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Abstract: In this paper, the theoretical properties of transients in three-phase networks, including the
fourth wire and unbalanced source, are systematically investigated by resorting to several analytical
tools. First, a Cartesian space vector is introduced to provide the geometrical three-dimensional
representation of a three-phase voltage/current transient. It is shown that a voltage/current transient
can be always represented as a three-dimensional trajectory leaving one plane (corresponding to
the previous steady state) towards another plane (corresponding to the new steady state at the end
of the transient). The quantity driving the trajectory from one plane to another is the Park/Clarke
zero component. Second, the Clarke transformation is used to study the original three-phase circuit
as a superposition of two independent transients: the transient of the Clarke space vectors and
the transient of the Clarke zero components. Third, the Park transformation is used to evaluate
the dq0 components of transient voltages/currents. Since the Park transformation is related to the
Clarke transformation through a simple frequency shift, the effects on the frequency content of the
steady-state and transient waveforms are put into evidence. Three case studies are presented and
solved to prove the theoretical results.

Keywords: three-phase transient analysis; space vector analysis; Clarke transformation; Park
transformation

1. Introduction

Modern power systems for the transmission and distribution of electrical power can be
seen, from a circuit theory viewpoint, as interconnections of three-phase and single-phase
networks [1]. Usually, electric power transmission is implemented by resorting to three-
phase networks, whereas power distribution involves both three-phase and single-phase
networks/components. A typical example of a single-phase network is the so-called fourth
wire of a power system, which is connected to the pure three-phase system through wye
(or star) connections. A single-phase load can also be connected from one phase of the
three-phase network to the fourth wire. An important example of a huge single-phase load
is a railway system.

A power system, as briefly described above, is a complex network requiring specific
methodologies for an effective and meaningful solution within the framework of three-
phase system analysis. In fact, in general terms, a power system could be solved by
resorting to conventional techniques for circuit analysis (e.g., the nodal analysis), but this
approach would not allow the exploitation of the specific properties and features of three-
phase systems. For this reason, in the past decades, specific methodologies have been
developed for three-phase systems in order to exploit the intrinsic configuration symmetry
of many power systems. The most important approach for the solution of symmetrically
configured three-phase systems (i.e., three-phase systems with three equal phases and with
equal coupling between the phases) is based on the well-known Symmetrical Component
Transformation (SCT) [2–5]. The main advantage of the SCT is its capability of resolving
the three-phase system in three uncoupled circuits in the phasor domain (i.e., the so-called
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positive, negative, and zero-sequence circuits), whose solution is much simpler than the
solution of the original coupled circuit. Moreover, since the SCT also operates on the
voltages and currents, such transformed variables (called sequence voltages/currents) have
a meaningful interpretation within the framework of three-phase circuit analysis. In fact,
a positive-sequence phasor corresponds to three symmetrical (or balanced) phasors with
the positive sequence abc in the original three-phase circuit. A negative-sequence phasor
corresponds to three symmetrical (or balanced) phasors with the negative sequence acb.
Finally, a zero-sequence phasor corresponds to three equal phasors (in magnitude and
phase). Thus, a generic unbalanced set of three phasors in the original three-phase network
is decomposed into the sum of two balanced sets and one set with three equal components.

The approach outlined above works in the phasor domain, thus it is suited for steady-
state analysis. In power system analysis, however, transient analysis in the time domain
is of paramount importance. In fact, it is well-known that connecting and disconnecting
apparatus and loads to the main network can result in overvoltages/overcurrents, which
can lead to the malfunctioning or damage of system components [6–10]. Therefore, the
early-stage prediction and evaluation of network transients is a critical issue in modern
power systems.

Until a few years ago, the conventional approach for transient analysis of power
systems was the so-called quasi-static model [11–13]. In the quasi-static model, the key
assumption is that phasors change slowly in comparison to the system frequency. Therefore,
the system is modeled through time-varying phasors. The main advantage of this approach
is that the frequency is assumed constant. Thus, conventional methods such as the nodal
analysis can be used directly since the nodal admittance matrix is unchanged. The main
drawback, however, is that the quasi-static approach can model only slow phenomena that
occur in time frames of seconds to minutes, typical of machine stability studies.

In recent years, with the increasing penetration of small, distributed generators and
power electronics devices working at a high switching frequency, the quasi-static phasor
approach is becoming more and more inadequate to model the fast dynamical behavior
of power networks. For this reason, today, the most common approach for the transient
analysis of power systems is based on the so-called dynamic phasors [13–16]. The basic
idea underlying the dynamic phasors is using the Fourier series expansion for each variable
involved in a transient and retaining only a small number of significant harmonics. The
time-domain equations, where the dynamic phasors are used, are written for the dq0
components. The dq0 components of time-domain voltages and currents can be obtained by
using the Park transformation on three-phase time-domain voltages and currents. Notice
that the Park transformation was originally introduced to analyze rotating machines, but
since it can be used to model static components too and since it operates in the time domain,
the Park transformation can be used to model a complete power system in the time domain
for transient analysis. Within this framework, several authors pointed out that the dynamic
phasors are used only to obtain a more efficient formulation for the numerical solution of
the dq0 time-domain equations (e.g., see [13]).

A recent paper [17] proposed a thorough and comprehensive comparison between the
performances of the quasi-static model, the dynamic phasor model, and the time-domain
model consisting in the solution of the dq0 differential equations through conventional
numerical methods. As expected, it was proven that the dynamic phasor model can
capture faster transients than the quasi-static model, but it cannot deliver the same ac-
curacy as the time-domain model. Moreover, when fast electromagnetic transients are
considered, the computational performance of the dynamic phasor approach does not
surpass the time-domain model. Thus, it was made clear that, as far as fast electromag-
netic transients are considered, the time-domain approach is still unsurpassed by other
approximate approaches.

