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Abstract: This paper reviews the current techniques used in energy management systems to optimize
energy schedules into microgrids, accounting for uncertainties for various time frames (day-ahead
and real-time operations). The current uncertainties affecting applications, including residential, com-
mercial, virtual power plants, electric mobility, and multi-carrier microgrids, are the main subjects of
this article. We outline the most recent modeling approaches to describe the uncertainties associated
with various microgrid applications, such as prediction errors, load consumption, degradation, and
state of health. The modeling approaches discussed in this article are probabilistic, possibilistic,
information gap theory, and deterministic. Then, the paper presents and compares the current
optimization techniques, considering the uncertainties in their problem formulations, such as stochas-
tic, robust, fuzzy optimization, information gap theory, model predictive control, multiparametric
programming, and machine learning techniques. The optimization techniques depend on the model
used, the data available, the specific application, the real-time platform, and the optimization time.
We hope to guide researchers to identify the best optimization technique for energy scheduling,
considering the specific uncertainty and application. Finally, the most challenging issues to enhance
microgrid operations, despite uncertainties by considering new trends, are discussed.

Keywords: optimization; uncertainties; microgrids; energy management system; modeling

1. Introduction

A microgrid is a cluster of distributed generators—wind turbines, photovoltaic (PV)
systems, thermal units, microhydropower plants—and controllable or uncontrollable loads,
operating at low and medium voltage levels [1]. Storage units and electrical vehicles
(EVs) can be part of the clusters [2]. The microgrid can operate in a grid-connected or
islanded mode, while a supervisory control system is responsible for its operation. In a
grid-connected mode, the supervisory control manages the grid synchronization, acts in
case of grid disturbance or failure, regulates the power and energy flows between the
microgrid and the grid, and ensures an adequate level of power quality at the point of
common coupling [3]. Commonly, the microgrid has an energy management system (EMS)
at the supervisory and control level [4], which has the objective of (i) monitoring and
processing the available data (i.e., environmental, electrical, and operating parameters) [5],
(ii) forecasting the generation capability [6], the load profile [7], the consumer behavior [8],
and the energy market dynamic behavior [9], (iii) optimizing the energy flow among
distributed generators and loads, e.g., by minimizing the operation cost, maximizing the
self-consumption of the produced renewable energy [10], and (iv) developing the offline or
online energy scheduling [11].

Energies 2022, 15, 9114. https://doi.org/10.3390/en15239114 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15239114
https://doi.org/10.3390/en15239114
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en15239114
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15239114?type=check_update&version=1


Energies 2022, 15, 9114 2 of 38

To develop the various functions of the EMS, intelligent algorithms, modeling, and op-
timization techniques have been used [12]. The energy schedule and the optimization of
the energy flows will depend on the time frame (real-time [13], day-ahead [14], intra-day
scheduling [15]), the input and forecast data, and the specific application of the microgrid
(home, building, residential, or industry) [16]. Usually, for energy scheduling and energy
flow optimization, the value of the forecast power generated by the renewable sources,
the load consumption, the electricity price, and other parameters, such as the state of health
of the microgrid, are considered as certain variables (e.g., [17]). In reality, they are inherently
affected by an amount of uncertainty that needs to be taken into account, affecting the
result of the smart grid-optimized management [18]. For instance, PV power forecasting
can be affected by time-varying clouding [19], soiling, and PV module degradation [20],
which are usually not accounted for in the EMS optimization problem. As for the batteries
of the EVs that are connected to the microgrid, their initial state of charge depends on the
driving pattern [21,22], the battery type, and degradation [23], on the ambient temperature,
and on a number of further uncertain parameters that make the EMS operation more
complicated [24]. The same conclusion holds for residential applications because of the
dependency of energy consumption on inherently uncertain parameters, e.g., the comfort
level, occupancy, and user behaviors [25]. Failures in the power system [26] as electrical
lines, outages of power generators, variability of power reserve, and loss of communication
could also affect the resiliency of the normal operation of the microgrid [27].

Thus, including the uncertainties in the optimization algorithm can help enhance the
resiliency and overall performance of the different types of microgrids [28]. Depending on
the type of uncertainty, the modeling, and the optimization technique to adopt may be dif-
ferent. For instance, wind speed, solar irradiance, load consumption, and electricity market
prices are often modeled through suitable probability functions, which are accounted for
in EMS-oriented stochastic optimization procedures [29]. In addition, when no previous
data are considered, other uncertain factors can be modeled by fixing the range of variation
to examine the worst and best case operation at each time step. For these cases, robust
and fuzzy optimization techniques have been used to search for the optimal operation
point considering a degree of satisfaction [18]. Novel techniques have been emerging in the
last years as information gap theory [30], multiparametric programming [2], and machine
learning [31], which can help to find an optimal schedule in real-time operation.

Recent review papers on EMSs focused on (a) architecture [4], (b) communication [32],
(c) optimization techniques ([3,10]), (d) operation and control [33], and (e) specific ap-
plications, such as residential [11], building [34], and virtual power plants [35], but they
lacked focus on the uncertainties of EMSs. In this sense, few papers have approached
EMSs by accounting for uncertainties, i.e., ([1,36]). A small section in reference [36] focused
on modeling uncertainties for virtual power plants. However, they did not discuss the
optimization techniques and the different types of uncertainties. The work developed
by K.Kumar et al. [1] presented a review of the modeling techniques of uncertainties in
power generation, only focusing on energy sources. However, the authors of [36] did
not present the optimization techniques used with this type of modeling. Regarding the
optimization techniques discussed with uncertainties, [18] focused on stochastic and robust
optimization, but no other techniques were reviewed. The authors of [37] also discussed
optimization techniques, accounting for uncertainties but with the objective of long-term
planning. Table 1 provides an overview of recent review papers on EMSs and microgrids. It
indicates whether each study addresses uncertainty, modeling, and optimization strategies,
and some comments are provided. Notably, these reviews did not provide in-depth dis-
cussions on the modeling and optimization strategies utilized for EMSs when uncertainty
was incorporated. Furthermore, there is a lack of discussion on which uncertainties are
significant depending on the microgrid application and which modeling and optimization
techniques are used in each. Similarly, an analysis of how EMSs accounting for uncertainties
can be embedded in real-time operations has not been proposed until now.
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Therefore, to the best of our knowledge, a survey on EMS optimization and model-
ing techniques when uncertainties are considered needs to be included in the literature.
Furthermore, this paper identifies the main uncertainties affecting EMSs, the common mod-
eling techniques used, the optimization approach, the software, the platform used, and the
new challenges to overcome for better EMS performances; we conducted a comprehensive
literature review of more than one hundred papers dedicated to modeling uncertainties,
EMSs, microgrids, and optimization techniques by considering uncertainties.

In this paper, we identify the uncertain parameters that are being considered in
residential, commercial, virtual power plants, multi-carrier microgrids, and electric mobility.
The modeling and optimization techniques discussed in this paper are stochastic, robust,
deterministic optimization, information gap decision theory, model predictive control,
multiparametric programming, and machine learning techniques. Moreover, this paper
provides a deep discussion about the future and the challenges that new EMSs have to
overcome, taking into account uncertainties in new microgrid applications.

The paper is structured as follows. Section 2 explains the systematic literature review.
Afterward, the current uncertainties in various microgrid applications are discussed in
Section 3. Then, the techniques that are used to model the uncertain parameters are
described in Section 4. Next, a critical comparison between consolidated optimization
techniques and new approaches for day-ahead and real-time optimization is given in
Section 5. The common algorithms used are described in Section 6. Additionally, details
about hardware and software implementation are provided in Section 7. A final discussion
about future trends and challenges is presented in Section 8.

Table 1. An overview of the review papers on EMS for microgrids. The papers are organized by year
of publication and whether they cover optimization and modeling when uncertainties are considered.

Reference Model
Uncertainties

Optimization
Techniques with

Uncertainties
Survey Year Focus

[1] x - 2007–2016 2016 Renewable energy availability, heat demand,
and load demand

[4] - - 2005–2014 2016 Architecture, control, common optimization
algorithms: heuristic and mathematical methods

[38] - x 2001–2015 2016
Optimization objectives, heuristic methods,
stochastic programming, model predictive
control and neural network.

[35] x x 2002–2016 2017

Energy scheduling for reliability, uncertainty,
demand response, emissions, and
multi-objective. The uncertainty discussions are
covered in a small section where only
probabilistic modeling is discussed.

