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Abstract: The objective of the proposed work is to develop a Maximum Power Point Tracking (MPPT)
controller and inverter controller by applying the adaptive least mean square (LMS) algorithm to
control the total harmonics distortion of a solar photovoltaic system. The advantage of the adaptive
LMS algorithm is given by its simplicity and reduced required computational time. The adaptive LMS
algorithm is applied to modify the Perturb and Observe (P&O), MPPT controller. In this controller,
the adaptive LMS algorithm is used to predict solar photovoltaic power. The adaptive LMS maximum
power point tracking controller gives better optimal solutions with less steady error 0.7% (6 watts)
and 0% peak overshot in power with the tradeoff being more settling time at 0.33 s. The development
of the inverter control law is performed using the d-q frame theory. This helps to reduce the number
of equations to build a control law. The load current, grid current and grid voltage are sensed and
transformed into d and q components. This adaptive LMS control law is used to extract the reference
grid currents and, later, to compare them with the actual grid currents. The result of this comparison
is used to generate the switching gate pulses for the inverter switches. The proposed controllers are
developed and implemented with a solar PV system in MATLAB Simulink. The total harmonics
distortion in grid and load current (3.25% and 7%) and voltage (0%) is investigated under linear and
non-linear load conditions with changes in solar irradiations. The analysis is performed by selecting
step incremental values and sampling time.

Keywords: adaptive control algorithm; inverter controller; least mean square; maximum power point
tracking; photovoltaic system; power quality issues

1. Introduction

The demand for electrical energy has increased due to industrial development and
the modernization of society. The supply of additional electrical power to fulfill the
requirements is mainly performed by renewable energy-based distributed generation (DG)
units. Among them all, solar energy-based generating units are popular due to the ample
availability of sunlight. It is easy to convert solar energy into electrical energy by using a
photovoltaic diode. The generated power by solar photovoltaic is DC power that needs
to be converted into AC power as the loads are AC loads. Many solar generating plants
are connected to the grid to transmit power as well as for power factor improvement.
The integration of the solar photovoltaic system to the power grid causes power quality
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issues, such as distortion in voltage and current waveforms, harmonics, voltage swag
and swell, etc. Here, power electronics play an important role in power conversion and
transmission. The power converters are used to convert AC to DC power. Solar plants are
interfaced with the grid through power electronics converters. The major advantage of
power electronic devices is that it provides flexibility in control through the generation
of switching pulses. Due to the involvement of power electronics devices, there are other
power quality challenges in the connection of DC grid, such as waveform distortion,
harmonics, and changes in impedance at the common coupling point [1,2]. There are two
main converters that are important in power conversion and transmission from the solar
plant to the grid. These converters are DC-DC converters and DC-AC converters. The
DC-DC converter is used at the output of a solar PV panel to extract the maximum power
by using the Maximum Power Point controller. Several MPPT conventional controllers are
available, such as perturbation and observation, incremental conductance, etc. The most
widely used MPPT controller is the P&O MPPT controller due to its simplicity and ease
of implementation. Similarly, the DC-AC converter is located on the grid side. The input
to this converter is from the dc-dc converter. The output of this converter is regulated by
generating the proper sequence of gate pulses to the switches used in an inverter. The
output of the converter is controlled by controlling the operation of the on and off state
of the switches used in the converter. The most commonly used Proportional Integral
controller is used to control gate pulses to switches and the output of the DC-AC inverter.
The parameters of the Proportional Integral (PI) controller is fixed. The gains of the PI
controller are determined by conventional methods, such as the Ziegler Nicholas method.
The parameters do not adjust with the change in the load condition. The authors have
explained the limitations of the PI controller to control the solar PV system. Soft computing
technologies, such as particle swarm optimization, genetic algorithm, fuzzy logic, artificial
neural network, grey wolf, fireflies, cuckoo search, etc., can be used for MPPT and inverter
controllers. Still, it is hard to manage the computing time and complexity. Among the
MPPT controllers, the P&O controller is widely used because it is simple. However, the
output PV panel power fluctuates at the final operating point (maximum power point) [3].

MPPT algorithms are developed by using conventional methods as well as artificial
intelligence algorithms. M’Sirdi [4] reviewed research articles and suggested that industry
automation recommends the adaptive controller to guarantee convergence and initialization
of the parameters. MidhunRissa A et al [5] showed that the RLS and NLMS algorithms
can be applied to develop the MPPT algorithm. Julie Viloria-Porto et al. [6] referred to
the RTRL and ADALINE algorithms for MPPT development. Zakaria et al. [7] presented
a comparative study between different MPPT algorithms and proved that Incremental
Conductance is better when compared to the P&O MPPT algorithm.

The conclusion drawn from the comparative results is that the conventional MPPT
controller performs well concerning accuracy but faces oscillations at MPP. The advantages
of an AI-based MPPT controller are that it improves the speed of the response and has a
high tracking ratio. However, AI involves time computational time, complexity, tuning
of parameters and processing time depending on the hardware configuration. With the
digitalization of the power grid and industry automation, the control system needs to be
upgraded with intelligent and smart technology.