Given its superiority in terms of accuracy in the analysis of fast electromagnetic
transients, the time-domain approach to power system transients is investigated in this
paper from a methodological and theoretical viewpoint. In particular, the theoretical
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properties of transients in three-phase networks, including the fourth wire and unbalanced
source, are systematically investigated by resorting to analytical tools such as the Cartesian
space vector and the Clarke and Park transformations. More specifically, the main findings
of the proposed analytical investigation can be summarized as follows.

First, a Cartesian space vector is introduced to provide the geometrical three-dimensional
representation of a three-phase voltage/current [18,19]. It is shown that, under steady-state
conditions, the trajectory of the Cartesian space vector lies always on a plane. This plane is
the αβ plane of the well-known Clarke transformation (i.e., the Park transformation with
fixed axes) in the case of a Park/Clarke zero component equal to zero. Otherwise, in the
case of a zero component different from zero, the plane is different from αβ but it can be
still properly defined [20]. Thus, a voltage/current transient can be always represented as
a three-dimensional trajectory leaving one plane (corresponding to the previous steady
state) towards another plane (corresponding to the new steady state at the end of the
transient). The quantity driving the trajectory from one plane to another is the Park/Clarke
zero component.

Second, the Clarke transformation is used to study the original three-phase circuit as a
superposition of two uncoupled circuits: the space-vector equivalent circuit (taking into
account possible unbalanced sources) and the zero-component equivalent circuit (taking
into account the fourth wire, if any) [21,22]. Thus, the original three-phase transient is
split into the superposition of two independent transients: the transient of the Clarke
space vectors and the transient of the Clarke zero components. This approach allows us
to put into evidence the relationship between the Clarke space vector and the Cartesian
space vector. In fact, in the case of null zero components, the trajectory of the Clarke space
vector equals the trajectory of the Cartesian space vector. Otherwise, in the case of zero
components different from zero, the trajectory of the Clarke space vector is the projection
on the αβ plane of the Cartesian space-vector trajectory.

Third, the Park transformation is used to evaluate the dq0 components of transient
voltages/currents. Since the Park transformation is related to the Clarke transformation
through a simple frequency shift (i.e., a negative frequency shift −ω, where ω is the
angular frequency of the source), the effects on the frequency content of the steady-state
and transient waveforms are put into evidence. In particular, as far as the steady state
is concerned, a positive-sequence component leads to constant values of dq variables,
whereas a negative-sequence component leads to dq variables with double frequency. As
far as transient components are considered, real eigenvalues lead to damped oscillating
components, whereas complex conjugate eigenvalues lead to damped oscillations with
shifted frequencies.

The paper is organized as follows. In Section 2, the analytical tools mentioned above
and the related theoretical derivations are presented in detail. In Section 3, three case
studies are presented and solved to prove the theoretical results obtained in Section 2.
In particular, two three-phase networks are presented: the first leading to a first-order
circuit in the space-vector domain; the second leading to a second-order circuit in the
space-vector domain. Moreover, the solution of a three-bus power system is presented. In
all the cases, the fourth wire and the effect of an unbalanced source are considered and
discussed. Concluding remarks are drawn in Section 4.

2. Space-Vector Analysis of Three-Phase Transients

Let us consider a generic set of three-phase voltages {va, vb, vc} in the time domain,
under steady-state or transient conditions (the following derivations also hold for a generic
set of three-phase currents {ia, ib, ic}). By introducing an orthogonal abc space where each
axis is associated to a phase voltage, the set of three-phase voltages can be represented by
the Cartesian space vector [18]:

→
v abc = va êa + vb êb + vc êc (1)
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where {êa, êb, êc} is the set of unit vectors of the orthogonal abc space. If no specific
assumptions are made about the set of voltages {va, vb, vc}, the trajectory (or locus) of
→
v abc is a non-planar trajectory (e.g., see Figure 1).
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is an orthonormal basis, i.e.,

êα·êα = êβ·êβ = ê0·ê0 = 1 and êα·êβ = êβ·ê0 = êα·ê0 = 0 (5)

In the special case where the zero component v0 in Equation (2) is null, the set of
three-phase voltages is such that va + vb + vc = 0, i.e., the trajectory of the Cartesian space
vector

→
v abc lies on the plane αβ with equation a + b + c = 0 and is defined by the unit

vectors
{

êα, êβ

}
(see Figure 2). Therefore, in this case, the three-phase voltages {va, vb, vc}

can be completely represented by the two voltages
{

vα, vβ

}
, i.e., by the voltage space

vector, defined as:
v = vα + jvβ (6)
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)
+

1√
3

v0, vc =

√
2
3

Re(av) +
1√
3

v0 (7)

where a = ej2π/3. Thus, the locus of the zero component v0 is the line along the direction
ê0 perpendicular to the plane αβ, moving the trajectory of the Cartesian space vector

→
v abc

outside the plane αβ. Notice that this property holds regardless of the time behavior of the
variables, i.e., under steady-state or transient conditions.

