Experimental Investigation on the Effect of the Staggered Impeller on the Unsteady Pressure Pulsations Characteristic in a Pump
Abstract
:1. Introduction
2. Experimental Setup
2.1. Model Test Pump with Staggered Impeller
2.2. Test Rig Setup
2.3. Pressure Pulsations Measurement
2.4. Test System Error
3. Result and Discussion
3.1. Performance Analysis
3.2. Time Domain and Frequency Domain Analysis
3.3. RMS Analysis
4. Conclusions
- The impeller blades are divided into half, cut and staggered, then connected by a partition with a specific inner diameter, negatively impacting the pump’s external characteristics to a certain extent.
- The test measures the pressure pulsation signal in the same sampling time, the pressure pulsation amplitude of the staggered impeller scheme decreases, the number of peaks and troughs of the pulsation curve increases significantly, and the fluctuations are dense.
- The staggered impeller scheme significantly reduces blade passing frequency (fbpf) amplitude energy. The fbpf energy suppression effect is higher than 80% under 0.8QN–1.2QN. However, it has a specific increasing effect on 2fbpf, the highest increase is 44.52%, especially in 1.2QN.
- The RMS energy distribution of pressure pulsation in different frequency bands is quite different, and the energy of pressure pulsation near the tongue is prominent under 0.8QN–1.2QN. In the 0–5fr frequency band, the pressure pulsation amplitude of the staggered impeller scheme is larger. On a broader frequency band (0–6fbpf), the pressure pulsation energy of the staggered impeller scheme is smaller than that of the original impeller scheme. With the expansion of the frequency band, the pressure pulsation energy decreased steadily, with a minimum decrease of 37.33%.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Acronyms | |
ECT | Et cetera |
RMS | The Root Mean Square |
Symbols | |
The average value of fbpf amplitude | |
b2 | Impeller outlet width |
Cp | Pressure coefficient |
D1 | Impeller inlet diameter |
D2 | Impeller outlet diameter |
ES | Comprehensive measurement uncertainty |
EH | Head measurement uncertainty |
EP | Shaft power measurement uncertainty |
EQ | Flow measurement uncertainty. |
fr | Shaft frequency signal |
fbpf | Blade passing frequency |
HN | Nominal head |
n | Nominal rotational speed |
ns | Specific speed |
QN | Nominal flow rate |
u2 | Circumferential velocity of impeller outlet |
Z | Blades number |
η | Efficiency of pump |
ΨN | Nominal head coefficient |
δ | Thickness of the partition plate |
References
- Qian, H.; Wu, D.; Xiang, C.; Jiang, J.; Zhu, Z.; Zhou, P.; Mou, J. A Visualized Experimental Study on the Influence of Reflux Hole on the Double Blades Self−Priming Pump Performance. Energies 2022, 15, 4617. [Google Scholar] [CrossRef]
- Yuan, J.; Shi, J.; Fu, Y.; Chen, H.; Lu, R.; Hou, X. Analysis of Fluid-Structure Coupling Dynamic Characteristics of Centrifugal Pump Rotor System. Energies 2022, 15, 2133. [Google Scholar] [CrossRef]
- Li, D.; Zhang, N.; Jiang, J.; Gao, B.; Akurugo, A.; Zhou, W. Numerical Investigation on the Unsteady Vortical Structure and Pressure Pulsations of a Centrifugal Pump with the Vaned Diffuser. Int. J. Heat Fluid Flow 2022, 98, 109050. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, F.; Qu, L.; Xiao, R.; He, C.; Wang, M. Experimental Investigation of Time−Frequency Characteristics of Pressure Fluctuations in a Double−Suction Centrifugal Pump. J. Fluids Eng. Trans. ASME 2011, 133, 101303. [Google Scholar] [CrossRef]
- Rodriguez, C.G.; Egusquiza, E.; Santos, I.F. Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine. J. Fluids Eng. Trans. ASME 2007, 129, 1428–1435. [Google Scholar] [CrossRef] [Green Version]
