1782.9 | 196.0 | 1527.4 | 202.4 |
E-P* | 1621.0 | 138.5 | 1689.5 | 122.5 | 1679.4 | 170.5 | 1724.0 | 262.7 | 1545.6 | 202.4 | ||
P-P | 1490.5 | 181.5 | 1662.8 | 130.6 | 1638.6 | 142.0 | 1786.5 | 193.2 | 1527.1 | 202.4 | ||
R-P | 1442.1 | 189.2 | 1732.4 | 161.3 | 1448.4 | 200.4 | 1756.1 | 196.6 | 1515.5 | 199.4 | ||
Cooling | B-L | −181.6 | 357.3 | −127.6 | 418.7 | −311.6 | 618.1 | −83.8 | 127.2 | −481.6 | 797.9 | |
E-P* | −194.2 | 366.5 | −189.5 | 522.9 | −182.9 | 391.8 | −117.8 | 149.2 | −471.9 | 797.9 | ||
P-P | −207.3 | 383.4 | −238.3 | 556.2 | −232.2 | 517.2 | −82.8 | 121.1 | −480.0 | 797.9 | ||
R-P | −207.8 | 373.8 | −128.4 | 607.6 | −449.3 | 757.3 | −104.8 | 148.9 | −483.1 | 793.8 | ||
Rome | Heating | B-L | 904.1 | 112.2 | 1136.7 | 137.9 | 970.1 | 193.5 | 1183.5 | 174.1 | 923.0 | 182.2 |
E-P* | 994.8 | 101.8 | 1073.4 | 188.1 | 1071.3 | 191.8 | 1110.4 | 251.1 | 940.2 | 182.2 | ||
P-P | 857.6 | 136.0 | 1044.5 | 192.8 | 1039.6 | 153.7 | 1183.4 | 168.4 | 920.8 | 182.2 | ||
R-P | 846.1 | 133.6 | 1076.5 | 161.3 | 983.7 | 177.8 | 1172.1 | 173.7 | 916.8 | 182.2 | ||
Cooling | B-L | −537.0 | 657.2 | −446.5 | 486.1 | −779.1 | 850.7 | −366.6 | 317.2 | −1078.6 | 1300.8 | |
E-P* | −565.2 | 682.5 | −572.3 | 633.3 | −561.3 | 599.4 | −433.5 | 386.6 | −1063.7 | 1300.8 | ||
P-P | −571.3 | 688.9 | −643.8 | 679.4 | −632.8 | 710.5 | −362.7 | 313.6 | −1075.4 | 1300.8 | ||
R-P | −572.6 | 688.4 | −569.2 | 607.6 | −729.6 | 810.4 | −370.7 | 320.9 | −1078.8 | 1300.8 | ||
Stockholm | Heating | B-L | 2694.4 | 287.5 | 2995.5 | 142.8 | 2747.8 | 377.6 | 3051.4 | 228.2 | 2763.0 | 285.6 |
E-P* | 2839.2 | 211.2 | 2930.2 | 196.8 | 2921.6 | 296.9 | 2986.5 | 322.0 | 2790.2 | 285.6 | ||
P-P | 2593.2 | 344.7 | 2862.6 | 200.9 | 2830.6 | 294.7 | 3053.1 | 214.0 | 2754.3 | 285.6 | ||
R-P | 2601.4 | 338.9 | 2815.8 | 223.6 | 2872.1 | 270.0 | 3037.8 | 225.3 | 2753.4 | 285.6 | ||
Cooling | B-L | −120.3 | 302.1 | −56.3 | 263.6 | −204.5 | 309.2 | −36.6 | 65.1 | −297.0 | 587.3 | |
E-P* | −120.5 | 304.1 | −97.6 | 318.1 | −98.4 | 189.1 | −55.7 | 76.0 | −288.4 | 587.3 | ||
P-P | −155.4 | 339.9 | −151.7 | 364.7 | −153.6 | 274.5 | −36.4 | 64.1 | −299.2 | 587.3 | ||
R-P | −157.3 | 342.5 | −177.7 | 380.1 | −131.8 | 252.6 | −37.6 | 63.7 | −301.6 | 587.3 |
References
- International Energy Agency (IEA). Net Zero by 2050. Available online: https://www.iea.org/reports/net-zero-by-2050 (accessed on 28 September 2022).
- European Commission. Energy Performance of Buildings Directive, An Official Website of the European Union. 2021. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en (accessed on 28 September 2022).