2.1. Balanced and Unbalanced Sinusoidal Steady State

Let us consider a set of sinusoidal three-phase voltages {va, vb, vc} with angular
frequency ω and a zero component v0 = 0 (i.e., the balanced case). In this case, the trajectory
of the Cartesian space vector

→
v abc lies on the αβ plane (Figure 2), and the corresponding

space vector Equation (6) is given by:

v = Vpejωt + V∗n e−jωt (8)

where, according to the well-known Symmetrical Component Transformation (SCT) oper-
ating on the phasors {Va, Vb, Vc}, Vp and V∗n are the phasors of the positive and negative
(complex conjugate)-sequence components given by [1]:Vp

Vn
V0

 = S

Va
Vb
Vc

 =
1√
3

1 a a2

1 a2 a
1 1 1

Va
Vb
Vc

 (9)

where the transformation matrix S is in its power-invariant form, i.e., S−1 = S∗T .
The trajectory of the space vector v in Equation (8) is elliptical (Figure 2), with semi-

major and semi-minor axes given by [22]:

M =
∣∣Vp
∣∣+ |Vn|, m =

∣∣∣∣Vp
∣∣− |Vn|

∣∣ (10)
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and the inclination angle by:

ϕ =
[
arg
(
Vp
)
− arg(Vn)

]
/2 (11)

As a special case, when the negative-sequence component Vn = 0, the trajectory of the
space vector v becomes circular with a radius r =

∣∣Vp
∣∣.

In the more general case, where the set of sinusoidal three-phase voltages {va, vb, vc},
with angular frequency ω, has a zero component v0 6= 0 (i.e., the unbalanced case), the
trajectory of the Cartesian space vector

→
v abc is still planar, but the plane is different from the

αβ plane. Thus, the effect of a sinusoidal steady-state zero component v0 is the definition
of a new plane where the trajectory of

→
v abc lies. This point can be proven by observing

that, since each phase voltage (i.e., va, vb, or vc) is a sine wave with angular frequency
ω, such voltage can be seen as a solution of a simple harmonic oscillator defined by a
homogeneous second-order differential equation. Since this is true for each phase voltage,
the second-order differential equation can be written for the Cartesian space vector [20]:

d2

dt2
→
v abc + ω2→v abc = 0 (12)

Thus, the solution can be written as a linear combination of two sine waves:

→
v abc =

→
g 1· cos ωt +

→
g 2· sin ωt (13)

where
→
g 1 and

→
g 2 are constant vectors given by the initial conditions:

→
g 1 =

→
v abc

∣∣∣
t=0

,
→
g 2 =

1
ω

d
dt
→
v abc

∣∣∣∣
t=0

(14)

Equation (13) is the vector representation of a plane defined by the vectors
→
g 1,
→
g 2 and

the axes origin. Therefore, the trajectory of the Cartesian space vector
→
v abc is always planar

and lying on the plane g1g2. Such a plane becomes the plane αβ in the special case of the
null zero component (i.e., V0 = 0), whereas the difference with the αβ plane increases as the
zero component V0 increases, i.e., for increasing unbalance (see Figure 3). Notice that, in
Figure 3, the vectors

{→
g 1,
→
g 2

}
terminate on the ellipse because of Equation (14), whereas

the unit vectors
{

êα, êβ

}
define the αβ plane and, in general, they do not terminate on the

ellipse on the αβ plane.
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Figure 3. Trajectory of the Cartesian space vector
→
v abc in the orthogonal abc space in the case of

sinusoidal waves {va, vb, vc}. The black line ellipse refers to the case of the null zero component (see
Figure 2), whereas the blue line ellipse refers to the case V0 = Vp/2. The zero component V0 results

in an elliptical trajectory lying on the plane defined by the vectors
{→

g 1,
→
g 2

}
instead of the αβ plane.
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2.2. Transient Conditions

The dynamics of a three-phase network can be analyzed through the Clarke transfor-
mation Equation (2) and the use of voltage/current space vectors defined as in Equation (6).
In fact, under the assumption of a symmetrically configured three-phase network, it is
well-known that the original network can be studied as two uncoupled networks [21]:

1. The space vector network, where all the voltages and currents are defined as space
vectors, and the three-phase components are diagonalized by the Clarke transforma-
tion (e.g., a three-phase symmetrical mutual inductor with phase self-inductances
Lph and mutual inductances Lm, corresponds to the inductance L = Lph − Lm in the
space-vector domain after diagonalization through the Clarke transformation);

2. The zero-component network, where all the circuit variables are the zero-component
variables, the three-phase components are given by Clarke diagonalization
(e.g., L0 = Lph + 2Lm in the example mentioned above), and single-phase networks
(e.g., the fourth wire) connected to the three-phase network are taken into account.

Once the two uncoupled equivalent circuits (i.e., the space-vector and the zero-
component circuits) are defined, the conventional state-space equations can be written and
solved. Therefore, for the space-vector circuit, we can write the dynamic model [21]:

d
dt

x = Ax + Bu (15)

where x is the vector of the space-vector state variables, and u is the vector of the space-
vector inputs. The matrices A and B are given by the conventional matrices of the state-
space approach.

The solution for each state variable (i.e., the generic component of the vector x) can be
written as:

x =
N

∑
k=1

Ckeλkt + Xpejωt + X∗ne−jωt (16)

where, for the sake of simplicity, the case of N distinct eigenvalues {λk}N
k=1 was considered,

and the complex coefficients {Ck}N
k=1 can be determined by setting the initial conditions.

Notice that the steady-state component of the solution Equation (16) has the form of
Equation (8), whereas the transient component decreases to zero for a stable network.