The predictive current controller has advantages [8]. Therefore, the developed adap-
tive inverter control law is basically the predictive current controller. The researchers
have implemented the different LMS family’s algorithms to control the solar PV sys-
tem. These are the least mean square, smooth-LMS [9], Sign Regressor least mean square
(SRLMS) [10], variable step size least mean square (VSSLMS) [11], adaptive generalized
maximum versoria criterion (AGMV) and normalized kernel least mean fourth-neural net-
work (NKLMF-NN) [12], least mean fourth (LMF) [13,14], improved proportionate normal-
ized least mean square (i-PNLMS) [15], least mean mixed norm (LMMN) [16], and the unit
vector theory [17]; however, these methods need more computation [18]. Additional meth-
ods, such as sign error (SELMS), sign data least mean square (SDLMS), sign-sign least mean
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square (SSLMS), Wiener-based control algorithm, recursive least square (RLS), etc. [19].
The fuzzy logic technique can be used to improve the performance of the integrated solar
PV system with the grid [20]. The least mean sixth adaptive algorithm-based controller
has been implemented to reduce the THD in the grid current [21]. After surveying the
literature, it appears that the existing inverter control algorithm and MPPT need to be smart
enough to fit in with smart grid technology. Due to digitalization and smart grid technology,
controllers have to be upgraded using adaptive algorithms. The different authors have
implemented adaptive LMS-family algorithms with different inverter control algorithms.
However, the MPPT controllers used include a P&O MPPT, Incremental conductance
MPPT, etc.

The comparative results show that the adaptive LMS algorithm is simple, and easy,
with less computation cost and time. It can be implemented by using a Digital Signal
Processor. The control algorithms have been modeled using the Instantaneous Symmetrical
component, which involves the unit vector calculation of the grid voltages and currents.
It requires more computation work to derive the equations. The comparison between the
adaptive LMS family’s controller is summarized according to weight function, and step
size, and the control algorithm was chosen to control the solar PV system, as shown in
Table 1.

Table 1. Comparative study of the LMS family algorithm for control of the solar PV system.

Ref No Adaptive Algorithm Weight Function Step Size Control Algorithm Unit Vector
Calculation

[9] SmoothLMS Modified using
smoothing gradient Constant Instantaneous

Symmetrical component Yes

[10] LLMS Modified using the leaky
LMS algorithm Constant Instantaneous

Symmetrical component Yes

[11] VSSLMS Simple as LMS Variable Instantaneous
Symmetrical component Yes

[12] AGMV Based on the versoria criterion Constant Instantaneous
Symmetrical component Yes

[13,14] LMF Fourth order of error function Constant Instantaneous
Symmetrical component Yes

[16] i-PNLMS,
NKLMF-NN, LMMN

Weights updated using
neural network Constant Instantaneous

Symmetrical component Yes

[21] LMS Sixth order of error function Constant Instantaneous
Symmetrical component Yes

The contribution of this research is mentioned as follows:

• In this paper, the MPPT and INVERTER controllers are developed using an Adaptive
LMS algorithm.

• The P&O MPPT controller is modified using the LMS algorithm theory.
• The inverter control law is developed using the LMS algorithm as well as the d-q theory.
• The developed controllers are implemented to control the solar PV system. The

total harmonic distortion is measured by the FFT tool in MATLAB under linear and
non-linear loads.

The structure of this research is specified as follows: Section 2 explains the system
modeling; Section 3 provides the background of this research work; Section 4 represents
the proposed adaptive LMS algorithm; the result, discussion and findings of this proposed
and existing methods are elaborated in Sections 5 and 6; Section 7 states the conclusion of
this research; finally, the future scope is represented in Section 8.

2. Background. System Modeling

The solar PV system comprises different subsystems, such as the PV panel, dc-dc
converter, three-phase converter, L-filter, gate pulse generating control unit, load, etc.



Energies 2022, 15, 8909 4 of 19

2.1. Solar PV Panel

The block of the system is shown in Figure 1. The PV panel is formed by the series and
parallel connection of the PV modules. For the case study, the power capacity of a solar PV
panel is 51 kW with 406 V DC voltage. To obtain 51 kW power from the panel, there are
17 parallel strings, NP and 14 series modules, Ns per string in the PV array. The selection of
a number of series modules (Ns) is based on the voltage at the maximum power point, Vmp,
and output DC voltage, Vdc [22]. The number of strings is determined by the current at the
maximum power point Imp by (1) and (2). Pmax is the maximum power capacity to be
maintained [23]. The basic electrical equivalent diagram is shown in Figure 2. Imp is the
current at the maximum power point.

