Research on Fault Early Warning of Wind Turbine Based on IPSO-DBN
Abstract
:1. Introduction
2. Particle Swarm Optimization Algorithm
2.1. Basic Particle Swarm Optimization Algorithm
2.2. Improved Particle Swarm Optimization Algorithm
3. Deep Belief Network
3.1. Pre-Training of the DBN Model
3.2. Fine Tuning of the DBN Model
4. Fault Early Warning Method of Wind Turbine Generator Based on IPSO-DBN
4.1. Selection and Preprocessing of State Parameters
4.2. Fitness Function
4.3. Reconstruction Error
4.4. Reconstruction Error Threshold
- Fixed threshold
- Adaptive threshold based on sliding window
4.5. Evaluation Index
5. Example Analysis
5.1. Modeling Data Statement
5.2. Model Parameter Setting
5.3. Early Warning Analysis of Generator Fault
5.3.1. Comparison of Learning Effects of Different Models
5.3.2. Early Warning Model Testing under Normal Condition
5.3.3. Early Warning Model Testing in Fault State
5.3.4. Residual Analysis of Each Variable
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Acronyms and abbreviations | |
DBN | deep belief network |
IPSO | improved particle swarm optimization |
PSO | particle swarm optimization |
SCADA | supervisory control and data acquisition |
Indices | |
i | index of particle |
k | number of iteration |
d | number of dimensional |
Variables | |
bi | offset of the i neuron of the visible layer |
v | particle speed |
x | particle position |
pid | optimal solutions of the d-dimensional individual of the i particle |
pgd | optimal solutions of the d-dimensional population history of the i particle |
ω | inertia weight |
c1 | individual learning factor |
c2 | population learning factor |
c1min | minimum of individual learning factor |
c2max | population learning factor |
c1min | minimum of individual learning factor |
c2max | population learning factor |
cj | bias of the j neuron of the hidden layer |
r1 | random number in the interval [0, 1] |
r2 | random number in the interval [0, 1] |
ωmax | maximum inertia weights |
ωmin | minimum inertia weights flow of node |
T | maximum number of iterations |
K | weight control factor |
Eθ | RBM energy |
vi | i neuron state of visible layer |
hj | j neuron state of the hidden layer |
wij | connection weight between the i neuron of the visible layer and the j neuron of the hidden layer |
Pθ | joint probability distribution function |
Zθ | distribution function |
L(θ) | likelihood function |
f(x) | activation function |
ε | learning rate |
n | number of neurons |
vo | wind speed |
P | generator power |
Ω | generator speed |
Tt | generator torque |
Tai | air cooling temperature of generator |
Tba | temperature of generator front axle A |
Tbb | temperature of generator front axle B |
Tu1 | generator winding u1 temperature |
Tv1 | generator winding v1 temperature |
Tw1 | generator winding w1 temperature |
Tssi | side temperature of spindle impeller |
xi | data before normalization |
xI | data after normalization |
Xmax | maximum value of the original data |
xmin | minimum value of the original data |
ffitness | fitness function |
n | number of data samples |
m | dimension of data samples |
xij | j-dimensional data of the i original sample |
ij | j-dimensional data of the i reconstructed sample |
Re | reconstruction error |
reconstructed data vector | |
X | original data vector |
μ | mean errors of Re |
σ | root mean square errors of Re |
N | length of Re |
Uth | reconstruction error threshold |
References
- Fang, R.; Wu, M.; Guo, X.; Shang, R.; Shao, P. Identifying early defects of wind turbine based on SCADA data and dynamical network marker. Renew. Energy 2020, 154, 625–635. [Google Scholar]
- Qian, P.; Zhang, D.; Tian, X.; Si, Y.; Li, L. A novel wind turbine condition monitoring method based on cloud computing. Renew. Energy 2019, 135, 390–398. [Google Scholar] [CrossRef]
- Jin, Z.; Huo, Z.; Xu, C.; Guo, H.; Zhou, H. Fault diagnosis for wind turbine based on random forest and XGBoost. Renew. Energy Resour. 2021, 39, 353–358. [Google Scholar]
- Hanumant, P.J.; Anand, K.B.; Ravinder, K.; Ahmadi, M.H.; Assad, M.E.H. RAM analysis and availability optimization of thermal power plant water circulation system using PSO. Energy Rep. 2021, 7, 1133–1153. [Google Scholar]