As far as the zero components are considered, the solution of the corresponding
state-space model for the generic state variable can be written in the following form:

x0 =
M

∑
k=1

Dkejµkt +
√

2X0cos(ωt + ψ) (17)

where the eigenvalues {µk}M
k=1 are different from the eigenvalues in Equation (16) since the

zero-component circuit has different topology/parameters.
According to the properties previously derived, the space-vector solution Equation (16)

lies on the αβ plane, whereas the zero-component solution Equation (17) (if present) pro-
vides a component orthogonal to the αβ plane, leading to a non-planar total solution for the
corresponding Cartesian space vector. In general terms, by assuming a transient starting
at t = 0, the total transient solution Equations (16) and (17) describe the trajectory of
the corresponding Cartesian space vector

→
x abc from the steady-state plane g1g2 for t < 0

towards a new steady-state plane g1g2 for t→ ∞ , where the steady-state plane g1g2 can
be the αβ plane in the special case of the null zero component.

2.3. The Park Transformation

Let us consider an orthogonal reference frame dq (i.e., direct and quadrature axes)
rotating at angular speed ω on the αβ plane. The components of the Cartesian space vector
on the rotating axes dq can be readily obtained by rotating the αβ components by the angle
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ϑ = ωt. Thus, the Park transformation can be seen as a composite transformation, where
the Clarke transformation is followed by axes rotation [18]:vd

vq
v0

 = H(ϑ)T0

va
vb
vc

 =

 cosϑ sinϑ 0
−sinϑ cosϑ 0

0 0 1

√2
3

 1 −1/2 −1/2
0

√
3/2 −

√
3/2

1/
√

2 1/
√

2 1/
√

2

va
vb
vc

 = T

va
vb
vc

 (18)

Notice that, in Equation (18), the zero component v0 remains unchanged. Moreover,
for ϑ = 0, the dq components equal the αβ components.

The space vector defined on the rotating frame dq is given by:

vdq = vd + jvq (19)

According to Equation (18), the relationship between the space-vector Equation (6),
defined on the fixed axes αβ, and the space-vector Equation (19), defined on the rotating
axes dq, can be written:

vdq = ve−jϑ = ve−jωt (20)

Using Equation (20) in Equation (16) (i.e., multiplying Equation (16) by e−jωt) allows
us to highlight the following important properties of transient space-vector solutions when
the Park transformation is used:

1. The positive-sequence component Xpejωt of the steady-state solution becomes the
constant phasor Xp. Thus, the dq components vd and vq are constant values.

2. The negative-sequence component X∗ne−jωt of the steady-state solution becomes the
space vector X∗ne−j2ωt rotating at double negative speed. Corresponding dq compo-
nents are second-harmonic sine waves.

3. Transient components Ckejλkt have a negative frequency shift equal to ω. In particular:

a. For real eigenvalues λk = −αk: each term Ckejλkt becomes Cke−αkte−jωt, thus
we obtain a damped space vector rotating at negative speed ω, and the corre-
sponding dq components are damped sine waves at ω.

b. For a couple of complex conjugate eigenvalues −αk ± jβk: we obtain the
terms Cke−αktej(βk−ω)t and Ck+1e−αkte−j(βk+ω)t, corresponding to damped space
vectors rotating at the shifted angular speeds βk−ω and−(βk + ω). The related
dq components contain damped sine waves with shifted angular frequencies
βk −ω and βk + ω.

3. Test Cases and Discussion

The theoretical properties and results derived in Section 2 are validated and high-
lighted in this section by resorting to three significant case studies. The first case study
consists in a three-phase network leading to a first-order circuit in the space-vector domain,
whereas the second case study leads to a second-order circuit in the space-vector domain.
In both the cases, the fourth wire is also involved in the transients. The third case study
is a three-bus power system. The proposed networks are solved analytically by resorting
to the general approach based on the Clarke transformation and the space vectors. The
analytical results, however, have been properly checked through numerical simulations
with Matlab/Simulink.

3.1. First Case Study: First-Order Circuit in the Space-Vector Domain

Figure 4a shows a three-phase network including a three-phase mutual inductor and
resistive elements. The three-phase resistor R3 and the grounding resistor R02 are both
inserted at t = 0 by closing the corresponding switches. The equivalent circuits in the space-
vector domain and in the zero-component domain are shown in Figure 4b,c, respectively. In
particular, notice that, for the space vectors, the inductance L = Lph − Lm, whereas for the
zero components, L0 = Lph + 2Lm. Moreover, it is well-known that the single-phase ground
network R01, R02 has no effect on the space-vector equivalent circuit since each three-phase
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wye connection is equivalent to a short circuit for space vectors. On the contrary, in the
zero-component equivalent circuit, the single-phase ground network holds its topology,
but resistive parameters must be multiplied by the factor 3 (i.e., 3R01, 3R02).
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The space-vector equivalent circuit in Figure 4b is a first order circuit whose analytical
solution for the inductor current i (t) can be written in the usual form:

i(t) =
[
i(0)− is(0)

]
e−t/τ + is(t) (21)

where i(0) is the initial condition, τ = L/(R2 + R1//R3), and is(t) is the steady-state
solution given by:

is(t) =
ep(t)
Zeq
· R3

R3 + R2 + ZL
+

en(t)
Z∗eq
· R3

R3 + R2 + Z∗L
(22)

where ZL = jωL, Zeq = R1 + R3//(R2 + ZL), and:

e(t) = Epejωt + E∗ne−jωt = ep(t) + en(t) (23)
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The initial condition i(0) in Equation (21) can be readily calculated by evaluating the
steady-state solution at t = 0 before the operation of the switch (i.e., by considering the
switch as an open circuit):

i(0) =
Ep

R1 + R2 + ZL
+

E∗n
R1 + R2 + Z∗L

(24)

The zero-component equivalent circuit in Figure 4c is a conventional first-order circuit
whose analytical solution can be written as:

i0(t) = [i0(0)− i0s(0)]e−t/τ0 + i0s(t) (25)

where i0(0) is the initial condition (i0(0) = 0 in this specific case),
τ0 = L0/[(R2 + 3R02) + R3//(R1 + 3R01)], and i0s(t) is the steady-state solution corre-
sponding to the phasor solution:

I0 =
E0

Zeq0
· R3

R3 + R2 + ZL0 + 3R02
(26)

where ZL0 = jωL0, and Zeq0 = R1 + 3R01 + R3//(R2 + ZL0 + 3R02).
Once the space vector i(t) and the zero component i0(t) are calculated, the phase

variables abc can be recovered through Equation (7) when written in terms of currents.