- Van Dijk, D.; Hogeling, J. The new EN ISO 52000 family of standards to assess the energy performance of buildings put in practice. REHVA J. 2019, 111, 04047. [Google Scholar] [CrossRef] [Green Version]
- EN ISO 52016-1:2017; Energy Performance of Buildings—Energy Needs for Heating and Cooling, Internal Temperatures and Sensible and Latent Head Loads—Part 1: Calculation Procedures Performance. European Committee for Standardization: Brussels, Belgium, 2017.
- van Dijk, D. EPB standards: Why choose hourly calculation procedures? Federation of European Heating, Ventilation and Air Conditioning Associations: 40 Rue Washington 1050 Brussels, Belgium. REHVA J. 2018, 2, 6–12. Available online: https://www.rehva.eu/rehva-journal/chapter/epb-standards-why-choose-hourly-calculation-procedures (accessed on 28 September 2022).
- Ballarini, I.; Costantino, A.; Fabrizio, E.; Corrado, V. A Methodology to Investigate the Deviations between Simple and Detailed Dynamic Methods for the Building Energy Performance Assessment. Energies 2020, 13, 6217. [Google Scholar] [CrossRef]
- Zakula, T.; Badun, N.; Ferdelji, N.; Ugrina, I. Framework for the ISO 52016 standard accuracy prediction based on the in-depth sensitivity analysis. Appl. Energy 2021, 298, 117089. [Google Scholar] [CrossRef]
- Mazzarella, L.; Scoccia, R.; Colombo, P.; Motta, M. Improvement to EN ISO 52016-1:2017 hourly heat transfer through a wall assessment: The Italian National Annex. Energy Build. 2020, 210, 109758. [Google Scholar] [CrossRef]
- Summa, S.; Remia, G.; Di Perna, C. Comparative and Sensitivity Analysis of Numerical Methods for the Discretization of Opaque Structures and Parameters of Glass Components for EN ISO 52016-1. Energies 2022, 15, 1030. [Google Scholar] [CrossRef]
- De Luca, G.; Bianco Mauthe Degerfeld, F.; Ballarini, I.; Corrado, V. Improvements of simplified hourly models for the energy assessment of buildings: The application of EN ISO 52016 in Italy. Energy Reports 2022, 8, 7349–7359. [Google Scholar] [CrossRef]
- Magni, M.; Ochs, F.; Streicher, W. Comprehensive analysis of the influence of different building modelling approaches on the results and computational time using a cross-compared model as a reference. Energy Build. 2022, 259, 111859. [Google Scholar] [CrossRef]
- Radhi, H. A comparison of the accuracy of building energy analysis in Bahrain using data from different weather periods. Renew. Energy 2009, 34, 869–875. [Google Scholar] [CrossRef]
- Taylor, J.; Davies, M.; Mavrogianni, A.; Chalabi, Z.; Biddulph, P.; Oikonomou, E.; Das, P.; Jones, B. The relative importance of input weather data for indoor overheating risk assessment in dwellings. Build. Environ. 2014, 76, 81–91. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Lv, K.; Liu, J.; Yang, L. Compare several methods of select typical meteorological year for building energy simulation in China. Energy 2020, 209, 118465. [Google Scholar] [CrossRef]
- Plokker, W.; van Dijk, D. EPB Standard EN ISO 52010; Conversion of Climatic Data for Energy Calculations: Completion of A Missing Link. REHVA Federation of European Heating, Ventilation and Air Conditioning Associations: Brussels, Belgium, 2016. Available online: https://www.rehva.eu/rehva-journal/chapter/epb-standard-en-iso-52010-conversion-of-climatic-data-for-energy-calculations-completion-of-a-missing-link (accessed on 28 September 2022).
- ISO 52010-1:2017; Energy Performance of Buildings—External Climatic Conditions—Part 1: Conversion of Climatic Data for Energy Calculations. International Organization for Standardization: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/65703.html (accessed on 28 September 2022).
- Summa, S.; Tarabelli, L.; Di Perna, C. Evaluation of ISO 52010-1: 2017 and proposal for an alternative calculation procedure. Sol. Energy 2021, 218, 262–281. [Google Scholar] [CrossRef]
- Michalak, P. Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings. Energies 2021, 14, 4371. [Google Scholar] [CrossRef]
- EN ISO 13790: 2008; Energy Performance of Buildings—Calculation of Energy Use for Space Heating and Cooling CEN. European Commitee for Standardization: Brussels, Belgium, 2008.