[18] x - 2000–2017 2018 Robust, and stochastic approach for uncertainty
modeling in energy systems

[3] x x 2002–2017 2018

Robust, stochastic programming and model
predictive control. It reviews the architecture,
control, and communication. The uncertainties
models are not well described

[16] - - 2001–2020 2020 Architecture, technologies, and market analysis.

[39] x x 1989–2019 2020 Artificial intelligence and machine learning for
energy demand.

[10] x - 2000–2020 2021
Traditional optimization techniques,
the architecture, control, of microgrids. Only a
small section is dedicated to uncertainties.

[11] - - 2005–2020 2021 dc microgrid architecture, control, optimization
algorithms, and software.
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Table 1. Cont.

Reference Model
Uncertainties

Optimization
Techniques with

Uncertainties
Survey Year Focus

[17] - - 2002–2020 2021 Architecture and control

[37] - x 2002–2021 2022
Control methods: game theory, multi-agent and
artificial intelligence, stochastic and
robust optimization

2. Systematic Literature Review

For the literature review, four consecutive steps were followed: search, appraisal,
synthesis, and analysis [40]. For the first step, “search”, the scientific databases used were
Scopus, IEEE Xplorer, and Google Scholar. The search for review papers was restricted to
the years between 2016 and 2022 and the research papers from 2014 to 2022. The search
strings created were:

• S1: microgrid + review + EMS + uncertainties;
• S2: review + modeling + optimization + uncertainties + energy;
• S3: microgrid + EMS + uncertainties + optimization;
• S4: microgrid + EMS + uncertainties + optimization + real-time.

The second stage, “appraisal”, involved the following: (i) giving a quality assessment
to verify if the publication was within the scope of the current study, (ii) the accessibility of
the article, and (iii) all the words of the string were included. Initially, 1038 review papers
regarding the first two strings were found. For S3, a total of 2404 publications were found,
and for S4, there was a total of 63 publications. After the quality assessment, 180 articles
were used for further review.

Then for the third stage, “synthesis”, we looked for specific features of interest for
this study: the uncertainty model, optimization technique used when uncertainty was
considered, validation, software, and uncertainty. Then, these features were considered
in the fourth stage, “analysis”, to discuss the uncertainty models and the optimization
techniques used for EMSs in microgrids. The analysis is presented in the following sections
of this paper.

3. Uncertainties in Microgrids

The inputs of any control system have a level of confidence depending on many factors.
Some inputs may depend on the randomness of nature or unpredictable human behavior,
so they are intrinsically affected by an uncertainty level [41]. For instance, the wind forecast
may show a standard deviation error between 40% and 50% for 24 h ahead of the horizon
and 20% for 1 h ahead. In the case of solar irradiance, the standard deviation error can vary
between 10% and 50% (for 24 h ahead) and from 1 to 10% (for 1 h ahead) [6].

Depending on the microgrid under analysis, the uncertain parameters to account for
may have different natures and require different representations. This section analyzes the
current uncertainties taken into account in the EMSs for various microgrids: residential and
commercial, virtual power plants, electric mobility, and multi-carrier microgrids. A sum-
mary of the various uncertainties considered and neglected in the literature depending on
the application is in Table 2.
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Table 2. Uncertainties considered in various applications.

Uncertainty Residential and
Commercial

Virtual Power
Plants

Electric
Mobility

Multi-Carrier
Microgrids

Renewable energy power production x x x x
Ambient conditions: solar irradiance, humidity, precipitation,
wind speed, temperature x x x x

Electricity price x x x x
Electricity consumption x x x x
Power reserve - - - x
Voltage and frequency variations - - - x
Electrical failures x - - -
Use of appliances x - - -
Connection/disconnection EV x x x x
Parking availability - - x -
Parking queues - - x -
User’s comfort x - x -
State of charge of battery x x x x
Driving pattern - - x -
State of health: battery, electrical system, PV modules, genera-
tors x x x -

Remaining use of life x x x -
CO2 emissions x - - -
Future installed capacity - - - x
Future load demand - - - x
House and building occupancy x - - -
Maintenance - - - x
Power reserves - - - -

3.1. Residential and Commercial–Industrial Applications

The main components used in residential and commercial–industrial applications are
appliances, air conditioning, and heating systems, PV systems, energy storage systems
(ESSs), and EVs. For these applications, the principal task of the EMS is to reduce the overall
energy cost while maintaining the comfort requirements. The level of independence from
the grid, which can be optimized by maximizing self-consumption and self-sufficiency,
is also considered. Uncertainties affecting the electricity price, the electrical demand,
the temperature of the living rooms, and the power generated from the PV array are usually
accounted for [42]. Some studies have considered further uncertainties, home occupancy,
energy price, PV power generation forecast, and solar irradiance. When EVs are included in
the study, the uncertainties affecting the charging time, connection, and disconnection [43]
are also considered. However, there are further uncertainties that are not taken into account
for residential and commercial–industrial applications. Some of the uncertainties that could
be included to enhance the performance of these EMSs are the power generation state
(connection or disconnection), the state of the ESS, and the CO2 emissions factor.

3.2. Virtual Power Plants

Virtual power plants (VPPs) have three main objectives: maximize the profit, minimize
the risk, and guarantee the spinning reserve. When VPPs include PV systems and wind
turbines, the error related to the forecast of the generated power and the weather conditions
are considered uncertainties. The energy flows are controlled by considering uncertainties,
such as electricity price, abrupt fluctuations, electricity demand, and power reserve [44].
In [45], the authors include uncertainties related to EVs, such as the charging time, the power
capacity, the state of charge, the number of vehicles connected, and the charging period.
Other uncertainties are the transmission line and generator outages [35].

Because the VPP aggregates various power generators at different locations, the uncer-
tainties affecting the regular operation to guarantee power according to the grid codes are
still drawbacks. For instance, the power reserve, ramps-up and ramps-down, the losses due
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to curtailment, and maintenance are not commonly part of theuncertainties of the EMS [46].
Moreover, it is not considered the variation of the CO2 emissions due to the interaction of
the grid.

3.3. Electric Mobility

EVs are included in some studies where EMSs are used to optimize parking lot oper-
ations. In this case, the primary goals are to minimize the operation costs, maximize the
time when the charging points are available, and reduce CO2 emissions. The uncertainties
affecting the arrival time, departure time, daily driving distance, driving behavior, connec-
tion, and disconnection time are accounted for [47]. Although these uncertainties can be
handled by fixing arrival and departure times or using economic incentives, they can affect
the user’s comfort. Other uncertainties, such as parking availability and queues, are also
considered in [48]. Other uncertainties included in the EMS are weather forecasts, power
production forecasts, electricity prices, and demand [47]. The battery’s state of charge and
degradation costs are also considered. Other uncertainties regarding human behavior, such
as the level of anxiety due to the level of the battery’s energy, are also considered in some
studies (e.g., [49]).

For the optimal operations of parking lots, the optimization is usually developed one
day ahead, then the schedule is rectified in real-time as the number of vehicles and the
charging times change. Even though the minimization of CO2 emissions is an essential
aspect, no studies considering the uncertainty affecting this parameter are available in the
literature. When EVs are connected to a microgrid, the batteries embedded in the vehicles
can be considered as additional storage elements that can support the ancillary services
of the grid, sometimes using a vehicle-to-grid (V2G) configuration. In this case, the EMS
aims to determine the best charging cycle to reduce EV battery degradation. The impact of
the charging cycle is not considered uncertain, but it plays an essential role in the battery’s
life expectancy. Other uncertainties that are not considered in current studies are the
amount of power and the required time interval to provide active power as part of the
ancillary services.

In maritime applications, “all-electric ships” are considered moving microgrids. In this
case, the uncertainties are solar irradiance, ambient temperature, wind speed, and direc-
tion, and the swinging direction of the ship [50]. Other uncertainties, such as the ship’s
occupancy, speed, comfort level, state of the battery, and degradation, have not yet been
considered in any study. The uncertainties related to the availability of charging points in
seaports have not yet been accounted for in the current literature.

3.4. Multi-Carrier Microgrids

Multi-carrier microgrids consist of various distributor generators and microgrids that
are connected to the medium voltage level; thus, they have to comply with the electrical
system regulations [51]. In this case, distribution system operators (DSOs) schedule the
energy flows by maximizing profit and reducing the operation risk. Uncertainties impacting
power generation production, energy price, and load demand are typically considered.
In the literature, voltage and frequency fluctuations, electrical failures, and generator
outages are considered uncertainties [52]. For planning purposes, long-term uncertainties
are the future installed capacity and load demand [53].