Ns =
Vdc
Vmp

(1)

NP =
Pmax/Vdc

Imp
(2)
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2.2. DC-DC Boost Converter

The basic functional block diagram is shown in Figure 3. The output of the solar PV
panel is given to the DC-DC converter. The function of this converter is to step up the
input voltage to a higher level. The operation of the converter is based on the maximum
power transfer theorem. It works on the impedance matching concept: when the internal
resistance of the PV panel and equivalent resistance of the DC-DC converter looking into
the output terminals of the PV panel matches one another, maximum power transfer can
happen from the PV panel to the DC-DC converter [24].
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The working of the DC-DC converter is controlled by the duty cycle provided by the
MPPT controller. The selection of the DC-DC converter is obtained, by (3), (4) and (5).
Ldclink and Cdclink are the DC link inductor (H) and capacitor (F).

D = 1− vin
vo

(3)

Ldclink =
Vin(Vo −Vin)

fsw(∆I ∗Vo)
(4)

Cdclink =
Iin(Vo −Vin)

fsw(∆V ∗Vo)
(5)

D is known as the duty cycle. vo is the output voltage of the boost converter, and Vin
is the input voltage of the boost converter from the PV panel. ∆I is the ripple factor in the
current and ∆V is the ripple factor in the voltage. fsw is the switching frequency of the
converter switch in Hz [25].

2.3. Three-Phase Two-Level Inverter (DC-AC Converter)

In the following case study, the selected two-level three-phase inverter of 51 kW power
capacity is built by using six IGBT power electronics switches [26]. The operation of the
IGBTs is controlled by the sinusoidal pulse width modulation (SPWM) technique. The
AC output of the inverter is obtained by controlling the ON and OFF state of the IGBT
switches [27]. This ON and OFF state of the switches is managed by the proper generation
of the gate pulses of the switches through an inverter controller. The inverter AC output
voltage is 380 V (line voltage).

3. Background: General Introduction

The electrical energy generation by solar photon energy using a photodiode is easy.
Solar power generation is attracting more attention due to its ease in installation and also
because electrical power can be generated at different levels. Demand for electrical energy,
due to the modernization of society and the digitalization of industry, has resulted in an
increase in the number of installations of solar PV panels. These are connected to the
load to supply power. The excess power generation is fed into the grid. Power electrics
play important role in power transformation in grid-tied and standalone solar PV systems.
Because of this connection, power quality challenges are introduced into the grid [28]. To
ensure power quality, the role of the controller is important. In the following sections, the
design and implementation of the MPPT and inverter control law have been explained
regarding the control of a solar PV system [29].

4. Proposed Work

The proposed work explains the application of the adaptive LMS algorithm to develop
the MPPT controller and inverter control law. The adaptive LMS algorithm is applied in
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two different controllers. In an adaptive MPPT controller, the solar PV panel is predicted
by using the LMS concept, and later, it is compared with the previous power. The result of
this comparison is the error function, which is used to update the predicted power and,
accordingly, the duty cycle is adjusted to the DC-DC boost converter.

The inverter control algorithm is modified by implementing the adaptive LMS algo-
rithm. The synchronous reference frame, which is the d-q transformation control algorithm,
is used for the development of the inverter control law. The grid reference currents are
extracted from the control law to generate the gate pulses for switches used in the three-
phase inverter to control the total harmonics in the grid and load currents under different
linear and non-linear load conditions. The proposed developed adaptive LMS control law
is based on a Synchronous Reference Frame (SRF). The advantage of the SRF is that it does
not require unit vector calculation. A lesser number of equations is required to build the
control law.

4.1. Adaptive LMS Theory

The adaptive LMS implementation is shown in Figure 4.
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The adaptive theory explains the updating of the weight according to the changes
in the systems [30]. This weight updating depends on the error function. The weight
values are changed to minimize the error function. The output function is managed by
updating the weight function to minimize the error. The error is measured by comparing
the actual output, y(n) and desired output, d(n). The optimized weight function, w(n) is
found by finding the least mean square values of the error function, e(n). The adaptive
LMS concept is explained in Equations (6)–(8). The increment size of the weight function
is µ. It is also known as the learning rate of an algorithm. The range of increment size is
0 < µ < 2

γmax
, where γmax indicates the maximum value of eigenvalues. The larger size

reduces the convergence rate and sometimes leads to inappropriate results. The smaller
the increment size, the slower the convergence rate. It could be a variable step size. In the
presented work, it is selected as being between 0.1 to 0.9 for the simulation, as mentioned
in [11,19]:

y(n) = w(n)Tx(n) (6)

The error is determined by finding the difference between the desired signal, d(n) and
the actual signal, y(n) as expressed in (7):

e(n) = d(n)− y(n) (7)

The weight function, wk(n + 1) is updated at the kth iteration and instant ‘n’, as given
in (8), where µ is an increment size [13]:

wk(n + 1) = wk(n) + µe(n)xk(n) (8)

The mean square error is obtained by (9):

|e(n)2| = |(d(n)− y(n))|2 (9)
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4.2. Control Algorithm

The control algorithm used to develop an adaptive LMS control law is the SRF theory.
The sensed grid voltage phase angle is found by the PLL block [31]. The sensed three-phase
load current is transformed into d-q components by the Clark-perk transformation concept
with respect to the phase angle. The adaptive control law is developed by applying the
LMS algorithm with the SRF control algorithm and as explained in Section 4.5.