- UNI 10349-1:2016; Riscaldamento E Raffrescamento Degli Edifici—Dati Climatici—Parte 1: Medie Mensili per la Valutazione Della Prestazione Termo-Energetica Dell’Edificio E Metodi per Ripartire L’Irradianza Solare Nella Frazione Diretta E Diffusa E per C. UNI—Ente Italiano di Normazione: Milan, Italy, 2016.
- Meteonorm 7, Version 7.3.3; Meteotest: Bern, Switzerland, 2018. Available online: https://meteonorm.com/en/2018(accessed on 28 September 2022).
- Duffy, M.J.; Hiller, M.; Bradley, D.E.; Werner Keilholz, J.W. TRNSYS 17: A Transient System Simulation Program, 2010; Solar Energy Laboratory, University of Wisconsin: Madison, WI, USA, 2013; Available online: https://sel.me.wisc.edu/trnsys/features/features.html (accessed on 28 September 2022).
- Boland, J.; Ridley, B.; Brown, B. Models of diffuse solar radiation. Renew. Energy 2008, 33, 575–584. [Google Scholar] [CrossRef]
- Liu, B.Y.H.; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy 1960, 4, 1–19. [Google Scholar] [CrossRef]
- Erbs, D.G.; Klein, S.A.; Duffie, J.A. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol. Energy 1982, 28, 293–302. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Seals, R.; Michalsky, J.; Stewart, R. Modeling daylight availability and irradiance components from direct and global irradiance. Sol. Energy 1990, 44, 271–289. [Google Scholar] [CrossRef] [Green Version]
- Perez, R.; Ineichen, P.; Maxwell, E.; Seals, R.; Zelenka, A. Dynamic Models for hourly global-to-direct irradiance conversion. In Proceedings of the Solar World Congress, Denver, CO, USA, 19–23 August 1991. [Google Scholar]
- Reindl, D.T.; Beckman, W.A.; Duffie, J.A. Diffuse fraction correlations. Sol. Energy 1990, 45, 1–7. [Google Scholar] [CrossRef]
- Maxwell, E.L. A Quasi-Physical Model for Converting Hourly Global Horizontal to Direct Normal Insolation; Solar Energy Research Instiute: Golden, CO, USA, 1987. Available online: https://www.nrel.gov/docs/legosti/old/3087.pdf (accessed on 28 September 2022).
- Li, D.H.W.; Cheung, G.H.W. Study of models for predicting the diffuse irradiance on inclined surfaces. Appl. Energy 2005, 81, 170–186. [Google Scholar] [CrossRef]
- Kasten, F. A Simple Parameterization of the Pyrheliometric Formula for Determining the Linke Turbidity Factor. Meteorol. Rundsch. 1980, 33, 124–127. [Google Scholar]
- Kasten, F. A new table and approximation formula for the relative optial air mass. Arch. Meteorol. Geophys. Bioklimatol. Ser. B 1966, 14, 206–223. [Google Scholar] [CrossRef]
- Wright, J.; Perez, R.; Michalsky, J.J. Luminous efficacy of direct irradiance: Variations with insolation and moisture conditions. Sol. Energy 1989, 42, 387–394. [Google Scholar] [CrossRef]
- Perez, R.; Ineichen, P.; Seals, R.; Zelenka, A. Making full use of the clearness index for parameterizing hourly insolation conditions. Sol. Energy 1990, 45, 111–114. [Google Scholar] [CrossRef]
Abbreviation | Decomposition Model | Trasposition Model | |
---|---|---|---|
Summa et al. [17] | B-L | Boland et al. 2007 [23] | Liu et al. 1960 [24] |