Therefore, the Cartesian space vector
→
i abc, the α and β components of the space vector i(t),

and the Park space vector idq(t) with the corresponding d and q components can be readily
calculated from the relevant relationships reported in Section 2.

A total of two different source conditions were considered for the three-phase network
in Figure 4. First, a three-phase voltage source with a negative-sequence component En = 0.
Second, a three-phase voltage source with En 6= 0. In both cases, the zero component
E0 of the three-phase voltage source was different from zero. This choice was made to
put into evidence the effects of source unbalancing and the source zero component. The
circuit parameters were selected as follows: f = 50 Hz, Ep = 100 V, En = 0 (first case),
En = 30ejπ/6 V (second case), E0 = 50ejπ/4 V, R1 = R2 = R3 = 1 Ω, R01 = R02 = 0.1 Ω,
Lph = 50 mH, Lm = 0. Notice that the numerical values of the circuit parameters were not
related to a specific application, but they were selected with the only objective of putting
clearly into evidence the properties of the circuit under analysis.

3.1.1. Three-Phase Voltage Source with En = 0

Figure 5 shows the trajectory of the Cartesian space vector
→
i abc. The black line

corresponds to the previous steady state (i.e., the steady-state condition for t < 0). At
t = 0, the curve (in red color) leaves the black trajectory and shows a transient trajectory
towards the new steady state. Notice that, for t < 0, the trajectory lies on the αβ plane
because the zero component i0 = 0 (in fact, all the switches were open for t < 0). On the
contrary, since the new steady-state condition has i0 6= 0 (due to the connection of R02), the
corresponding steady-state trajectory lies on the g1g2 plane defined by Equation (14) when

written for
→
i abc.

Figure 6a shows the trajectory of the space vector i(t) on the αβ plane. The steady-state
trajectory at the end of the transient is circular since, in this case, the negative-sequence
component of the current is zero (as a consequence of the assumption En = 0). The
corresponding time-domain behavior of the real and the imaginary parts of the space vector
i(t), i.e., the components iα(t) and iβ(t), is shown in Figure 6b.
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Figure 5. Trajectory of the Cartesian space vector
→
i abc in the case En = 0. The black line shows the

steady-state trajectory for t < 0, whereas the red line shows the transient behavior, starting at t = 0,
converging towards the new steady state. The black steady-state curve lies on the αβ plane because
i0 = 0 for t < 0, whereas the new steady-state trajectory lies on the new plane g1g2.
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Figure 6. Trajectory of the space vector i(t) on the αβ plane (a) and time-domain behavior of the
corresponding α and β components (b) in the case En = 0. In this case, the space-vector trajectory of
the new steady state is circular.

Figure 7 shows the behavior of the zero-component current i0(t), which is responsible

for driving the Cartesian space vector
→
i abc in Figure 5 from the αβ plane to the g1g2 plane.
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Figure 7. Transient behavior of the zero-component current i0(t) responsible for driving the Cartesian

space vector
→
i abc in Figure 5 from the αβ plane to the g1g2 plane.
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Figure 8a shows the trajectory of the Park space vector idq(t) on the dq plane. The
trajectory converges towards the positive-sequence phasor (blue line) corresponding to
the new steady-state solution. Figure 8b shows the corresponding time-domain behavior
of the d and q components of the Park space vector idq(t), i.e., the currents id(t) and iq(t),
converging towards the real part and the imaginary part of the positive-sequence phasor in
Figure 8a (blue line).
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Figure 8. Trajectory of the Park space vector idq(t) on the dq plane (a) and time-domain behavior of
the corresponding d and q components (b) in the case En = 0. The straight blue line in (a) shows the
steady-state phasor at the end of the transient, i.e., the positive-sequence phasor.

3.1.2. Three-Phase Voltage Source with En 6= 0

Figure 9 shows the trajectory of the Cartesian space vector
→
i abc. Also in this case,

as in Figure 5, for t < 0, the trajectory lies on the αβ plane because the zero component
i0 = 0, and since the new steady-state condition has i0 6= 0, the corresponding steady-state

trajectory lies on the g1g2 plane defined by Equation (14) when written for
→
i abc.
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Figure 9. Trajectory of the Cartesian space vector
→
i abc in the case En 6= 0. The black line shows the

steady-state trajectory for t < 0, whereas the red line shows the transient behavior, starting at t = 0,
converging towards the new steady state. The black steady-state curve lies on the αβ plane because
i0 = 0 for t < 0, whereas the new steady-state trajectory lies on the new plane g1g2.

Figure 10a shows the trajectory of the space vector i(t) on the αβ plane. In this case,
the steady-state trajectory at the end of the transient is elliptical since the negative-sequence
component of the current is different from zero (as a consequence of the assumption En 6= 0).
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The corresponding time-domain behavior of the real and the imaginary parts of the space
vector i(t), i.e., the components iα(t) and iβ(t), is shown in Figure 10b.
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Figure 10. Trajectory of the space vector i(t) on the αβ plane (a) and time-domain behavior of the
corresponding α and β components (b) in the case En 6= 0. In this case, the space-vector trajectory of
the new steady state is elliptical.