To enhance the energy management where multi-carrier microgrids are taken into
account, uncertainties such as power reserves, variability of the CO2 emissions, and re-
sponses regarding ancillary services could be introduced. Moreover, the degradation and
life span of the various microgrids are also necessary for long-term planning.

4. Modeling Techniques for Uncertainties in Microgrid Optimization

The design of a microgrid EMS requires a suitable representation of the uncertainties,
which can be modeled by using different approaches: (i) probabilistic, (ii) possibilistic, (iii)
information gap theory, and (iv) deterministic (Figure 1).
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Figure 1. Common modeling methods.

4.1. Probability Distribution Modeling

A probability distribution function (PDF) describes the behavior of a random
variable based on its likelihood to happen. There are two main types of PDFs according
to the nature of the variable: (i) discrete and (ii) continuous [54]. Discrete PDFs are
used when the variable can assume a discrete number of values or binary positions.
For example, the discrete probability distribution can model the random connection or
disconnection (0 or 1) of generators in a microgrid. Another example is the number of
EVs in a parking lot. Instead, a continuous probability distribution is used for variables
that assume continuous values, so the probability it assumes a specific value is almost
zero. Solar irradiance, ambient temperature, and wind speed are good examples of
these variables.

The most common types of discrete PDFs are binomial, Poisson, and uniform
distribution. This PDF is widely used as it well models the time-independent discrete
operation. For example, the Poisson distribution is often used to model driving be-
haviors and EV charging patterns, the initial state of charge, and the number of EVs
connected to a microgrid [55]. This type of function is also used to model random
spikes in electricity prices [56,57], and to model the errors in the prediction of PV and
wind energy production [58]. Binomial distribution functions have been used to model
transformer failures due to overloads related to the increasing number of EVs connected
to the grid [59]. Binomial distribution functions are suitable to model EVs’ random
connection and disconnection [60]. Lastly, uniform distributions are employed to model
the state of charge, and the number of EVs connected to the grid [61]. In the literature,
uncertainties related to the connection or disconnection of microgrids and the failure
of PV generators, wind turbines, or ESSs have not yet been modeled using the PDFs
mentioned above.

With reference to the management of microgrids and smart grids, Gaussian and
Weibull are the most used continuous PDFs. Gamma, Beta, Rayleigh, Bernoulli, and log-
normal have also been employed. The Gaussian distribution function is preferred for
those applications where the data have a symmetric distribution, as in the case of errors
in the wind [62,63] and PV power forecasting [64]. These distributions have been used to
model the state of health [65,66], and the state of charge of EV batteries [67]. The same
representation is commonly chosen to model the load consumption [68], the charging
duration of an EV battery, the arrival, the departure time of EVs [69], and the temperature
variation inside a house or building [70].

Weibull, Gamma, Beta, Rayleigh, Bernoulli, and log-normal are commonly used in
the case of asymmetrical data and represent ideal choices to model ambient conditions,
such as wind speed and variations of solar irradiance due to clouds. The Weibull distri-
bution and Beta distribution perform well for wind speed and solar irradiance forecasts,
respectively [71]. Weibull’s distribution functions have also been used to model the effect
of degradation, the remaining useful life, cycle prediction, and reliability for PV mod-
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ules [72,73], lead acid batteries [74], and lithium batteries [75,76]. The log-normal function
has been used to model the travel distance and time of an EV [77]. A summary of the most
common probability distributions and their applications is given in Table 3.

Table 3. Main probability distribution functions in microgrid applications.

Type Multi-Carrier Microgrid Renewable Energy Load Electricity Price EV Energy Storage

Poisson
forecast error connection/disconnection spikes arrival/departure state of charge

random occupancy connection/disconnection
number of EVs

Binomial generator outages connection/disconnection
transformers failures

Uniform generator outages load consumption state of charge state of charge
number of Evs

Gaussian

forecast error heating loads price variation charging time state of health
solar irradiance cooling loads arrival/departure state of charge

sky index
PV power load profile

temperature

Beta solar irradiance

Weibull
PV power degradation

wind power
degradation

Gamma travel time
travel distance

4.2. Possibility Theory

Building a reliable probability function depends on the availability of historical data.
Whenever these are not available, the uncertainty can be modeled as the degree of possi-
bility for a situation to occur. In order to model uncertainties, Bayesian statistics or fuzzy
sets [78] require less precise information than the one used in the case of the probabilis-
tic distribution.

The degree of possibility that a situation occurs can be added to model the uncertainty
when there is a lack of information to build a reliable probability function [78]. The un-
certainties can be represented by fuzzy sets as bounds or intervals or by their degree of
affection on the measured variable that helps to model the possibility that an event hap-
pens [79]. The main advantage of this technique is that it does not need precise information.
In the case of fuzzy sets, a function represents the degree of membership of a variable or
parameter, thus the possibility that these can have a specific value. The function can be a
trapezoid, a triangle, or a rectangle, depending on the variable’s membership limits [79].
For instance, Figure 2 shows a function used to represent the forecast of an active power
that can vary between Pa and Pb, while the most probable value is P′b. Fuzzy prediction
intervals are widely employed to forecast wind and PV power generation and electric load
variations during the day [80]. In [81], it is used to forecast the errors in predicting solar
irradiance, wind speed, ambient temperature, and home internal heat. Possibility theory
can also handle uncertainty, such as electricity load demand [82], parking availability [83],
and the connection or disconnection of EVs from the grid [84].

Although the design of fuzzy sets does not require any historical data, the boundaries
and the nominal value that the variable or parameter can assume are known. For instance,
the availability of at least one space when parking at noon is uncertain, and it is difficult to
assign to it a membership number. A fuzzy membership degree is adopted, especially when
few historical data are available or previous knowledge of the system is lacking [79]. This
representation can be combined with probabilistic functions when a reasonable amount of
information is available. For instance, in [85], the load demand and power generation are
modeled using the historical database with probabilistic distribution functions. Instead,
fuzzy sets are used to model random events such as quick variations of weather conditions,
spikes in prices, and peak demand. On the other hand, Bayesian models represent the
degree of belief that an event can occur and use a probability expression. This model



Energies 2022, 15, 9114 9 of 38

includes previous knowledge of the probability of occurrence of the variable combined
with the likelihood a specific event happens [86]. Therefore, Bayesian models can represent
the random variable as a network of different states, the so-called Bayesian network,
with conditional probability. This network helps to model the variable or parameter as a
consequence of other events. For example, in Figure 3, an acyclic graph referring to the air
conditioning behavior in a house is shown. Each value of the ambient temperature and
household occupancy has its own probability of occurrence, both affecting the probability
that the state of the air conditioning assumes a given value. Such an approach is also
helpful to model the degradation of batteries and PV solar cells, as every state depends
on the previous one [87] (See Table 4). In the literature, a Dirichlet-based model based
on Bayesian modeling is used to model the uncertainty set, where the set can vary over
time depending on the previous information. The set becomes narrower depending on
available data and is based on known probability distribution functions. Every probability
function is linked to a different possibility weight, which will vary. For instance, in [88], the
authors use an imprecise Dirichlet model-based nonparametric ambiguity set to represent
the uncertainty set of a wind power generator’s power production. Every time, the function
varies, and the ambiguity set is constructed with all the possible probability functions.
Then, the polyhedron set varies its lower and upper limits as the confidence level varies.
A similar approach is used to model PV power production and load consumption in [89].
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Figure 2. Example of fuzzy set representation.
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Figure 3. Example of Bayesian network.
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Table 4. Modeling uncertainties with possibility theory.

Type Multi-Carrier
Microgrid Renewable Energy Load Electricity Price EV Energy Storage

Fuzzy sets Non applied

forecast error forecast error forecast error total charging amount maximum charging rate
spikes of solar irradiance sudden variations spikes connection/disconnection initial state of charge

PV power home internal heat parking availability final state of charge
Wind power load power maximum profit maximum charging rate

connection/disconnection operation cost initial state of charge
final state of charge
battery level anxiety

driving pattern

Bayesian

failure forecast error variations peak price connection/disconnection
outages PV power use factor of appliances driving pattern

reliability Wind power load variation
Minimum power connection/disconnection
Maximum power heating system

cooling system
peak load
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4.3. Information Gap Theory

The information gap theory models the uncertainty radius between what is known
and what could be known [90]. This approach allows for a model of severe uncertainty
without needing a historical database or a reliable statistical function, making it suitable to
model the uncertain error between the forecast and the accurate data [91,92]. The technique
is based on the interval or unknown radius, depending on the preferred outcome (Figure 4).
For instance, in the presence of an uncertain PV power production, if the objective is to
reduce the cost of operation, the decision maker searches for the maximum radius of PV
power that the system can handle to minimize the objective function value. On the contrary,
the decision maker searches for the minimum uncertainty radius to warranty a specific
objective function value to increase the profit.