4.3. Implementation of an Adaptive LMS Algorithm

The MPPT and inverter controllers are two important controllers that control the
parameters on the solar PV panel and grid side, respectively, in the grid-connected solar PV
system. The P&O MPPT controller is modified by applying the adaptive LMS algorithm,
as explained in Section 5. The development of an adaptive LMS MPPT is discussed in
Section 4.4. Similarly, the adaptive LMS control law as an inverter controller is discussed in
Section 4.5.

4.4. Adaptive LMS MPPT Controller

The weight function is updated for a fixed iteration to update the power function. The
development of an adaptive controller is shown in the following flow chart, Figure 5.
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The MPPT controller is used to obtain the duty cycle for a reference voltage to extract
the maximum power from the PV panel. P(n + 1) is the power predicted by applying the
adaptive LMS concept as explained in (11). The error is found by (10), and accordingly, the
predicted power is determined by (11) to minimize the error. µ is the incremental step size
in (11). Its value is in the range of 0.1 to 0.2 [32]. ep(n) is the error between the actual PV
power, P(n) and the previous power, P(n− 1). The increment size µ is selected as 0.1 [13]:

ep(n) = P(n)− P(n− 1) (10)

The future PV power, P(n + 1), is predicted by (11):

P(n + 1) = P(n− 1) + 2 µ ep(n) P(n) (11)

4.5. Adaptive LMS Control Law—An Inverter Controller

Instead of using the PI controller, the gate switching pulses are generated by using a
control scheme based on an adaptive LMS algorithm, so it is known as the adaptive LMS
control law. The development of the control law is expressed in Figure 6.

Energies 2022, 15, x FOR PEER REVIEW 8 of 20 
 

 

Figure 5. Flow chart of the adaptive LMS MPPT controller. 

The MPPT controller is used to obtain the duty cycle for a reference voltage to extract 
the maximum power from the PV panel. P(n + 1) is the power predicted by applying the 
adaptive LMS concept as explained in (11). The error is found by (10), and accordingly, 
the predicted power is determined by (11) to minimize the error. µ is the incremental step 
size in (11). Its value is in the range of 0.1 to 0.2 [32]. 𝑒௣(𝑛) is the error between the actual 
PV power, 𝑃(𝑛) and the previous power, 𝑃(𝑛 − 1). The increment size 𝜇 is selected as 
0.1 [13]: 𝑒௣(𝑛) = 𝑃(𝑛) − 𝑃(𝑛 − 1) (10)

The future PV power, 𝑃(𝑛 + 1), is predicted by (11): 𝑃(𝑛 + 1) = 𝑃(𝑛 − 1) + 2 𝜇 𝑒௣(𝑛) 𝑃(𝑛) (11)

4.5. Adaptive LMS Control Law—An Inverter Controller 
Instead of using the PI controller, the gate switching pulses are generated by using a 

control scheme based on an adaptive LMS algorithm, so it is known as the adaptive LMS 
control law. The development of the control law is expressed in Figure 6.  

 
Figure 6. Synchronous reference frame theory for implementation of an adaptive LMS control law. 

The objective is to extract the fundamental component of the gate current and com-
pare it to the actual grid current to reduce the harmonics in the grid current. The grid 
voltage is sensed at the interconnection point of the grid, load and inverter. This voltage 
is converted into the α-β phase system. The phase angle ƍ is obtained by (12) and (13). Vα 
and Vβ are alpha-beta components of grid voltage [33]. The d-q components of load cur-
rent and grid current with respect to phase angle ƍ are found by (14). The procedure is 
divided into four steps: 
1. Obtain the d-q component of the grid voltage, grid current and load current. 
2. Determine the dc reference current from the dc link voltages. 
3. Apply the adaptive LMS algorithm to extract the reference fundamental load current. 
4. Generate switching gate pulses by comparing steps 2 and 3. 

൤𝑉ఈ𝑉ఉ൨ = ⎣⎢⎢
⎡ 𝑉௔ − 𝑉௕2 − 𝑉௖2√3𝑉௕2 − √3𝑉௖2 ⎦⎥⎥

⎤
 (12)

Va, Vb and Vc are phase voltages of phases a, b and c. The phase angle, 𝜌, of the grid 
voltage is obtained by (13): 

Figure 6. Synchronous reference frame theory for implementation of an adaptive LMS control law.

The objective is to extract the fundamental component of the gate current and compare
it to the actual grid current to reduce the harmonics in the grid current. The grid voltage is
sensed at the interconnection point of the grid, load and inverter. This voltage is converted
into the α-β phase system. The phase angle
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Va, Vb and Vc are phase voltages of phases a, b and c. The phase angle, ρ, of the grid
voltage is obtained by (13):

ρ = wt = cos−1

Va − Vb
2 −

Vc
2√

3Vb
2 −

√
3Vc
2

 (13)
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Direct component, Id, and a quadrature component, Iq, of the load currents are ob-
tained by (14): [

Id
Iq

]
=

[
cos ρ sin ρ
− sin ρ cos ρ

][
1 −1/2 −1/2
0

√
3

2
−
√

3
2

]Ia
Ib
Ic

 (14)

Id∗ is the DC reference current (15) and is obtained through the proportional-integral
(PI) controller whose input is the voltage error, Vdce, between the measured DC link voltage,
vdclink and the reference dc link voltage, vdclink re f [34]. The base values for the gains of PI
controllers are selected from [11], and later, they are changed via the trial-and-error method
(Kp = 0.5 and KI = 1).