Notice that the zero-component current i0(t) is not affected by the negative-sequence
component in the voltage source; therefore, its time-domain behavior is still the behavior
represented in Figure 7.

Figure 11a shows the trajectory of the Park space vector idq(t) on the dq plane. The
straight blue line shows the positive-sequence phasor. In this case, however, the new
steady-state trajectory is a circular trajectory (centered on the positive-sequence phasor)
corresponding to the negative-sequence phasor rotating at double (negative) angular
frequency 2ω. This is apparent in Figure 11b where, according to the theory presented in
Section 2, both a transient and a steady-state component 2ω can be distinguished.
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Figure 11. Trajectory of the Park space vector idq(t) on the dq plane (a) and time-domain behavior of
the corresponding d and q components (b) in the case En 6= 0. The straight blue line in (a) shows the
positive-sequence phasor of the steady-state solution. In this case, the new steady-state trajectory is a
circular trajectory (centered on the positive-sequence phasor) corresponding to the negative-sequence
phasor rotating at double (negative) angular frequency 2ω. This is apparent in (b) where, according
to the theory, both a transient and a steady-state component at 2ω can be distinguished.

3.2. Second Case Study: Second-Order Circuit in the Space-Vector Domain

Figure 12a shows a three-phase network including a three-phase mutual inductor, a
three-phase capacitor, and resistive elements. The three-phase capacitor C and the ground
resistor R0 are inserted at t = 0 by closing the switch. The equivalent circuits in the space-
vector domain and in the zero-component domain are shown in Figure 12b,c, respectively.
In particular, notice that, for the space vectors, the inductance L = Lph − Lm, whereas for
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the zero components, L0 = Lph + 2Lm. Moreover, the single-phase ground network R0
has no effect on the space-vector equivalent circuit since each three-phase wye connection
is equivalent to a short circuit for space vectors. On the contrary, in the zero-component
equivalent circuit, the ground resistance R0 must be multiplied by the factor 3, whereas the
wye connection of the mutual inductor corresponds to an open circuit.
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The space-vector equivalent circuit in Figure 12b is a second-order circuit whose
conventional state-space representation, according to Equation (15), is given by [21]:

d
dt

[
i
v

]
= A

[
i
v

]
+ Be =

[
−R2/L 1/L
−1/C −1/(R1C)

][
i
v

]
+

[
0

1/(R1C)

]
e (27)

The analytical solution for the inductor current i(t) and the capacitor voltage v(t) can
be written in the usual form:

i(t) = C1,1e−λ1t + C1,2e−λ2t + is(t) (28)

v(t) = C2,1e−λ1t + C2,2e−λ2t + vs(t) (29)
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where {λ1, λ2} are the eigenvalues of the state matrix A (here, distinct eigenvalues are
assumed), is(t) and vs(t) are the steady-state solutions, and

{
Ci,k
}
(i = 1, 2 k = 1, 2) are

the constant coefficients depending on the initial state:

C =

[
C1,1 C1,2
C2,1 C2,2

]
=
[
x0 Ax0

][1 λ1
1 λ2

]−1

(30)

where x0 =
[
i(0)− is(0) v(0)− vs(0)

]T .
The steady-state solutions can be readily obtained from Figure 12b:

is(t) =
ep(t)
Zeq
· ZC
ZC + R2 + ZL

+
en(t)
Z∗eq
·

Z∗C
Z∗C + R2 + Z∗L

(31)

vs(t) = ep(t)·
ZLC
Zeq

+ en(t)·
Z∗LC
Z∗eq

(32)

where ZL = jωL, ZC = 1/(jωC), ZLC = ZC//(R2 + ZL), and Zeq = R1 + ZLC.
The initial condition i(0) in (30) can be readily calculated by evaluating the steady-state

solution at t = 0 before the operation of the switch (i.e., by considering the switch as an
open circuit):

i(0) =
Ep

R1 + R2 + ZL
+

E∗n
R1 + R2 + Z∗L

(33)

whereas the initial condition v(0) is a given data. For the sake of simplicity, hereafter, we
assume v(0) = 0.

The zero-component equivalent circuit in Figure 12c is a conventional first-order RC
circuit (in fact i0(t) = 0) whose analytical solution can be written as:

v0(t) = [v0(0)− v0s(0)]e−t/τ0 + v0s(t) (34)

where v0(0) is the initial condition (v0(0) = 0 in this specific case), τ0 = (R1 + 3R0)C, and
v0s(t) is the steady-state solution corresponding to the phasor solution:

V0 = E0·
ZC

R1 + 3R0 + ZC
(35)

Once the space vectors i(t), v(t) and the zero components i0(t), v0(t) were calculated,
the phase variables abc can be recovered through Equation (7) when written in terms of

currents and voltages. Therefore, the Cartesian space vectors
→
i abc,

→
v abc, the α and β space-

vector components, and the Park space vectors idq(t), vdq(t) with the corresponding d and q
components can be readily calculated from the relevant relationships reported in Section 2.

Similar to Section 3.1, two different source conditions were considered for the three-
phase network in Figure 12. First, a three-phase voltage source with a negative-sequence
component En = 0. Second, a three-phase voltage source with En 6= 0. In both cases,
the zero component E0 of the three-phase voltage source was different from zero. This
choice was made to put into evidence the effects of source unbalancing and the source
zero component.