The uncertainty gap is modeled through energy-bound, envelope-bound, Minkowski,
slope-bound, Fourier-bound, and hybrid models [90]. Envelope-bound and slope-bound
models are the most used for microgrid and electrical system applications. Commonly, the
information gap theory is used to model the error of forecast variables [93] as, for example,
electricity price [94], load profile [95], renewable power generation [96], and degradation
of batteries [97] (see Table 5). Although information gap theory is able to handle severe
uncertainties, it has not yet been applied to model the forecast error of CO2, the state of
health and the state of charge of batteries, or the driven pattern for EVs.
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Figure 4. Representation of uncertainties in the information gap theory.

Table 5. Main applications of Information Gap Theory.

Multi-Carrier Microgrid Renewable Energy Load Electricity Price EV Energy Storage

not applied

forecast error forecast error forecast error

Not appliedthermal power load power intervals of bidding prices
PV power maximum price

wind power minimum price

4.4. Deterministic Theory

The uncertainty as forecast errors and maximum and minimum variations can be
modeled by bound intervals or by robust sets. To find the limits for the intervals, sensitivity
analysis or interval arithmetic are commonly employed [78].

The sensitivity analysis aims to identify which input variables or parameters change,
more or less significantly, the model’s performance by affecting its output. Additionally,
it simultaneously identifies sets of variables or parameters affecting system performance.
Thus, it can enhance the model by adding errors, importance weights, or sensitivity coef-
ficient to one or more specific inputs [98]. In microgrid applications, sensitivity analyses
evaluate the uncertainty affecting the load [99], the power generation [100], failures occur-
rence [26], the batteries’ degradation [101], the EV penetration [102], the power generation
profits [103], and CO2 emission forecasts [104].

Interval arithmetic models the uncertainty through a lower and an upper bound
of the range, wherein all the values are equiprobable. However, this technique cannot
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handle internal errors due to arithmetic round-offs; correlations or series truncations are
given false wide limitations [105]. The Affine arithmetic is an improved method that
considers the correlation among input and output variables by giving a more realistic
output bound. The Taylor model is also used to represent the bounds in the form of
a function that varies with time [106]. In power systems, these techniques have been
commonly used to model the uncertainty of voltage magnitude, and voltage phase for
power flow analysis [107]. In microgrids, problems related to load modeling [108], power
generation [109], and electricity prices [110] have been afforded.

In addition to representing the uncertainty in common intervals, it can take the shape
of robust sets (e.g., intervals), so they can be included in robust optimization or multipara-
metric programming. The sets can be a box, ellipsoidal, polyhedral, cardinality constrained,
and norm uncertainty [111]. These robust sets describe the variation of the uncertain variable
considering maximum, minimum, mean values, correlation, deviation, covariance, and con-
fidence parameters. An explanation of the construction of these sets is given in [112–114].
The uncertainties in energy price, wind and PV power production, and power demand are
modeled by their peak values, confidence, and variance level. In [115], a polyhedral set is
employed to represent future installed capacity and peak demand to provide microgrid
protection in the worst-case scenario. It is worth mentioning that the size of the set depends
on the time variance of the application. For instance, long-term uncertainty, as the maximum
future demand will not be the same as the maximum demand that can occur in the next
hour. In microgrids, these models are used for planning, optimization, and scheduling,
considering worst and best-case scenarios. The analysis of the upper and lower bounds or
the size of the set can be developed by observation, statistical analysis of historical data,
or policy regulations. The set can also vary and be adjusted depending on the historical data.
Depending on the set’s shape, these variable sets can take the name of flying brick [116] and
flexible envelope [117], commonly used for modeling the electricity price (see Table 6).

Table 6. Main characteristics and applications of deterministic theory.

Type Multi-Carrier
Microgrids

Renewable
Energy Load Electricity

Price EV Energy Storage

Intervals

max/min
number of
generators

forecast error max/min
consumption forecast error max/min

number of cars max/min state of charge

max/min voltage max/min
production

max/min
number of
appliances

max/min price
max/min
charging

points
max/min
frequency

Robust sets Installed capacity

forecast error discomfort
level

market price
not appliedwind power variation of

temperature

solar power expected
demand

consumption

The models for uncertain parameters are used to develop the EMS and are included in
the optimization algorithm. The basic mathematical modeling and the main characteristics
are summarized in Table 7. This table provides a general mathematical formulation,
where σ2 is the covariance, and α is the uncertain envelope size. The studies presented
in [91,118,119], make an in deep mathematical analysis for each category. The following
section reviews the optimization techniques that can embed uncertainties.
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Table 7. Summary of the uncertainty models.

Probability Theory Possibility Theory Information
Gap Theory Deterministic

Type of uncertainty Randomness ambiguity unmeasured uncertainty measured uncertainty

Output of the model
Probability density
function/ cumulative
density function

Membership function Uncertain uncertainty set exact interval

General mathematical form
e.g., Normal PDF e.g., envelope e.g., min/max
N(u, σ2) UA(x) U(α, ũ) x ⊂ [min(ũ), max(ũ)]

|u(t)− ˜u(t)| ≤ α| ˜u(t)|

5. Optimization Techniques with Uncertainties

Optimization techniques managing uncertainties, such as stochastic and robust opti-
mization, fuzzy optimization, information gap decision theory, model predictive control,
and multiparametric programming, are commonly used for microgrid applications. A sum-
mary of each technique for one-stage and multiple stages optimization is introduced in the
following. The advantages and drawbacks of their application in the microgrid context
are presented. Furthermore, machine learning techniques for optimization purposes in
uncertain environments are also reviewed (see Figure 5).

Optimization 
techniques when 
uncertainties 
are considered

Stochastic 
optimization

Robust optimization

Model predictive 
control

Multiparametric 
Programming

Information gap 
decision theory

Machine learning 
techniques

Fuzzy 
optimization

Figure 5. Optimization techniques when uncertainties are considered in microgrids application.

5.1. Stochastic Programming

Stochastic optimization techniques can be used to optimize an objective function’s
value, even by modeling random variables by probabilistic functions.

In stochastic programming, there can be two stages and multiple stages of optimization
(Figure 6). In the case of two stages, the optimization is divided into two steps. In the first
step, the day-ahead optimization searches for the best point of operation with the forecasted
data. In the second stage, the real-time operation corrects the optimization using the actual
value only in case a perturbation occurs. Commonly, the first stage evaluates all the
possible scenarios; but in the second one, only specific scenarios are considered [120,121].
A multistage optimization uses scenario trees to adjust the decision at different time steps,
depending on the current information and future uncertainties [120]. The authors in [122]
propose an energy management method based on multistage stochastic programming to
reduce the daily purchase cost. The uncertainties considered are the load profile and the PV
power generation, which are forecasted using long-term memory. The correlation among
the uncertain parameters is accounted for to create several scenarios. The response of the
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microgrid for one day ahead that works as a base model is optimized. Then, the system
is evaluated every fifteen minutes to recalculate the best microgrid operating condition
by considering the actual data and the scenarios created in the previous stages. Stochastic
optimization has been broadly used in EMSs, although it requires a computation time that
increases with the number of uncertainties and scenarios.

Forecast data
(day ahead)

Optimization
24 hours Optimization

Intraday/Real time

Microgrid

Uncertainties 
model

First stage 
optimization

Second stage 
optimization

Day ahead 
schedule

Uncertainties 
model

Microgrid 
real state

Figure 6. Two stages optimization block diagram.

One of the common approaches to optimizing with uncertainties in stochastic pro-
gramming is chance-constrained optimization. In this case, the algorithm searches for
a solution with a high confidence level by ensuring the highest probability of meeting
the different constraints. In [123], this technique optimizes home energy management,
considering electricity prices and loads as uncertainties. This study’s main objective is to
minimize the electricity cost by ensuring the probability of complying with constraints.
If the forecast error increases, then the operating cost increases significantly. Another
approach in stochastic programming is adding conditional value at risk (CVaR) in the
objective function. CVaR is used when the variability of a profit is expected due to the
stochastic behavior of the uncertainties. For instance, in [25], this approach is used to
consider the risk of load loss to minimize the operation costs and CO2 emissions.