Id∗, the DC reference current is determined by (15):

Id∗ = Vdce ∗ Kp + KI

∫
Vdcedt (15)

Vdce = vdclink − vdclink re f (16)

The instantaneous error at the kth instant is determined from the sensed grid cur-
rent and the weighted current for the d-q component by applying the adaptive LMS
algorithm concept in Section 3. The weighted component of the load current has been
evaluated (17), (18) as W(n), which is the weight function of the load current. ed(n) is the
error between the d-component of the actual load current and the d-component of the
reference grid current. η is the step size in the weight function. Similarly, the q-component
of the reference current is obtained by (20), (21) and (22). Iq is the q-component of the load
current. Id∗ = Idc_re f (n) and I∗q (n) = 0.

The following Equations (17)–(19) are the d-component of the reference current:

ed(n) = Id − w(n)Idc_re f (n) (17)

w(n) = w(n− 1) + ηed(n)Idc_re f (n) (18)

Id(n) = w(n)I∗d (n) (19)

The following Equations (20)–(22) are the q-component of the reference current:

eq(n) = Iq − w(n)I∗q (n) (20)

w(n) = w(n− 1) + ηe(n)I∗q (n) (21)

Iq(n) = w(n)I∗q (n) (22)

The generated reference components are transformed into an a-b-c three-phase form.
These are used to generate switching gate pulses for the multifunctional inverter [35].

5. Result

The adaptive LMS MPPT controller and adaptive control law were implemented
for the control of the solar PV system. The performance was observed for the condition
given below:

1. Change in non-linear load.
2. Input: variation in solar radiation.
3. Change in sampling time.
4. Change in step size, η.

The model was built on the computer system of the configurations having an Intel(R)
Core (TM) i3-4030U CPU @ 1.90 GHz, 64-bit operating system, x64-based processor and
8.00 GB RAM. Figure 7 expresses the MATLAB Simulink implemented model of an adaptive
LMS control law. A detailed diagram of the MATLAB Simulink model of the solar PV
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system with an adaptive LMS controller is shown in Figure 8. The module configuration
details are given in Table 2.
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Table 2. Solar PV module configuration.

Module SOLON SOLON Blue 220/01 215

Maximum power, (W) 214.97
Open circuit voltage, Voc, (V) 36.18
Short circuit current, Isc, (A) 7.88

Voltage at the maximum power point, Vmp, (V) 29.05
Current at the maximum power point, Imp, (A) 7.4

Internal series resistance, (ohms) 0.36428
Internal shunt resistance, (ohms) 407.0581

The voltage and current performance of the solar PV system under nonlinear load and
linear load are shown in Figures 9 and 10.
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Figure 10. Voltage and current performance of the solar PV system under nonlinear load and variation
solar radiation under linear load = 60 kW, non- linear load (P = 20 kW and Q = 100 VAR) and variation
solar radiation.

The performance is measured in terms of settling time, peak overshoot and steady-state
error. The P&O MPPT, PSO MPPT and adaptive LMS MPPT controllers were implemented
to extract the PV power from a solar PV panel with a capacity of 858 Watts, 69 V dc voltage.
The responses of the PV power, PV voltage and PV current of the solar PV panel for the
three MPPT controllers are shown in Figures 11–13. The adaptive LMS MPPT controller and
adaptive control law as the inverter controller are implemented for the solar photovoltaic
system configured in Table 3.
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Table 3. Solar photovoltaic system configurations.

Parameters Value

Sampling time, Tss, (sec) 50× 10−6 s
Rated power, (W) 51× 103

Grid voltage, (V) 380
Filter inductor, Lf, (H) 0.0027

Filter inductor resistance, RLf, (ohm) 0.0676
DC boost converter input voltage, Vin. (V) 406.2000

Voltage at maximum power point, Vmpp (V) 406.2000
DC voltage of DC boost converter, Vo, (V) 700

Switching frequency for boost converter, (Hz) 5000
DC-DC boost converter inductor, L_bound, (H) 1.3579× 10−4

DC-DC boost converter inductor, L_boost, (H) 0.0014
DC-DC boost converter capacitor, C_boost, (Farad) 8.7369× 10−4

The total harmonics distortion (THD in%) is investigated for different linear and
nonlinear loads, sampling time, and the step size of weight updating. The controller
performance is measured in terms of the settling time of the current response.