En Iso 52010 [16] | E-P* | Erbs et al. 1982 [25] | Perez et al. 1990 * [26] |
Meteonorm 7.3 [21] | P-P | Perez et al. 1991 [27] | Perez et al. 1990 [26] |
TRNSYS 17 [22] | R-P | Reindl et al.1990 [28] | Perez et al. 1990 [26] |
De Bilt | Malaga | Paris | Rome | Stockholm | |
---|---|---|---|---|---|
Gsol, g, H, max [W/m2] | 896 | 1038 | 946 | 1045 | 848 |
Tmax [°C] | 32.0 | 40.2 | 33.7 | 36.9 | 30.5 |
Tmin [°C] | −7.2 | 2.1 | −4.2 | −2.4 | −15.3 |
Climate classification (Köppen/Geiger) | Cfb | Csa | Cfb | Csa | Dfb |
Afloor_int [m2] | 9.00 |
Awall [m2] | 10.22 |
Aroof_hor [m2] | 14.52 |
V [m3] | 27.00 |
ggl | bwindow | hwindow | U |
---|---|---|---|
[-] | [m] | [m] | [W/m2K] |
0.28 | 1.20 | 2.10 | 1.10 |
0.63 | 1.20 | 2.10 | 1.10 |
B-L | E-P* | P-P | ||||
---|---|---|---|---|---|---|
RMSEQH | RMSEQC | RMSEQH | RMSEQC | RMSEQH | RMSEQC | |
[Wh] | ||||||
Horizontal | 6.1 | 9.2 | 9.5 | 14.6 | 6.3 | 8.7 |
South | 22.5 | 21.4 | 41.0 | 28.7 | 20.2 | 17.5 |
East | 16.3 | 38.3 | 23.3 | 46.9 | 22.5 | 55.1 |
West | 27.5 | 57.5 | 45.4 | 106.3 | 32.9 | 69.6 |
North | 8.1 | 22.8 | 19.3 | 34.0 | 9.4 | 24.6 |
QH [kWh/Year] | QC [kWh/Year] | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | E | W | N | S | E | W | N | |||||||||
avg | dev.s | avg | dev.s | avg | dev.s | avg | dev.s | avg | dev.s | avg | dev.s | avg | dev.s | avg | dev.s | |
De Bilt | 2205.2 | 58.6 | 2306.8 | 23.3 | 2226.2 | 81.2 | 2347.6 | 16.2 | −8.9 | 0.8 | −7.5 | 3.1 | −17.8 | 8.5 | −4.0 | 0.7 |
Malaga | 420.1 | 44.7 | 559.3 | 36.3 | 494.0 | 50.7 | 598.8 | 21.8 | −396.7 | 9.1 | −390.6 | 52.7 | −496.0 | 82.6 | −321.5 | 21.2 |
Paris | 1789.4 | 51.6 | 1893.6 | 20.7 | 1818.8 | 70.2 | 1926.7 | 14.4 | −50.9 | 1.8 | −48.2 | 9.6 | −73.3 | 21.3 | −35.9 | 2.9 |
Rome | 1153.8 | 47.3 | 1259.2 | 24.2 | 1222.0 | 33.2 | 1307.6 | 13.7 | −256.7 | 5.0 | −271.4 | 27.0 | −308.8 | 32.9 | −212.8 | 9.4 |
Stockholm | 3020.7 | 69.9 | 3127.8 | 54.3 | 3099.8 | 48.5 | 3207.1 | 8.4 | −18.1 | 1.8 | −18.7 | 5.6 | −21.5 | 5.2 | −9.5 | 1.1 |
Average | 1717.8 | 54.4 | 1829.3 | 31.7 | 1772.2 | 56.8 | 1877.6 | 14.9 | −146.3 | 3.7 | −147.3 | 19.6 | −183.5 | 30.1 | −116.8 | 7.1 |
ΔQH,max [kWh/Year] | ΔQC,max [kWh/Year] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
S | E | W | N | H | S | E | W | N | H | |
De Bilt | 139.6 | 56.0 | 188.8 | 36.6 | 49.2 | 1.8 | 7.0 | 19.8 | 1.3 | 3.5 |
Malaga | 105.0 | 77.7 | 116.4 | 47.0 | 26.6 | 21.4 | 112.0 | 184.3 | 42.8 | 27.7 |
Paris | 120.9 | 50.0 | 163.3 | 28.3 | 38.8 | 4.0 | 20.4 | 49.1 | 5.3 | 5.7 |
Rome | 103.4 | 56.8 | 72.0 | 29.7 | 27.0 | 11.5 | 65.5 | 71.4 | 20.8 | 11.0 |
Stockholm | 149.0 | 116.4 | 116.3 | 17.6 | 42.6 | 3.5 | 12.3 | 12.7 | 2.5 | 4.2 |
QH [kWh/Year] | QC [kWh/Year] | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | E | W | N | S | E | W | N | |||||||||
avg | dev.s | avg | dev.s | avg | dev.s | avg | dev.s | avg | dev.s | avg | dev.s | avg | dev.s | avg | dev.s | |
De Bilt | 1888.6 | 92.0 | 2086.0 | 37.7 | 1947.4 | 117.9 | 2147.7 | 26.9 | −88.3 | 11.0 | −59.2 | 26.4 | −143.2 | 72.0 | −26.1 | 7.1 |