All the variables are managed by simulating all the possible scenarios through sam-
pling methods, the Monte Carlo simulation, Latin-hypercube, and Markov chain. The
Monte Carlo simulation is based on the generation of random samples and of “what if”
scenarios related to the input variables or parameters in order to keep into account their
statistical behavior [124]. The scenarios are constructed by the random propagation of
uncertainties that usually is defined by probabilistic functions. This technique can handle
different uncertain variables simultaneously, allowing the discovery of possible correlations
among them (Figure 7). The main drawback of this approach is that the computation time
can be very high for a large set of variables and scenarios.

There are three types of Monte Carlo simulation techniques, depending on how the
problem is sampled: (i) sequential, (ii) non-sequential, and (iii) pseudo-sequential. The se-
quential Monte Carlo simulation approach is to preserve the time series’ characteristics
representing the input data. Thus, the analysis is developed in a chronological way [125].
In [126], a sequential Monte Carlo method is used to estimate the possible scenarios when
considering simultaneously electric, cooling, and heating demand together with the solar
irradiance; in this case, both the demand and the solar irradiance are modeled as a uniform
distribution. A non-sequential Monte Carlo simulation generates samples by the current
states of the variables, each one not depending on the previous or future samples [125].
This type of Monte Carlo simulation technique is often used to determine scenarios related
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to random failures of generators or the sudden increase or decrease of power due to inter-
mittent renewable generation [127]. Pseudo-sequential methods generate the scenarios by
including both random and chronological variables. In [128], an application concerning
the generation of scenarios related to the driving characteristics of an EV (time-dependent)
and the battery characteristics (random states of charge) are presented. The Monte Carlo
simulation is broadly used for scenario generation for its later application in stochastic
optimization in power systems [125] and microgrids EMS [29].
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Scenario 
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Figure 7. Flow diagram of the Monte Carlo simulation in microgrids.

Similar to Monte Carlo simulations, Latin hypercube-based methods generate scenar-
ios as functions of random variables or parameters. The main difference with the Monte
Carlo simulation is that this approach generates a smaller number of samples by consid-
ering the same probability distribution for all the parameters. This technique requires a
computing time lower than the one needed by a Monte Carlo simulation, with the same
accuracy of the result [124]. This technique has been used to assess the reliability of power
systems [129,130], and to generate power generation scenarios of microgrids in the presence
of uncertainties affecting the forecast of power generation [131]. The Monte Carlo simula-
tion has also been used to create different scenarios regarding V2G applications, considering
the arrival time and the state of charge of the batteries as random variables [132].

Markov chain is described as a first-order function in which the transition to the next
state depends on the current state but not on the sequence of past events [118]. They are
commonly applied to model EV status [133], queues in parking lots [134], and driven
patterns [21]. As for driven patterns, the defined states to form a Markov chain can be
the electricity price [135], the energy level of the battery [21], or the state of the vehicle
(low charging, fast charging, parking, commuting) [136]. The transition between one state
and another can be defined by a probability matrix built with Monte Carlo simulation,
as explained in [136]. Table 8 shows each technique’s common uncertainties considered in
the case studies.

However, these techniques can be helpful for one-day ahead optimization, but for
real-time, they have the drawback of high computation time. Thus, stochastic dynamic pro-
gramming is used for the case of real-time operation, as the uncertainties are incorporated
at every time interval. Then, the optimal response can be chosen by using game theory to
reduce the computation time, and the memory requirement [137,138].
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Table 8. Uncertainties considered with sample techniques.

Phenomena Monte Carlo Latin Hypercube Markov Chain

Renewable energy power production x x
Driver pattern x x x
State of charge of battery x
Electricity price x x x
Degradation battery price
Electricity consumption/load profile x x
Connection/disconnection EV x x
Electrical failures x
Ambient conditions: solar irradiance,
humidity, precipitation, wind speed

x

Generators failures/reliability x x
Through life cost
Risk planning x x
Microgrid operation x
Power flow direction x
Range anxiety/ battery level anxiety x

5.2. Robust Optimization

Robust optimization methods aim to achieve a feasible solution for any value of the
uncertain parameters modeled as a robust set. At the same time, the solution should
be optimal for the worst uncertainty realization within the robust set. There are three
main advantages of using robust optimization, i.e., (i) it is tractable as the size of the
problem does not increase exponentially as is the case of stochastic programming, (ii) it
requires less computation time than probabilistic or stochastic programming as there is
not a large number of scenarios, and (iii) it provides a conservative solution for every
possible uncertain parameter. The robust set should be carefully modeled according to
the time frame and application to profit from these advantages [111]. The most robust
solution could be, at the same time, the most expensive or the riskiest one, especially if
the robust set is not carefully chosen (Figure 8). In microgrids and smart grids, robustness
under uncertainties ensures that energy management does not overestimate the power
production or underestimate the load demand, which might lead to an increase in the price
or an increase in the CO2 footprint.
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Figure 8. Robust optimization operation in microgrids.

The literature presents three robust optimization formulations: Soyster’s worst-case
scenario, Ben-Tal, and Nemirovski’s nonlinear optimization, and a formulation proposed
by Bertsimas and Sim [139]. The latter is the most used technique in microgrids, as it is
flexible and linear. In contrast with the other formulations, it adds a parameter, i.e., the
“budget of uncertainty” and its main goal is to control the trade-off between robustness
and flexibility [140]. A new approach is robust distributional optimization, where a budget
of uncertainty is not used. Instead, a confidence interval probability is applied, and the
uncertainty sets are given by the predicted means and the variances of the uncertain
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parameter. In [14], robust distributional scheduling for a hybrid microgrid is presented and
compared with a traditionally robust optimization. The operation cost is higher for three
case scenarios: day ahead, short-term, and real-time optimization.

Single-stage and multiple-stage [111] are two types of robust optimization methods
close to stochastic programming. In the former, the decision is implemented before the
uncertainty happens, but considering, in most cases, the worst-case scenario (here and now).
Thus, this solution is risky and cannot be the most economical one. It is commonly used in
day-ahead energy scheduling and long-term planning; see [141,142]. The second one, also
called robust adaptable optimization, is utilized when real-time management is possible.
It consists of three stages: the first stage gives the planning strategy before uncertainty
occurs; the second represents the uncertainty realization in the worst-case scenario within
a robust set. The third level takes the decision when uncertainty occurs (wait and see
decisions) [143]. In adaptive robust optimization, stochastic programming might be the first
optimization stage. For instance, in [144], the use of stochastic adaptive robust optimization
to maximize the profit in a virtual power plant is described. In the first stage, stochastic
optimization is developed, considering a set of scenarios of the market prices for the day
ahead scheduling. Then, adaptive robust optimization is applied, considering the wind
turbine power production as uncertainty for online energy management. The processing
time of up to 35 min for the first stage and, in contrast, one minute for the second stage
represents a limitation for practical applications.

5.3. Information Gap Decision Theory

The information gap decision theory (IGDT) supports the decision-makers in man-
aging the system by determining the uncertainty band. Two formulations are adopted:
robust or risk-averse strategy and opportunity or risk seeker strategy. The former aims
to search for the maximum uncertainty level the system can handle to comply with the
desired objective function, for example, a critical cost. The main objective is to minimize
the risk of failure (immunity to failure). The second method aims at determining the
minimum uncertainty radius that the system can have so the desired objective function is
maximized, for example, the profit. The opportunity function aims to optimize the success
risk (immunity to windfall gain) (Figure 9). The decision-makers can follow one or more
strategies simultaneously, depending on the operation of the system [90].

Microgrid energy management systems use these approaches to maximize profit or
reduce operational costs. The uncertainties considered are market price [52], wind and PV
power, and load consumption [145]. These are evaluated in a predefined critical revenue.
In literature, IGDT is used for risk-averse strategy instead of risk seeker. However, ref. [146]
uses both strategies where the system chooses one of them depending on the hour of the
day to maximize the profit depending on the uncertainty of the peak prices. One of the
main disadvantages of this technique is that it cannot be used for short-term uncertainty,
as the information gap is too small. IGDT is preferable, but not limited, for long-term
uncertainties as load demand and market prices tend to have a larger gap.
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Figure 9. Information gap decision theory flow chart [91].