- Spence, R.; Amaral−Teixeira, J. Investigation into Pressure Pulsations in a Centrifugal Pump Using Numerical Methods Supported by Industrial Tests. Comput. Fluids 2008, 37, 690–704. [Google Scholar] [CrossRef]
- Spence, R.; Amaral−Teixeira, J. A CFD Parametric Study of Geometrical Variations on the Pressure Pulsations and Performance Characteristics of a Centrifugal Pump. Comput. Fluids 2009, 38, 1243–1257. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Yang, M.; Gao, B.; Li, Z.; Ni, D. Unsteady Pressure Pulsation and Rotating Stall Characteristics in a Centrifugal Pump with Slope Volute. Adv. Mech. Eng. 2014, 2014, 710791. [Google Scholar] [CrossRef]
- Friedrichs, J.; Kosyna, G. Rotating Cavitation in a Centrifugal Pump Impeller of Low Specific Speed. J. Fluids Eng. Trans. ASME 2002, 124, 356–362. [Google Scholar] [CrossRef]
- González, J.; Fernández, J.; Blanco, E.; Santolaria, C. Numerical Simulation of the Dynamic Effects Due to Impeller−Volute Interaction in a Centrifugal Pump. J. Fluids Eng. Trans. ASME 2002, 124, 348–355. [Google Scholar] [CrossRef]
- Gülich, J.F. Centrifugal Pumps; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 0−387−23262−1. [Google Scholar]
- Fu, Y.; Yuan, J.; Yuan, S.; Pace, G.; D’Agostino, L.; Huang, P.; Li, X. Numerical and Experimental Analysis of Flow Phenomena in a Centrifugal Pump Operating under Low Flow Rates. J. Fluids Eng. Trans. ASME 2015, 137, 011102. [Google Scholar] [CrossRef]
- Barrio, R.; Blanco, E.; Parrondo, J.; González, J.; Fernández, J. The Effect of Impeller Cutback on the Fluid−Dynamic Pulsations and Load at the Blade−Passing Frequency in a Centrifugal Pump. J. Fluids Eng. Trans. ASME 2008, 130, 1111021–11110211. [Google Scholar] [CrossRef]
- Kurniawan, K.E.; Santoso, B.; Tjahjana, D.D.D.P. Improvement of Centrifugal Pump Performance through Addition of Splitter Blades on Impeller Pump. AIP Conf. Proc. 2018, 1931, 030053. [Google Scholar] [CrossRef]
- Capurso, T.; Bergamini, L.; Torresi, M. Design and CFD Performance Analysis of a Novel Impeller for Double Suction Centrifugal Pumps. Nucl. Eng. Des. 2019, 341, 155–166. [Google Scholar] [CrossRef]
- Wang, F.J.; Qu, L.X.; He, L.Y.; Gao, J.Y. Evaluation of Flow−Induced Dynamic Stress and Vibration of Volute Casing for a Large−Scale Double−Suction Centrifugal Pump. Math. Probl. Eng. 2013, 2013, 764812. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Xiao, R.; Wang, Z. Influence of Blade Leading−Edge Shape on Cavitation in a Centrifugal Pump Impeller. Energies 2018, 11, 2588. [Google Scholar] [CrossRef]
- Al−Qutub, A.M.; Khalifa, A.E.; Al−Sulaiman, F.A. Exploring the Effect of V−Shaped Cut at Blade Exit of a Double Volute Centrifugal Pump. J. Press. Vessel Technol. Trans. ASME 2012, 134, 021301. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, N.; Li, Z.; Ni, D.; Yang, M.G. Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump. J. Fluids Eng. Trans. ASME 2016, 138, 051106. [Google Scholar] [CrossRef]
- Kergourlay, G.; Younsi, M.; Bakir, F.; Rey, R. Influence of Splitter Blades on the Flow Field of a Centrifugal Pump: Test−Analysis Comparison. Int. J. Rotating Mach. 2007, 2007, 085024. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Yang, M.; Gao, B.; Li, Z.; Ni, D. Experimental Investigation on Unsteady Pressure Pulsation in a Centrifugal Pump with Special Slope Volute. J. Fluids Eng. Trans. ASME 2015, 137, 061103. [Google Scholar] [CrossRef]
- US−ANSI.ISO 9906; Rotodynamic Pumps: Hydraulic Performance Acceptance Tests−Grades 1 and 2. BSI: Milton Keynes, UK, 1999.