The circuit parameters were selected as follows: f = 50 Hz, Ep = 100 V, En = 0
(first case), En = 30ejπ/6 V (second case), E0 = 100ejπ/4 V, R1 = 1 Ω, R2 = R0 = 0.1 Ω,
Lph = 1 mH, Lm = 0, C = 10 mF. Notice that the numerical values of the circuit parameters
were not related to a specific application, but they were selected with the only objective
of putting clearly into evidence the properties of the circuit under analysis. In particular,
the selected parameters lead to complex conjugate eigenvalues λ1,2 = −100± j316. Thus,
since the imaginary part 316 is very close to the source angular frequency ω (where
ω = 2π f ∼= 314 s−1), according to Equation (2), the Park space vectors contain a damped
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component with a frequency close to zero and a damped component with nearly double
frequency 2ω. This point is clarified by the results reported in the following sections.

3.2.1. Three-Phase Voltage Source with En = 0

Figure 13 shows the trajectory of the Cartesian space vector
→
i abc. The black line

corresponds to the previous steady state (i.e., the steady-state condition for t < 0). At
t = 0, the curve (in red color) leaves the black trajectory and shows a transient trajectory
towards the new steady state. Notice that the transient trajectory also lies on the αβ plane
because the zero component i0 = 0 (in fact, the wye connection of the mutual inductor is
not connected to the single-phase network).
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Figure 13. Trajectory of the Cartesian space vector
→
i abc in the case En = 0. The black line shows the

steady-state trajectory for t < 0, whereas the red line shows the transient behavior, starting at t = 0,
converging towards the new steady state. Both the black steady-state trajectory and the transient
trajectory lie on the αβ plane because i0 = 0.

Figure 14a shows the trajectory of the space vector i(t) on the αβ plane. The steady-
state trajectory at the end of the transient is circular since, in this case, the negative-sequence
component of the current is zero (as a consequence of the assumption En = 0). The
corresponding time-domain behavior of the real and the imaginary parts of the space vector
i(t), i.e., the components iα(t) and iβ(t), is shown in Figure 14b.
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Figure 14. Trajectory of the space vector i(t) on the αβ plane (a) and time-domain behavior of the
corresponding α and β components (b) in the case En = 0. In this case, the space-vector trajectory of
the new steady state is circular.
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Figure 15a shows the trajectory of the Park space vector idq(t) on the dq plane. The
trajectory converges towards the positive-sequence phasor (blue line) corresponding to
the new steady-state solution. Figure 15b shows the corresponding time-domain behavior
of the d and q components of the Park space vector idq(t), i.e., the currents id(t) and iq(t),
converging towards the real part and the imaginary part of the positive-sequence phasor
in Figure 15a (blue line). As mentioned before, due to the specific numerical values of the
imaginary part of the eigenvalues, we expect transient components at 2ω. This is apparent
in Figure 15b, where an oscillating behavior with a period T = 10 ms (i.e., half period with
respect to the source frequency f = 50 Hz) is put into evidence.
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Figure 15. Trajectory of the Park space vector idq(t) on the dq plane (a) and time-domain behavior of
the corresponding d and q components (b) in the case En = 0. The straight blue line in (a) shows the
steady-state phasor at the end of the transient, i.e., the positive-sequence phasor.

Figure 16 shows the trajectory of the Cartesian space vector
→
v abc. Since the assumed

initial condition is
→
v abc(0) = 0, the transient trajectory starts at the axes’ origin. Moreover,

due to the zero component in the voltage source, the capacitor voltages have a transient
behavior including the zero component v0(t). This component is responsible for a transient
trajectory converging to a g1g2 plane different from the αβ plane.
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Figure 16. Trajectory of the Cartesian space vector
→
v abc in the case En = 0. The red line shows the

transient behavior, starting at t = 0, converging towards the new steady state on the g1g2 plane.

Figure 17a shows the trajectory of the space vector v(t) on the αβ plane. The steady-
state trajectory at the end of the transient is circular since, in this case, the negative-sequence
component of the voltage is zero (as a consequence of the assumption En = 0). The
corresponding time-domain behavior of the real and the imaginary parts of the space vector
v(t), i.e., the components vα(t) and vβ(t), is shown in Figure 17b.
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Figure 17. Trajectory of the space vector v(t) on the αβ plane (a) and time-domain behavior of the
corresponding α and β components (b) in the case En = 0. In this case, the space-vector trajectory of
the new steady state is circular.

Figure 18 shows the behavior of the zero-component voltage v0(t), which is responsible
for driving the Cartesian space vector

→
v abc in Figure 16 from the axes’ origin to the g1g2

plane instead of the αβ plane.
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Figure 18. Transient behavior of the zero-component voltage v0(t) responsible for driving
the Cartesian space vector

→
v abc in Figure 16 from the axes’ origin to the g1g2 plane instead

of the αβ plane.

Figure 19a shows the trajectory of the Park space vector vdq(t) on the dq plane. The
trajectory converges towards the positive-sequence phasor (blue line) corresponding to the
new steady-state solution. Figure 19b shows the corresponding time-domain behavior of
the d and q components of the Park space vector vdq(t), i.e., the voltages vd(t) and vq(t),
converging towards the real part and the imaginary part of the positive-sequence phasor
in Figure 19a (blue line). Also in this case, due to the specific numerical values of the
imaginary part of the eigenvalues, we expect transient components at 2ω. This is apparent
in Figure 19b, where an oscillating behavior with a period T = 10 ms (i.e., half period with
respect to the source frequency f = 50 Hz) is put into evidence.