5.4. Model Predictive Control

Model predictive control (MPC) is an optimization strategy based on the model
of the system. This control looks for the best point of operation in small-time frames,
considering the real-time inputs and the actual value of the optimized variable. Each time
step, the control system reads, optimizes, and decides based on the microgrid’s model and
the available data. This control technique works under possible system perturbations due
to uncertainties that can be modeled as a set of bounds. The disturbance model can use
robust sets (worst-case scenario), polyhedral, or impulse response (Figure 10). In [147],
the authors model the uncertainties of temperature and solar irradiance using adaptive
robust sets and the optimization of the greenhouse’s energy management is developed
with MPC. Nevertheless, the uncertainty can be modeled using fuzzy intervals, and the
MPC can optimize at every time step for a defined prediction horizon but looking for a
robust optimization, as explained in [81].
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Figure 10. Block diagram of the model’s predictive control [148].
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Similar to stochastic and robust optimization, MPC can be applied for various opti-
mization stages depending on the time horizon. Depending on the time step, it can be
applied for day-ahead, intraday, and real-time optimization. Commonly, MPC is used for
the second stage, or the real-time operation, to correct the energy schedule calculated at the
beginning of the day [15]. Moreover, the first stage could use robust and stochastic opti-
mization to calculate the energy schedule by taking into account various uncertainties and,
in the case of stochastic optimization, various scenarios (e.g., [149,150]). However, the MPC
can be robust by adequately choosing the uncertainty model. For instance, ref. [151] fo-
cuses on using robust model predictive control for a multi-carrier microgrid, taking into
account the electrical grid and the gas network, where the uncertainty is modeled using a
robust set.

However, the main disadvantage is the computation time, as it can be too expen-
sive depending on the number of variables, constraints, and uncertainties. For instance,
ref. [152] presents a model predictive control to manage the energy schedule of a microgrid
considering renewable power generation, load, and price forecasts to minimize the oper-
ating cost. Any variation of these data outside the predicted values will cause the model
predictive control to calculate the best point of operation for each power generator and
ESSs again.

5.5. Multiparametric Programming

Multiparametric programming has been developed to reduce the MPC’s computa-
tional burden and solve optimization problems offline. The main goal of multiparametric
programming is to look for objective functions and constraints as a function of all sets
of uncertain parameters that vary between upper and lower bounds. Then, it constructs
regions where these objective functions are valid, depending on the uncertain parameter
variations. The construction of these regions is developed offline and can be done at the
beginning of the day. Then, in real-time operation, the system evaluates the actual value
of the uncertain parameters and searches for the active region. When the region is found,
the system solves the actual optimization function subject to the different constraints with
the real values of the uncertainties. The main advantage of multiparametric programming
is the small computational burden in online mode, which can be applied only if the param-
eters are known in real-time operation [153]. This technique has been commonly applied in
batch scheduling, control, and optimization of process system engineering [154]. However,
multiparametric programming has not been extensively utilized in microgrids and power
systems. In [155], this technique has been used to dispatch energy considering the minimal
cost operation of a microgrid. The uncertainties considered are the load consumption,
wind, and PV power error forecast. Once the regions are built and the actual data are
acquired, the optimal point of operation is searched. Another example is presented in [156],
where multiparametric programming is used to manage the energy schedule of a combined
energy system (heat and power units) where the demand and the state of the power units
and heating system are considered uncertainties (Figure 11). In [2], multiparametric pro-
gramming is applied in a real-time energy management system for a PV-based charged
station where five uncertainties were considered: PV production, EV power consumption,
the battery’s state of charge, electricity price, and CO2 emissions.
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5.6. Fuzzy Optimization

This optimization technique is based on the degree of membership condition (function)
satisfaction. The fuzzy logic control operation uses three main steps: fuzzification, fuzzy
inference, and defuzzification (Figure 12). Fuzzification translates the numerical input
values into fuzzy sets categorized as linguistic variables. Moreover, these fuzzy sets give a
degree of membership to the inputs. For instance, the power from renewable energy can be
classified as low, medium, high, and super high. In the case of “low”, it means there is a
lack of renewable energy, and if it is “super high”, it implies a surplus of energy. After the
fuzzification, the fuzzy sets are analyzed in the next block: fuzzy inference to obtain a
decision; for instance, the decision could imply the charging or discharging of a battery
depending on the availability of renewable energy, price, and demand. The use of fuzzy
rules helps make the decision. These rules are expressed again in linguistic terminology.
For instance, if the availability of renewable energy is low and the battery’s SoC is low,
the battery could be charged by the grid only if the electricity price is low. These rules are
expressed as if-then scenarios, and the combination of them can obtain a final decision on
the microgrid’s performance. After a decision is made, the result is defuzzified, where the
decision is translated to an actual value, such as the exact power to charge or discharge a
battery [157]. The response of the EMS will depend entirely on the input variables elected,
the fuzzy sets, and the fuzzy rules [158].
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The study presented in [47] does not individually model the uncertainties as market
price, battery state, and departure time. However, it defines a satisfaction function to the
constraints that include various uncertainties as a group. The main advantage (compared
to other techniques) is tractability, as it does not increase with the number of uncertainties.
This type of optimization has been applied for the management of the energy flows in
virtual power plants [158], the management of parking lots [47], and V2G applications [159].
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Figure 12. Block diagram of fuzzy optimization.

5.7. Machine Learning

Machine learning techniques are emerging tools for data forecasting, parametric
identification, scheduling, and control of microgrids. The main types of machine learning
are supervised, unsupervised, and reinforcement learning. For supervised learning, it
looks to find the best function according to the historical data considered as input. It is
commonly used for forecasting uncertain parameters, such as load demand, electricity
price, and power generation from wind and solar systems. Common supervised learning al-
gorithms used for this application are kernel-based tree methods, support vector machines,
the Gaussian process, and support vector regression [39]. However, these techniques show
low performance and are less accurate for forecasting parameters. A promising strategy
for forecasting is deep learning, which can present a mean error between 1 and 5% for the
estimation of the wind speed and around 0.5% for the one solar irradiance, depending
on the season [20]. These techniques have also been used for the parameter estimation of
batteries, e.g., state of charge, remaining useful life, and the state of health [160].

In the case of unsupervised learning, it looks to detect patterns in the data given.
In microgrids, this strategy is usually managed by clustering techniques, where each group
of loads, distribution generators, or multi-carrier microgrids can be in a specific cluster [12].
For instance, it can be used to classify the load demand and time-varying price tariffs [161].

Reinforcement learning is a promising technique for the real-time management of
microgrids under uncertain environments. It does not require an explicit model of the
uncertainty, but it constantly learns from the real-time operation. The problem is formulated
using a Markov decision process where at each step, the agent receives the representation
of the environment state and decides an action for the next time step with a numerical
reward. As it is an active learning process, the agent looks for the best schedule option at
the current time step by looking at the possible best outcomes in the future [39]. The use of
this technique for the real-time microgrids EMS is explained in [162]. Here, the states are
defined by the uncertainty and correlation between the energy, the demand, the electricity
price, and the state of charge of the battery. The schedule constantly adapts to the electricity
price, load, and power generation trend. Recently, similar approaches have been used for
energy management in smart grids [163], V2G applications [164], and ESSs [165].

However, reinforcement learning has a drawback in real-time operation when there is
extreme non-linearity and various uncertainties [166]. Thus, deep reinforcement learning is
a machine learning technique that seems more suitable for real-time energy management
of microgrids, as it can handle non-linearities. Moreover, its main advantage is that it
can make a decision in real time and can handle non-convex data [167]. For instance,
deep reinforcement learning is proposed in [162] to optimize the energy management of
a microgrid, where it uses a proximal policy optimization to learn the optimal energy
management of a common MPC. However, the drawback of using deep reinforcement
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learning is that it needs a large amount of training data set considering abrupt changes in
power production, load connection/disconnection, variations of electricity price, and CO2
emissions. A possible solution for this drawback is using a double-deep Q-learning method,
as it is explained in [165]. This technique updates its memory every time and constantly
creates new data sets.

5.8. Comparison

A comparison of the different optimization techniques, including their main charac-
teristics, advantages and disadvantages, the model of uncertainty, the computation time,
and the input data type, are shown in Tables 9 and 10. Each technique discussed previously
has its advantages and drawbacks; this section focuses on the specific application regarding
the type of uncertainty and its common use. Thus, this section is a guideline for selecting
the best technique for a specific scenario.

Stochastic programming is the most used technique to optimize the energy schedule
in microgrids by accounting for uncertainties. Probabilistic functions are mainly used for
modeling the inaccuracy in forecasting the amount of power production [19], the energy
price, and the load profile. They are also used for modeling stochastic variables, such as
solar irradiance, wind speed, cloud index, ambient temperature, peak prices, and con-
nection or disconnection of generators. EV charging time, arrival, and departure time
are also modeled through probabilistic functions or sampling techniques. Unfortunately,
the increasing number of variables and the need to consider the uncertainties significantly
increase the problem’s difficulty, with significant consequences on the computation time.