6. Discussion
6.1. Variation in Input Solar Irradiation, Non-Linear Load, Sampling Time, Variation in Step-Size

The selected step size is 0.0001, 0.001 and 0.01. The sampling time should be greater
than 30 µs. There is a tradeoff between the step size and sampling time over the simulation
run time, and better results. The number of iterations in algorithm execution is 75. The
results were found to be better for step sizes 0.01 and 0.001 compared with 0.0001. The
current response is stable for these two-step size values. It was also observed that the
current response is stable when the step size is between 0.01 and 0.9. The selected sampling
time was 40 µs. For a step size value less than 0.001, the current response was not settled at
the final value under nonlinear load (P = 10 kW and Q = 200 VAR), Table 4. The THD of the
grid current and load current was measured as 6.28 and 23.85, respectively.

Table 4. Total harmonic distortion in the grid current with a change in linear load, sampling time and
step size, iterations = 75, solar radiation is varying from 0 to 1000 W/m2.

Non-Linear Load Step Size Sampling Time (Sec) Settling Time (Sec) Grid Current.
(THD in%)

Load Current.
(THD in%)

P = 10 kW and Q = 200 VAR 0.0001 40 µs --- 6.30 23.85
P = 10 kW and Q = 200 VAR 0.001 40 µs 0.02 6.28 23.85
P = 10 kW and Q = 200 VAR 0.01 40 µs 0.0205 6.28 23.85
P = 10 kW and Q = 100 VAR 0.001 40 µs 0.525 3.22 19.88
P = 10 kW and Q = 100 VAR 0.001 50 µs 0.8 2.95 7.14

The sampling time was varied from 40 µs to 50 µs with a constant step size of 0.001;
the grid current THD was reduced from 3.22 to 2.5. Similarly, the load current THD was
reduced from 19.88 to 7.14%; whereas, the settling time was increased from 0.525 s to 0.8 s
with an increase in sampling time. This was observed under the load condition (P = 10 kW
and Q = 100 VAR).

With the change in step size from 0.001 to 0.01 and a constant sampling time of 50 µs,
the settling time was increased from 0.8 s to 0.9 s. There was no change in grid current and
load current THD under load conditions P = 10 kW and Q = 100 VAR, Table 4.

The selection of sampling time and step size of the weight function was dependent on
load condition. At the value of µ = 0.001 and a sampling time of 40 µs, the best tradeoff
was observed in terms of a reduction in total harmonics distortion in the grid current and a
settling time of the current response under (P = 10 KW and Q = 200 VAR). Similarly, at the
value of µ = 0.001 and a sampling time of 50 µs, the best tradeoff was observed in terms
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of a reduction in total harmonics distortion in the grid current and a settling time of the
current response under (P = 10 kW and Q = 100 VAR).

6.2. Variation in Linear Load with Constant Solar Irradiation Input

With a sampling time of 40 µs, the input solar irradiation was constant at 1000 W/m2,
step size was 0.01, and the grid current THD was reduced from 4.75 to 3.22% with an
increase in linear load, as shown in Table 5. Similarly, there was more reduction in the load
current THD from 19.64 to 7.11%.

Table 5. Comparative analysis for different loads.

Load Grid Current
Harmonics (THD) in%

Load Current
Harmonics (THD) in%

Non-linear load (10 kW linear connected in parallel with Rectifier with
R = 10 kW and Q = 100 VAR) 3.22 19.64

Non-linear load (60 kW linear connected in parallel with Rectifier with
R = 10 kW and Q = 100 VAR) 2.95 7.11

6.3. Comparative Analysis for Two Different Combinations of MPPT and Inverter Controller

The comparative analysis for two different combinations of MPPT and inverter con-
troller for non-linear load (10 kW linear connected in parallel with Rectifier with R = 10 kW
and Q = 100 VAR) and variation in solar radiation 0 to 1000 W/m2 is recorded in Table 6.

Table 6. Comparative analysis for two different combinations of MPPT and inverter controller non-
linear load (10 kW linear connected in parallel with Rectifier with R = 10 kW and Q = 100 VAR) and
variation in solar radiation 0 to 1000 W/m2.

Load Grid Current
Harmonics (THD) in%

Load Current
Harmonics (THD) in%

Adaptive LMS inverter control law and perturbation and observationk
MPPT controller 4.75 19.89

Adaptive LMS inverter control law and adaptive LMS MPPT controller 3.22 19.64

The adaptive LMS MPPT controller and inverter control law proves that there is a
reduction in the grid and load current total harmonic distortion. The total harmonics
reduction due to adaptive LMS algorithm implementation with the MPPT and inverter
control law in grid current and load current is reduced from 4.75% to 3.25% and from 19.89
to 19.64%, respectively, compared to the PO MPPT controller and adaptive control law for
the control of a solar PV system.

6.4. Comparative Analysis with Other Author Researcher Results

Comparative analysis for total harmonics distortion in the grid and load current of
proposed work and prior research work related to adaptive LMS algorithm families for the
solar PV system is tabulated in Table 7. The DC link voltage and current are stable and are
very close to their final value due to the P&O and adaptive LMS MPPT controllers.