- Ma, J.; Tang, B.; Han, Y. Design of networking condition monitoring and fault diagnosis for wind turbine transmission system. J. Chongqing Univ. 2015, 38, 37–44. [Google Scholar]
- Zhao, H.; Liu, H.; Liu, H.; Lin, J. Condition monitoring and fault diagnosis of wind turbine generator based on stacked autoencoder network. Autom. Electr. Power Syst. 2018, 42, 102–108. [Google Scholar]
- Yin, S.; Hou, G.; Hu, X.; Robu, V.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, G. Fault warning and identification of front bearing of wind turbine generator. Chin. J. Sci. Instrum. 2020, 41, 242–251. [Google Scholar]
- Li, D.; Mao, X.; Yin, P.; Wu, F. The rear bearing temperature of early warning method in wind turbine based on NSET. Sci. Technol. Eng. 2016, 16, 205–209. [Google Scholar]
- Wang, Z. Research on Modeling Method of Condition Monitoring of Wind Turbine. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2018. [Google Scholar]
- Huo, J.; Tang, G.; Liu, D.; Zhang, M. A novel monitoring method of wind turbine generator real-time reliability based on tempeture signals. Renew. Energy Resour. 2016, 34, 408–412. [Google Scholar]
- Chen, J.; Pan, J.; Li, Z.; Zi, Y.; Chen, X. Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals. Renew. Energy 2016, 89, 80–92. [Google Scholar] [CrossRef]
- Jiang, R.; Teng, W.; Liu, X.; Tang, S. Diagnosis of electrical corrosion fault in wind turbine generator bearing based on vibration signal analysis. Electr. Power 2019, 52, 128–133. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar]
- Geng, J.; Jiang, W.; Deng, X. Multi-scale deep feature learning network with bilateral filtering for SAR image classification-ScienceDirect. ISPRS J. Photogramm. Remote Sens. 2020, 167, 201–213. [Google Scholar] [CrossRef]
- Jeon, M.H.; Lee, Y.; Shin, Y.S.; Jang, H.; Kim, A. Underwater object detection and pose estimation using deep learning. IFAC-PapersOnLine 2019, 52, 78–81. [Google Scholar] [CrossRef]
- Lei, J.; Liu, C.; Jiang, D. Fault diagnosis of wind turbine based on Long Short-term memory networks. Renew. Energy 2019, 133, 422–432. [Google Scholar] [CrossRef]
- Jin, X.; Xu, Z.; Sun, Y.; Shan, J. Online condition monitoring for wind turbines based on SCADA data analysis and sparse auto-encoder neural network. Acta Energ. Sol. Sin. 2021, 42, 321–328. [Google Scholar]
- Ren, J.; Tang, B.; Yong, B.; Deng, L.; Zhang, K. Wind turbine gearbox fault warning based on depth variational autoencoders network fusion SCADA data. Acta Energ. Sol. Sin. 2021, 42, 403–408. [Google Scholar]
- Chen, R.; Zhang, Y.; Liu, Q.; Liu, T. Optimal design of grid structure in a DC system based on a PSO algorithm. Power Syst. Prot. Control. 2021, 49, 165–172. [Google Scholar]
- Zhang, Y.; Wang, L.; Zhou, H.; Zhao, H. Design and application of particle swarm optimization based on competitive learning. Comput. Meas. Control. 2021, 29, 182–189. [Google Scholar]
- Liu, M.; Dong, M.; Jing, C. Scheduled completion learing based multi-objective particle swarm optimization algorithm. J. Comput. Appl. 2019, 39, 330–335. [Google Scholar]
- Wang, S.; Liu, G. A nonlinear dynamic adaptive inertial weight particle swarm optimization. Comput. Simul. 2021, 38, 249–253. [Google Scholar]
- Li, X.; Xiao, J.; Pan, Y.; Liu, S.; Deng, X. Research on leveling control system of fuzzy PID vehicle-mounted platform based on PSO. Mod. Manuf. Eng. 2021, 2, 58–65. [Google Scholar]
- Hui, S.L.; Fan, S.; Chin, C.; Chai, S.; Bose, N.; Kim, E. Constrained path planning of autonomous underwater vehicle using selectively-hybridized particle swarm optimization algorithms. IFAC-PapersOnLine 2019, 52, 315–322. [Google Scholar]
- Rui, J.; Zhang, H.; Zhang, D.; Han, F.; Guo, Q. Total organic carbon content prediction based on support-vector-regression machine with particle swarm optimization. J. Pet. Sci. Eng. 2019, 180, 699–706. [Google Scholar] [CrossRef]
- Zhu, L.; Shao, S.; Jing, W.; Liu, L. PSO-optimized-fast segmentation algorithm for 3D Otsu forest canopy image. J. Harbin Univ. Sci. Technol. 2019, 24, 128–133. [Google Scholar]