Another widely used technique is robust optimization, where uncertainties are
modeled using robust sets. The typical uncertainties modeled by these robust sets
are the electricity price, the power generation, and the power demand forecast errors.
As this technique looks for the worst-case scenario, the energy scheduling reduces
the time of dependency on PV systems, wind, or energy storage, affecting one of the
main goals of microgrids, which is the reduction of CO2 emissions. Other techniques,
such as information gap decision theory and fuzzy optimization, have recently been
applied, but not for real-time applications and only for one-day ahead scheduling.
These techniques may give good results in the real-time optimization of virtual power
plants, V2G, and parking lots.

The modeling and optimizing method depends on the available data type, application,
and required computation time. For the forecasting of power production, probability
distributions are a good option, as the input data follow a specific function that can be
extracted only if there are enough data. The same applies to any machine learning technique,
as training data are the base of their performance. However, the data can be fuzzified when
the dataset is limited, but the primary limits and the average value are available. If only
the limits are known, then robust sets can be used. If there is no information regarding
the uncertainty, then information gap theory is applied to search the limits based on the
outcome of the microgrid.

Depending on the model used, the decision maker chooses the optimization technique
accordingly. The probability theory is based on the generation of scenarios. The uncertainty
can be modeled by a probability distribution, fuzzy or fixed intervals, as in the case of
robust sets. Due to the generation of scenarios, the computation time is the main drawback
of this technique. The other techniques, such as fuzzy, robust, and information gap decision
theory, have a specific uncertainty model. These are usually applied to schedule energy
flows considering worst-case scenarios. Even though the optimization under the worst-
case scenario can lead to a safe and low-risk schedule, it is important to mention that
it can increase the operation cost. Therefore, it is advisable that in the modeling stage,
the developer defines the maximum and minimum values depending on the application
and the time frame of the optimization.

Multiparametric programming has not been used extensively in the microgrids con-
text. This technique could be used when the system can collect the data of the uncertainties
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at every time step. This technique can be combined with model predictive control, signifi-
cantly reducing online applications’ optimization time. So, its point of strength is the short
optimization time.

In the case of model predictive control, its main advantage is that it can adapt the
optimal point in real-time, taking into account the prediction of the states of the microgrid.
However, when the microgrid has too many components, its optimization time can be a
drawback. Thus, its combination with other techniques, such as machine learning, multi-
parametric programming, and robust and stochastic optimization to develop the optimal
solution offline could help reduce the optimization time in online mode. In distribution
system operator(s) (DSO), stochastic programming and model predictive control are the
preferred techniques for optimizing the energy flow when multi-carrier microgrids, virtual
power plants, and distributor generators are considered. Although there are other tech-
niques, such as info-gap decision theory and multi-parametric programming, its application
by DSO is not widespread due to its complexity [18].

Table 9. Characteristics of the optimization techniques for microgrids under uncertainties.

Optimization Technique Uncertainty Model Input Data Stages Computation TimeDay Ahead Real Time

Stochastic Optimization

Probabilistic function Forecast Yes Yes High
Fuzzy sets Estimated
Intervals Deterministic

Robust sets

Robust optimization
Robust sets Intervals Forecast Yes Yes Medium

Intervals Estimated
Fuzzy sets Deterministic

Information gap decision theory Variable interval

Forecast Yes Yes Medium
Estimated

Deterministic

Multiparametric
Robust sets Forecast No Yes Low

Intervals Estimated
Deterministic

MPC
Probabilistic function Forecast No Yes High

Intervals Estimated
Deterministic

Fuzzy optimization Fuzzy sets
Forecast Yes No Medium

Estimated
Deterministic

Machine learning
Does not require Forecast No Yes Low

Estimated
Deterministic
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Table 10. Comparison of the optimization techniques for microgrids under uncertainties.

Optimization Technique Main Characteristics Pros Cons Preferred Applications

Stochastic programming

Scenarios based easy to implement High computational time day-ahead optimization
intractable electrical distribution

reduce operational cost short-term uncertainty
large VPPs

Robust optimization
worst-case scenario reduce risky operation Increment cost Long-term decisions

Robust electrical distribution
tractable day-ahead optimization

IGDT worst and base case scenario non-data set inflexible long-term uncertainties
known outcome tractable complex

Multiparametric programming
creates critical regions reduce online computation intractable real time systems

offline calculation low use of memory solution grows exponentially residential and commercial microgrids
small applications

MPC

Model the system online optimization needs the model of the system small time frames decisions
Predicts the next step no previous data set high computation time react to uncertainties

tractable parking lots
enhanced transient response electric mobility
receives real time feedback residential and commercial microgrids

real-time operation

Fuzzy optimization

membership function
satisfaction tractable increase exponentially day-ahead scheduling

flexible reduced accuracy parking lots
rapid operation VPPs

precision day-ahead scheduling
V2G

Machine learning

adaptable requires historic data set real time operation

flexible problems with unexpected changes
in short-term VPPs

small online computation time offline time digital twins
residential and commercial microgrids

electric mobility
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6. Optimization Algorithms

The algorithms used to solve the optimization problem, taking into account uncer-
tainties, can be divided into traditional, meta-heuristic/heuristic, and hyper-heuristics.
The uncertainties, the objective function, and the constraints are adapted according to the
optimization technique used: robust, stochastic, multiparametric, IGDT or MPC. In the
case of traditional methods, in microgrids, mixed integer linear and quadratic program-
ming are the most used due to the nature of the loads and generators (on/off) (e.g., [168]).
However, one of the challenges is to linearize the problem formulation for a shorter compu-
tation time. The authors in [169] have proposed a mixed-integer quadratically constrained
programming. However, this solution cannot always be adapted for the optimization
technique, as is the case with multiparametric programming; at the moment, it can only
handle non-integer and non-quadratically constrained programming as the critical regions
could increase exponentially.

Meta-heuristic and heuristic methodologies are designed to reduce the computational
time of traditional methodologies, to be flexible, and handle nonlinear problems. The algo-
rithms commonly used are genetic algorithm, particle swarm optimization, evolutionary
optimization algorithm, and agents based [38]. The study in [170] proposes a hybrid
evolutionary optimization algorithm to solve a microgrid’s stochastic multi-objective opti-
mization, taking into account the wind power forecast as an uncertainty. The algorithm
helped reduce the computational burden and the optimization time to search for a con-
vergence operation point. In [171], it is shown that using a genetic algorithm reduces the
computational optimization time by 23%. A deep review of these algorithms and their
mathematical approaches to energy management can be found in [10].

In the case of hyper-heuristics, its focus is to search for the optimal solution in a
heuristic space, so it can be used not only to solve one specific problem under a partic-
ular space but also beyond the conventional domain. It selects or generates a low-level
heuristic to solve the problem, and can be constructive or perturbative. In the case of
selection constructive hyper-heuristic, the techniques used are local search, population-
based, and hybrid approaches. Evolutionary algorithms and population-based methods
are used when it is selection perturbative. On the other hand, generating constructive
hyper-heuristic creates an initial solution that can be optimized further by using genetic
algorithms. In this case, it is generation perturbative; it uses conditional statements to
search for the solution [172]. The most suitable algorithms used in microgrids for any of
these hyper-heuristic methodologies are ants colony, genetic algorithm, and particle swarm
optimization, as it is presented in [173].

7. Software

In order to develop an energy management system, MATLAB can be used for mod-
eling the system as it provides tools for robust, stochastic, multiparametric, and fuzzy
optimization. Furthermore, MATLAB has a complete library of the different machine learn-
ing techniques to work with a large amount of data. Even though the problem formulation
can be developed in MATLAB, researchers prefer to use GAMS [174] or YALMIP [141] when
the problem formulation is complex or when there are uncertainties in the system. In these
cases, the optimization of the problem can be developed using the following solvers: IBM
ILOG® CPLEX®, Gurobi, and others depending on the problem that can be linear, nonlinear,
convex, or non-convex. In [175], an energy management system developed in LABVIEW
is used to control a microgrid. In this case, the formulation of the problem is written in
GAMS, while the optimization problem is solved by IBM ILOG® CPLEX®.