The control law based on i-PNLMS and the proposed work helped to reduce the
percentage of the THD in the grid voltage. The PNKLMF-NN technique showed a reduction
in %THD in the grid current. The VSSLMS technique is suited to lessen the %THD in the
grid current. The VP-RZA-LMF control law is more effective in reducing the THD in the
grid current and voltage. The Wiener filter controller and LMF also proved that the control
of THD is possible for solar PV systems. Compared with all LMS family controllers, the
adaptive LMS control law shows better performance in controlling the solar PV system.
The result shows that with the proper selection of step size, sampling time, and the number
of iterations, there is a drastic reduction in %THD in grid current, grid voltage and load
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current. According to the IEEE standards 519-2014, the %THD of the load current should
be below 25%, %THD in grid current < 5%, and %THD in grid voltage < 5%.

Table 7. Comparison between the d-q based LMS control algorithm and other adaptive control law
with other author’s results.

Parameter/Adaptive
Technique
THD in %

i-PNLMS Based
Control

Algorithm [15]

Novel Power
Normalized

Kernel Least Mean
Fourth

Algorithm-Based
Neural Network

(NN) Control
(PNKLMF-NN)
Technique [12]

Variable Step
Size Least

Mean Square
(VSSLMS)

Adaptive [11]

Variable
Parameter

Resized Zero
Attracting Least

Mean Fourth
(VP-RZA-LMF)

Wiener
Filtering-Based

Control
Algorithm [19]

LMS, LMF, and
RLS to Study
the Dynamic

Performance of
the

PVDSTATCOM
System [14]

LMS
Adaptive

Control Law

Grid Voltage 0.07 9.5 18.84 1.11 4.11 2.63 0%
Grid Current 4.9 2.4 4 3.1 4.61 3.63 3.22%
Load Current 27.14 36.8 29.39 24.53 23.89 NA 19.88%

6.5. Comparative Analysis of the Three MPPT Controllers Implemented for Solar PV Panel

The adaptive LMS MPPT controller was implemented for the solar PV system and
the results compared with the perturbation and observation MPPT, and PSO MPPT Con-
trollers. The developed MPPT controllers were implemented on a solar PV system whose
specifications are mentioned in Table 8.

Table 8. Solar PV system specifications for the MPPT controller.

Sr. No Specifications

1 Model–Solarland USA SLP215

2 Maximum power (W) of module 214.56
3 Open circuit voltage (V), Voc 36.4
4 The voltage at maximum power point (V), Vmp 29.8
5 Shunt resistance, (ohm) Rsh 68.8
6 No of strings, Np 2
7 Cells per module 60
8 Short circuit current (A), Isc 8
9 Current at maximum power point (A), Imp 7.2
10 Series resistance, (ohm), Rse 0.2
11 No of the series module, Ns 2
12 The maximum output voltage, VPV(V) 59.6
13 The maximum output power of the panel (W) 858

In Table 9, the tracking speed of the PSO MPPT is faster than the other two MPPT
controllers. It reaches the final value of power at 0.0963 s, but it experiences oscillations
at the final value of the PV power and overshoot. Whereas, the PV power tracking by
the P&O MPPT is very close to the rated value of the PV power, with a moderate speed
compared to the PSO MPPT and it is faster than the LMS MPPT controller.

The only thing is that it fluctuates at the final value of the maximum power point.
Its settling time is 0.18 s to reach peak power. Whereas the settling time due to the LMS
MPPT controller is 0.33 s, which is more than the other two MPPT controllers. The power
steady-state error due to the LMS MPPT controllers is 0.7% (6 watt) less compared with the
PSO MPPT controllers, and nearly the same as the PO MPPT controller. Table 10. explains
the PV panel voltage, current and power at final value due to these three MPPT controllers,
among these, the adaptive LMS MPPT controller gives optimal solutions.
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Table 9. Solar panel output power (W) by three MPPT controllers.

Simulation
Time (sec)

LMS MPPT
Controller

µ = 0.001 (W)

PSO MPPT
Controller (W)

P&O MPPT
Controller

(W)

LMS MPPT
Controller
µ = 0.01 (W)

0 0 0 0 162.443
0.1633 200 273 88.8 183.93
0.0303 262 308 162.191 225.526

0.04 308 480 227.995 191
0.05 355 599 312 284
0.06 374 736 362 261.382

0.0963 484 865 447.56 386.689
0.11 521 878 656.49 437.302
0.13 587 881 723.602 439.66
0.16 647 880 821.611 551.99
0.18 698.11 879 874.177 592
0.2 723 881 765 628.641

0.224 766 876 632.549 668.36
0.24 803.8 879 536.067 702.295
0.27 839 877 505.6 742.332
0.29 857.49 877 477 775.456
0.31 875.997 877 477 824.165
0.33 880 877 477 858.471

Table 10. Solar panel power, voltage, current, DC link voltage and current.