- Engelbrecht, A.P.; Grobler, J.; Langeveld, J. Set based particle swarm optimization for the feature selection problem. Eng. Appl. Artif. Intell. 2019, 85, 324–336. [Google Scholar] [CrossRef]
- Li, Q. Power big data anomaly detection method based on an improved PSO-PFCM clustering algorithm. Power Syst. Prot. Control. 2021, 49, 161–166. [Google Scholar]
- Li, Z.; Liang, C.; Wang, M. Short-term power generation output prediction based on a PSO-DBN neural network. Power Syst. Prot. Control. 2020, 48, 149–154. [Google Scholar]
- Hua, Y.; Wang, S.; Bai, G.; Li, B. An improved particle swarm optimization algorithm based on nonlinear decreasing inertial weights. J. Chongqing Technol. Bus. Univ. (Nat. Sci. Ed.) 2021, 38, 1–9. [Google Scholar]
- Sheng, H.; Yang, J.; Zhang, G.; Yang, Y.; Geng, H.; Lu, L. Optimal configuration of micro energy network based on improved PSO algorithm. Power Syst. Clean Energy 2021, 37, 23–31. [Google Scholar]
- Khosravi, A.; Nunes, R.O.; Assad, M.E.H.; Machado, L. Comparison of artificial intelligence methods in estimation of daily global solar radiation. J. Clean. Prod. 2018, 194, 342–358. [Google Scholar] [CrossRef]
- Dai, J. Research on Transformer State Assessment Based on Deep Learning. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 2018. [Google Scholar]
- Yang, W.; Yin, K.; Bao, Y.; Yi, X.; Xu, B. Fault types identification of power grid based on deep belief network. Electr. Power Eng. Technol. 2012, 40, 113–117. [Google Scholar]
- Ding, S.; Li, X.; Hang, J.; Wang, Y.J.; Wang, Q.J. Deep learning theory and its application to fault diagnosis of an electric machine. Power Syst. Prot. Control. 2020, 48, 172–187. [Google Scholar]
- Peng, B.S.; Xia, H.; Liu, Y.K.; Yang, B.; Guo, D.; Zhu, S.M. Research on intelligent fault diagnosis method for nuclear power plant based on correlation analysis and deep belief network. Prog. Nucl. Energy 2018, 108, 419–427. [Google Scholar] [CrossRef]
- Li, B.; Zeng, H. Application of improved deep belief network in electric spindle fault diagnosis. Mech. Sci. Technol. Aerosp. Eng. 2021, 40, 1051–1057. [Google Scholar]
Arithmetic | Population Size (N) | Dimension (D) | ω | c1 | c2 |
---|---|---|---|---|---|
PSO | 100 | 30 | 0.8 | 2.0 | 2.0 |
IPSO | 100 | 30 | 0.9~0.4 | 2.5~0.5 | 0.5~2.5 |
Variable Name | Numerical Value | Unit |
---|---|---|
Wind speed | vo | m/s |
Generator power | P | kW |
Generator speed | Ω | r/min |
Generator torque | Tt | N·m |
Air cooling temperature of generator | Tai | °C |
Temperature of generator front axle A | Tba | °C |
Temperature of generator front axle B | Tbb | °C |
Generator winding u1 temperature | Tu1 | °C |
Generator winding v1 temperature | Tv1 | °C |
Generator winding w1 temperature | Tw1 | °C |
Side temperature of spindle impeller | Tssi | °C |
Parameters | Numerical Value |
---|---|
The number of neurons in the first hidden layer | 65 |
The number of neurons in the second hidden layer | 68 |
The number of neurons in the third hidden layer | 21 |
The number of neurons in the fourth hidden layer | 98 |
Pre-training learning rate | 0.0185 |
Reverse fine-tuning learning rate | 0.0456 |
Number of pre-training | 27 |
Number of reverse fine-tuning | 431 |
Model | RMSE | MAE | MAPE |
---|---|---|---|
DBN | 0.1256 | 0.2638 | 8.0291 |
PSO-DBN | 0.0807 | 0.1685 | 16.0129 |
IPSO-DBN | 0.0623 | 0.1315 | 4.9700 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, S.; Wang, P.; Jiang, P.; Zhou, H. Research on Fault Early Warning of Wind Turbine Based on IPSO-DBN. Energies 2022, 15, 9072. https://doi.org/10.3390/en15239072
Zhang Z, Wang S, Wang P, Jiang P, Zhou H. Research on Fault Early Warning of Wind Turbine Based on IPSO-DBN. Energies. 2022; 15(23):9072. https://doi.org/10.3390/en15239072
Chicago/Turabian StyleZhang, Zhaoyan, Shaoke Wang, Peiguang Wang, Ping Jiang, and Hang Zhou. 2022. "Research on Fault Early Warning of Wind Turbine Based on IPSO-DBN" Energies 15, no. 23: 9072. https://doi.org/10.3390/en15239072
APA StyleZhang, Z., Wang, S., Wang, P., Jiang, P., & Zhou, H. (2022). Research on Fault Early Warning of Wind Turbine Based on IPSO-DBN. Energies, 15(23), 9072. https://doi.org/10.3390/en15239072