In the case of a microgrid, the main components are a central controller that reads,
optimizes, and sends the output signals to the local controllers of each component of
the microgrid. dSPACE and have been used as central controllers in many applications.
dSPACE works with a MATLAB Simulink environment to create the real-time code used
for the control. Moreover, different solvers such as GAMS or CPLEX can be used for the
optimization task [176]. Another popular programmable processor is the NI-compactRIO
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from National Instruments. This is used with a data acquisition card (NI-DAQ) that reads
the input data. In this case, LABVIEW is used to control, monitor, and optimize the
microgrid [177]. The control of the microgrid can be developed by combining any of this
equipment and software. In [178], dSPACE controls the microgrid, LABVIEW is used for
the data acquisition, and MATLAB is used for the energy management system that links to
GAMS for optimization purposes. The central computer where MATLAB and LABVIEW
run is also used for data storage. For small applications such as home energy management
systems, Raspberry PI is often used. The control and optimization codes can be directly
developed in the Raspberry PI [179,180]. However, they can also be linked with MATLAB
and other solvers for optimization and LABVIEW for data acquisition.

It is worth mentioning that the computation time depends both on the number of
components to control and on the optimization technique. Concerning Table 11, the highest
execution times are for stochastic optimization and multiparametric programming. Mean-
while, fuzzy, IGDT, and robust optimization can solve the problem formulation in less than
six minutes. In the case of multiparametric programming, the execution time depends on
the number of uncertainties and regions. Nevertheless, the execution time is shorter during
the second optimization stage (online mode), even a few seconds. The computation time
also depends on the time horizon and its resolution. From Table 11, it can be seen that most
applications have a time horizon of one day ahead with one hour of resolution.
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Table 11. Comparison of different optimization techniques regarding the computation time.

Components Methodology Uncertainties Time Horizon Resolution Execution
Time Software Ref.

Diesel generator IGDT PV power 24 h 1 h 546.9 s GAMS [145]
PV system load power

ESS
load

Diesel generator Probabilistic PV power 24 h 1 h 131,494.4 s GAMS [145]
PV system load power

ESS
load

ESS IGDT market price 24 h 30 min 360 s GAMS [181]
load

smart appliances
thermal storage system

ESS Robust optimization market price 24 h 1 h 0.59 s MATLAB/CPLEX [174]
PV system PV generation

flexible load

Wind turbine Stochastic Adaptive
Robust Optimization wind power 24 h 1 h 2100 s CPLEX/GAMS [144]

ESS market price
flexible load

Thermal generators Fuzzy optimization wind power 24 h 1 h 9 s MATLAB/CVX [158]
PV systems PV power

Wind turbines
industrial load

commercial load
households

Thermal generators Probabilistic/Monte
Carlo wind power 24 h 1 h 2609.4 s MATLAB/CVX [158]

PV systems PV power
Wind turbines
industrial load

commercial load
households
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Table 11. Cont.

Components Methodology Uncertainties Time Horizon Resolution Execution
Time Software Ref.

heating system Multiparametric
programming initial state heat storage 3 h 1 h 32,660 s MATLAB/CPLEX [156]

loads initial electricity production
combined heat and power units demand for heat

electricity consumption

CIGRE model Deep reinforcement
learning PV power 24 h 1 h 0.5 ms Python [167]

load

CIGRE model MPC PV power 24 h 1 h 228 ms Python [167]
load
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8. Challenges and Future Trends

Microgrid energy management systems need to consider the uncertainties related
to various sources to make the energy schedule more realistic. Each modeling and opti-
mization technique attempts to tackle this issue specifically for applications such as virtual
power plants, home energy management, electric mobility, and multi-carrier microgrids.
The methods presented here focused on typical uncertainties, such as power generation
and electricity price, but many are still missing. To the best of the authors’ knowledge,
although uncertainties related to the degradation of PV modules and batteries are widely
studied, they are not considered when the microgrid energy management optimization
process is developed. Moreover, the impact of uncertainties on the state of charge and
health of batteries are neither broadly studied. Usually, these variables are considered
operation constraints in the optimization technique. Even though virtual power plants and
V2G participate in ancillary services, uncertainties such as power reserve, time, and fre-
quency deviation have not been considered. EV’s arrival, departure, and charging time
uncertainties are usually considered, but their modeling is almost rough because of the
human interaction that usually affects the real-time operation. The errors from these models
can be reduced by using economic incentives. Including these uncertainties is the first
challenge to overcome for a proper energy management system.

One common problem of microgrid EMSs is that they do not consider CO2 emis-
sions. Few cases consider CO2 as a parameter for a specific constraint in the optimization
algorithm, but it is not considered an uncertainty. Because the power from the grid
comes from different sources, the corresponding CO2 emissions are variable and un-
certain. The data for calculating these emissions depend on the available information
for the considered location and time. They are affected by uncertainties that need
to be included in the day-ahead schedule. Thus, the inclusion of CO2 emissions as
part of the uncertainties and the objective function is a challenge to overcome in the
following years.

Another challenge is finding a common technique suitable for every type of uncertainty
and optimization. In this regard, the methods recalled in this paper offer a range of
versatility depending on the application (Table 12). However, at the same time, they can
have drawbacks, such as computation time, scalability, or the need for historical data.
Although stochastic and robust techniques are the most used methodologies, they are not
the best options when optimization time is a constraint, or there are not enough historical
data. On the contrary, multiparametric programming reduces the optimization time.
However, it depends on the measurement of the uncertainty in real-time operations, which
could be a drawback when this is not possible. Although machine learning techniques
have been used especially for predicting uncertainties when historical data are available,
they have not been applied much in the context of microgrids for energy optimization.
Thus, a future scenario is to use machine learning to teach the microgrid how to react
depending on the variations of the uncertainties, such as electricity price, CO2 emissions,
load behavior, and ESS parameters, considering the energy mix from the grid. In this sense,
the Internet of Things concept can enhance machine learning techniques by improving the
data collection from houses, buildings, EVs, parking lots, virtual power plants, and even
the electrical grid.

With the advance of the internet of things, modeling, and platforms, the development
of a digital twin of various microgrids can be a reality. The digital twin can be an exact
replica of a microgrid that can adapt over time and provide various services, such as
predictive maintenance and a variation of operations, taking into account the statistical
analysis of uncertain parameters (e.g., degradation and thermal stress) [182]. For this new
trend of research, adaptable models of uncertain parameters are necessary to develop
together with the statistical analysis of the information. Thus, in this case, machine learning
techniques could help the development of digital twins for microgrids [183].
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Table 12. Summary of the articles reviewed depending on the optimization technique used. (RO:
Robust optimization, SO: stochastic optimization, FO: fuzzy optimization, IGDT: information-gap
decision theory, MPC: model predictive control, MP: multiparametric programming, ML: machine
learning, MS: multiple stages, RT: real time).

Reference SO RO FO IGDT MPC MP ML MS RT Year

[2] x x x 2022
[5] 2022
[13] x 2022
[88] x x 2022
[89] x 2022

[171] x 2022
[44] x x 2019
[12] x x 2020
[15] x 2020
[25] x 2020
[30] x 2020
[50] x 2020
[64] x 2020
[92] x 2020
[94] x 2020
[97] x x 2020

[147] x x x 2020
[155] x x 2020
[164] x 2020
[165] x 2020
[14] x x x 2019
[31] x 2019
[45] x 2019
[93] x x 2019

[122] x x 2019
[140] x 2019
[145] x 2019
[162] x 2019
[170] x 2019
[180] x 2019
[53] x 2018
[58] x 2018
[81] x x 2018
[82] x x 2018

[121] x 2018
[123] x 2018
[131] x 2018
[141] x x 2018
[146] x 2018
[184] x 2018
[166] x 2018
[181] x 2018
[43] x x 2017
[47] x 2017
[84] x 2017
[95] x 2017
[96] x 2017

[142] x x 2017
[144] x x x 2017
[158] x 2017
[52] x 2016

[149] x x x 2016
[150] x x x 2016
[176] x 2016
[177] x 2016
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9. Conclusions

This paper presents a review of the techniques used for uncertainty modeling in the
context of microgrid optimization and management. Current and future trends in the
different microgrid environments are also discussed.

In recent literature, a number of uncertainties related to the operation of EVs, virtual
power plants, home, and building energy management are accounted for. Uncertainties
affect the electricity market prices, the load and power generation forecasts, and the errors
forecast. Modeling some key uncertainties (e.g., materials degradation, state of health of
batteries, and the user’s behavior) is more challenging and, thus, neglected.

Uncertainties are represented by using probabilistic functions, intervals, robust sets,
information gap theory, and fuzzy sets. The selection of the model depends mainly on the
type of available data and the application. Energy management systems aim to minimize
the price, maximize the user’s comfort, or minimize CO2 emissions. When uncertainties
are involved, the optimization techniques that can be applied are stochastic, robust, fuzzy
optimization, model predictive control, multiparametric programming, information gap
decision theory, and machine learning techniques. Among these, model predictive control,
stochastic, and robust optimization are the most used for microgrid management.
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