- ISO/TAG4/WG3; Guide to the Expression of Uncertainty in Measurement. ISO: Geneva, Switzerland, 1993.
- Zhang, N.; Liu, X.; Gao, B.; Xia, B. DDES Analysis of the Unsteady Wake Flow and Its Evolution of a Centrifugal Pump. Renew. Energy 2019, 141, 570–582. [Google Scholar] [CrossRef]
- Ni, D.; Zhang, N.; Gao, B.; Li, Z.; Yang, M. Dynamic Measurements on Unsteady Pressure Pulsations and Flow Distributions in a Nuclear Reactor Coolant Pump. Energy 2020, 198, 117305. [Google Scholar] [CrossRef]
Main Geometric Data | Value |
---|---|
Nominal flow rate QN/m3/h | 55 |
Nominal head HN/m | 20 |
Nominal rotational speed n/rpm | 1450 |
Impeller inlet diameter D1/mm | 80 |
Impeller outlet diameter D2/mm | 260 |
Impeller outlet width b2/mm | 17 |
Blades number Z | 6 |
Exit circumferential velocity u2/m/s | 19.74 |
Specific speed ns | 69 |
Project | Original | Staggered | Deviation/% |
---|---|---|---|
ΨN | 0.605 | 0.573 | 5.29% |
η/% | 72.7 | 67.1 | 5.60% |
Flow Rate | Δ/100% | ||
---|---|---|---|
0.8QN | 0.01383 | 0.00254 | 81.63% |
0.9QN | 0.01118 | 0.00206 | 81.55% |
1.0QN | 0.01568 | 0.00274 | 82.47% |
1.1QN | 0.01762 | 0.00299 | 83.01% |
1.2QN | 0.01862 | 0.00283 | 84.77% |
Flow Rate | Δ/100% | ||
---|---|---|---|
0.8QN | 0.003402 | 0.003031 | 10.91% |
0.9QN | 0.003076 | 0.002998 | 2.543% |
1.0QN | 0.002294 | 0.003275 | −42.78% |
1.1QN | 0.00304 | 0.002947 | 3.062% |
1.2QN | 0.002409 | 0.003481 | −44.52% |
Frequency Band | Δ/100% | ||
---|---|---|---|
0–5fr | 0.006563 | 0.007794 | −15.79% |
0–fbpf | 0.014372 | 0.008194 | 42.98% |
0–2fbpf | 0.014750 | 0.008893 | 39.71% |
0–4fbpf | 0.014937 | 0.009345 | 37.43% |
0–6fbpf | 0.015091 | 0.009458 | 37.33% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, D.; Wang, F.; Gao, B.; Zhang, Y.; Huang, S. Experimental Investigation on the Effect of the Staggered Impeller on the Unsteady Pressure Pulsations Characteristic in a Pump. Energies 2022, 15, 8912. https://doi.org/10.3390/en15238912
Ni D, Wang F, Gao B, Zhang Y, Huang S. Experimental Investigation on the Effect of the Staggered Impeller on the Unsteady Pressure Pulsations Characteristic in a Pump. Energies. 2022; 15(23):8912. https://doi.org/10.3390/en15238912
Chicago/Turabian StyleNi, Dan, Feifan Wang, Bo Gao, Yang Zhang, and Shiyuan Huang. 2022. "Experimental Investigation on the Effect of the Staggered Impeller on the Unsteady Pressure Pulsations Characteristic in a Pump" Energies 15, no. 23: 8912. https://doi.org/10.3390/en15238912
APA StyleNi, D., Wang, F., Gao, B., Zhang, Y., & Huang, S. (2022). Experimental Investigation on the Effect of the Staggered Impeller on the Unsteady Pressure Pulsations Characteristic in a Pump. Energies, 15(23), 8912. https://doi.org/10.3390/en15238912