Malaga | 226.0 | 44.2 | 416.8 | 55.6 | 321.5 | 60.9 | 476.2 | 46.4 | −876.3 | 37.7 | −749.8 | 159.5 | −1072.3 | 255.3 | −551.3 | 67.2 |
Paris | 1523.2 | 76.3 | 1707.6 | 38.3 | 1584.6 | 101.0 | 1762.4 | 29.0 | −197.7 | 12.5 | −171.0 | 53.5 | −294.0 | 116.3 | −97.3 | 17.0 |
Rome | 900.7 | 67.6 | 1082.8 | 38.7 | 1016.2 | 47.5 | 1162.4 | 35.1 | −561.5 | 16.7 | −557.9 | 81.9 | −675.7 | 97.5 | −383.4 | 33.6 |
Stockholm | 2682.0 | 114.4 | 2901.0 | 78.5 | 2843.0 | 73.6 | 3032.2 | 31.2 | −138.4 | 20.8 | −120.8 | 54.4 | −147.1 | 44.5 | −41.6 | 9.4 |
Average | 1444.1 | 78.9 | 1638.8 | 49.8 | 1542.5 | 80.2 | 1716.2 | 33.7 | −372.5 | 19.7 | −331.7 | 75.1 | −466.5 | 117.1 | −219.9 | 26.9 |
B-L | E-P* | P-P | ||||
---|---|---|---|---|---|---|
RMSEQH | RMSEQC | RMSEQH | RMSEQC | RMSEQH | RMSEQC | |
[Wh] | ||||||
Horizontal | 8.8 | 14.2 | 11.6 | 19.2 | 9.2 | 14.0 |
South | 43.6 | 58.1 | 76.1 | 86.4 | 37.0 | 42.0 |
East | 27.1 | 89.0 | 41.0 | 114.0 | 37.7 | 132.9 |
West | 48.9 | 139.4 | 76.0 | 241.9 | 57.6 | 166.8 |
North | 13.3 | 48.0 | 37.3 | 79.5 | 16.6 | 52.9 |
ΔQH,max [kWh/Year] | ΔQC,max [kWh/Year] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
S | E | W | N | H | S | E | W | N | H | |
De Bilt | 217.9 | 88.0 | 270.2 | 58.1 | 39.6 | 21.4 | 57.8 | 166.0 | 15.3 | 11.8 |
Malaga | 100.3 | 109.6 | 134.4 | 96.5 | 25.5 | 90.9 | 329.2 | 565.2 | 139.8 | 75.1 |
Paris | 178.9 | 82.9 | 231.0 | 62.5 | 30.1 | 26.2 | 110.7 | 266.4 | 35.0 | 11.2 |
Rome | 148.8 | 92.2 | 101.2 | 73.1 | 23.3 | 35.6 | 197.3 | 217.8 | 70.9 | 15.1 |
Stockholm | 246.0 | 179.6 | 173.8 | 66.6 | 36.8 | 37.0 | 121.4 | 106.1 | 19.3 | 13.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Summa, S.; Remia, G.; Sebastianelli, A.; Coccia, G.; Di Perna, C. Impact on Thermal Energy Needs Caused by the Use of Different Solar Irradiance Decomposition and Transposition Models: Application of EN ISO 52016-1 and EN ISO 52010-1 Standards for Five European Cities. Energies 2022, 15, 8904. https://doi.org/10.3390/en15238904
Summa S, Remia G, Sebastianelli A, Coccia G, Di Perna C. Impact on Thermal Energy Needs Caused by the Use of Different Solar Irradiance Decomposition and Transposition Models: Application of EN ISO 52016-1 and EN ISO 52010-1 Standards for Five European Cities. Energies. 2022; 15(23):8904. https://doi.org/10.3390/en15238904
Chicago/Turabian StyleSumma, Serena, Giada Remia, Ambra Sebastianelli, Gianluca Coccia, and Costanzo Di Perna. 2022. "Impact on Thermal Energy Needs Caused by the Use of Different Solar Irradiance Decomposition and Transposition Models: Application of EN ISO 52016-1 and EN ISO 52010-1 Standards for Five European Cities" Energies 15, no. 23: 8904. https://doi.org/10.3390/en15238904
APA StyleSumma, S., Remia, G., Sebastianelli, A., Coccia, G., & Di Perna, C. (2022). Impact on Thermal Energy Needs Caused by the Use of Different Solar Irradiance Decomposition and Transposition Models: Application of EN ISO 52016-1 and EN ISO 52010-1 Standards for Five European Cities. Energies, 15(23), 8904. https://doi.org/10.3390/en15238904