Solar Radiation = 1000 W/m2, T = 30 ◦C, Load R = 100 ohms

PSO MPPT
Controller

Adaptive LMS
MPPT Controller

P&O MPPT
Controller

D 0.6314 0.75 0.75
VPV (V) 71.56 64.84 69.04
IPV (A) 12.12 11.29 8.705
PPV (W) 867 735.01 670.1

ILOAD (A) 3 2.586 1.869
VLOAD(V) 286.7 258 186.9

Table 9 shows that the LMS MPPT controller gives an optimal solution compared with
tracking the PV power, with less steady-state and zero oscillations at the optimal peak value
of power, with a tradeoff of more settling time. The transient and steady-state performance
of the three MPPT controllers is summarized in Table 11.

Table 11. Transient and steady-state performance of the MPPT controllers.

Terms P&O Controller PSO Controller Adaptive LMS
Controller

Settling time (sec) 0.18 0.09630 0.33
Rise time (sec) moderate fast slow

Peak overshoot (W) 874.177 881 857
Overshoot in % 1.88 2.6 0

Steady-state error in watt 5 369 6
Final value (W) 863.9 489 864.7

Oscillations at the final value Observed NA No
Voltage response Oscillations smooth smooth

There are fluctuations in the PV power response due to the P&O MPPT controller and
overshoot (2.6%) due to the PSO MPPT controller. There are no oscillations or overshoot in
the PV power response due to the adaptive LMS MPPT controller. The settling time of the
PV power response is compared to the P&O and PSO MPPT controllers. The steady-state
error in power response is less (0.06%) due to the adaptive LMS and P&O MPPT control
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compared with the PSO MPPT controller. The PV response obtained by an adaptive LMS
MPPT controller is slow, but it does not exhibit the oscillation and peak overshoot.

6.6. Findings

The adaptive least mean square algorithm can be customized to develop the control
law as well as the MPPT controller. The adaptive LMS algorithm is simple and easy to
implement for the development of the controller. The adaptive control law has a cer-
tain advantage over the inverter PI controller. The effective results are dependent on the
selection of the sampling time, step size of weight function, number of iterations in algo-
rithm execution, and the switching frequency of the DC-DC converter and inverter. The
hardware configuration is also one of the important factors required to achieve the result.
A high-speed processor completes the tasks in less time due to the increase in processing
time. This allows for the addition of more iterations of algorithm computations.

7. Conclusions

The adaptive LMS control law is developed using the LMS algorithm. This algorithm
uses the error function that determines the error between the actual value and the reference
value. Thus, it saves the burden of the random initialization of parameters. This algorithm
is used in two ways in this proposed work. Firstly, to predict the PV power in an adaptive
LMS controller and to extract the reference grid current in the adaptive control law. It is
observed that voltage and current waveforms are sinusoidal in nature. The proper tradeoff
between sampling time, step size of weight function, and switching frequency need to
be achieved to obtain effective results in the reduction in total harmonic distortion of the
grid current and load current and reduce the settling time of the response. A comparative
analysis for the two different combinations of MPPT and inverter controller non-linear
load showed that the THD reduction in grid current (4.75% to 3.22%) and load current
(19.89% to 19.64%) were found to be better on implementation of the controller with
an adaptive LMS algorithm, as shown in Table 5. For the step size 0.001 and sampling
frequency 50 µs, the total harmonics distortion in the grid current and load current are
2.95% and 7.11% less than the IEEE 519 standards under nonlinear load, whereas the
settling time is increased (0.8 s). The THD reduction in grid current (3.22%) and load
current (19.88%) due to the implementation of the adaptive LMS control law is noticeable
compared to other LMS family control laws, as explained in Table 7. The implementation
of an adaptive LMS algorithm with an MPPT controller and inverter control law controls
the total harmonic distortion in the grid and load currents under linear and nonlinear
load conditions. Furthermore, the performance of the adaptive LMS MPPT controllers is
better at tracking the optimal power point with less error at 0.7% (6 W). Therefore, the LMS
algorithm can be customized as per the application to control and improve the results of
solar PV systems. The LMS algorithm performs better at 0.01 step size of weight adaptation.

8. Future Scope

In the presented work, the selected reference quadrature current is made equal to
zero. This value can be found by using the actual grid voltage and reference grid voltage
to achieve a more precise result in a reduction in total harmonic distortion in the grid and
load current. The LMS family algorithm can be applied to develop the controller.

The adaptive MPPT controller may be developed by applying the other LMS family
algorithms for the control of a solar PV system. The same controllers may be applied to the
wind plane.

The performance of the controllers may be tested by implementing them on a DSP
processor and varying the switching frequency of the inverter and DC-DC converter.
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Nomenclature

Title Abbreviation
Alternating current AC
Active power (watt) P
Direct Current DC
Fast fourier transform FFT
Finite impulse response FIR
Hertz Hz
Kilowatt kW
Least mean square LMS
Grid voltage Vabc
Load current Iabc
Maximum power point tracking MPPT
Phase lock loop PLL
Particle swarm optimization PSO
Perturbation and observation P&O
Photovoltaic PV
Reactive power (volt-ampere-reactive) Q
Step size in the adaptive control law η

Temperature unit degree Celsius ◦C
Total harmonic distortion THD
Volt-ampere-reactive VAR
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