Energies 2022, 15, 9122 19 of 26

Energies 2022, 15, x FOR PEER REVIEW 18 of 26 
 

 

  
(a) (b) 

Figure 17. Trajectory of the space vector 𝑣̅𝑣(𝑡𝑡) on the 𝛼𝛼𝛼𝛼 plane (a) and time-domain behavior of the 
corresponding 𝛼𝛼 and 𝛽𝛽 components (b) in the case 𝐸𝐸𝑛𝑛 = 0. In this case, the space-vector trajectory 
of the new steady state is circular. 

 
Figure 18. Transient behavior of the zero-component voltage 𝑣𝑣0(𝑡𝑡) responsible for driving the Car-
tesian space vector 𝑣⃗𝑣𝑎𝑎𝑎𝑎𝑎𝑎  in Figure 16 from the axes’ origin to the 𝑔𝑔1𝑔𝑔2  plane instead of the 𝛼𝛼𝛼𝛼 
plane. 

  
(a) (b) 

Figure 19. Trajectory of the Park space vector 𝑣̅𝑣𝑑𝑑𝑑𝑑(𝑡𝑡) on the 𝑑𝑑𝑑𝑑 plane (a) and time-domain behavior 
of the corresponding 𝑑𝑑 and 𝑞𝑞 components (b) in the case 𝐸𝐸𝑛𝑛 = 0. The straight blue line in (a) 
shows the steady-state phasor at the end of the transient, i.e., the positive-sequence phasor. 

3.2.2. Three-Phase Voltage Source with 𝐸𝐸𝑛𝑛 ≠ 0 
Figure 20 shows the trajectory of the Cartesian space vector 𝚤𝚤𝑎𝑎𝑎𝑎𝑎𝑎. The black line cor-

responds to the previous steady state (i.e., the steady-state condition for 𝑡𝑡 < 0). At 𝑡𝑡 = 0, 
the curve (in red color) leaves the black trajectory and shows a transient trajectory towards 
the new steady state. Notice that the transient trajectory also lies on the 𝛼𝛼𝛼𝛼 plane because 

-60 -40 -20 0 20 40 60

v
alpha

   [V]

-60

-40

-20

0

20

40

60

v
be

ta
   

[V
]

Space vector of capacitor voltages

t = 0

0 0.02 0.04 0.06 0.08 0.1

Time   [s]

-60

-40

-20

0

20

40

60

Vo
lta

ge
   

[V
]

v
alpha

v
beta

0 0.02 0.04 0.06 0.08 0.1

Time   [s]

-60

-40

-20

0

20

40

Vo
lta

ge
   

[V
]

Zero component of capacitor voltages

0 20 40 60

v
d

   [V]

-30

-20

-10

0

10

20

30

v
q

   
[V

]

Park space vector of capacitor voltages

0 0.01 0.02 0.03 0.04

Time   [s]

-10

0

10

20

30

40

50

60

Vo
lta

ge
   

[V
]

dq components of the capacitor voltages

v
d

v
q

T = 10 ms

Figure 19. Trajectory of the Park space vector vdq(t) on the dq plane (a) and time-domain behavior of
the corresponding d and q components (b) in the case En = 0. The straight blue line in (a) shows the
steady-state phasor at the end of the transient, i.e., the positive-sequence phasor.

3.2.2. Three-Phase Voltage Source with En 6= 0

Figure 20 shows the trajectory of the Cartesian space vector
→
i abc. The black line

corresponds to the previous steady state (i.e., the steady-state condition for t < 0). At
t = 0, the curve (in red color) leaves the black trajectory and shows a transient trajectory
towards the new steady state. Notice that the transient trajectory also lies on the αβ plane
because the zero component i0 = 0 (in fact, the wye connection of the mutual inductor is
not connected to the single-phase network).
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Figure 20. Trajectory of the Cartesian space vector
→
i abc in the case En 6= 0. The black line shows the

steady-state trajectory for t < 0, whereas the red line shows the transient behavior, starting at t = 0,
converging towards the new steady state. Both the black steady-state trajectory and the transient
trajectory lie on the αβ plane because i0 = 0.

Figure 21a shows the trajectory of the space vector i(t) on the αβ plane. The steady-
state trajectory at the end of the transient is elliptical since, in this case, the negative-
sequence component of the current is not zero (as a consequence of the assumption En 6= 0).
The corresponding time-domain behavior of the real and the imaginary parts of the space
vector i(t), i.e., the components iα(t) and iβ(t), is shown in Figure 21b.
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Figure 21. Trajectory of the space vector i(t) on the αβ plane (a) and time-domain behavior of the
corresponding α and β components (b) in the case En 6= 0. In this case, the space-vector trajectory of
the new steady state is elliptical.

Figure 22a shows the trajectory of the Park space vector idq(t) on the dq plane. The
trajectory converges towards a circle centered on the positive-sequence phasor (blue line).
The circular steady-state trajectory is due to the negative-sequence component of the solu-
tion. Figure 22b shows the corresponding time-domain behavior of the d and q components
of the Park space vector idq(t), i.e., the currents id(t) and iq(t), converging towards the
real part and the imaginary part of the positive-sequence phasor in Figure 22a (blue line),
with a superimposed double-frequency solution due to the negative-sequence component.
As mentioned before, due to the specific numerical values of the imaginary part of the
eigenvalues, we expect transient components at 2ω. This is apparent in Figure 22b, where
such a transient oscillating component with a period T = 10 ms (i.e., half period with
respect to the source frequency f = 50 Hz) is superimposed on the double-frequency
steady-state solution due to the negative-sequence component.
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Figure 22. Trajectory of the Park space vector idq(t) on the dq plane (a) and time-domain behavior of
the corresponding d and q components (b) in the case En 6= 0. The straight blue line in (a) shows the
positive-sequence phasor where the steady-state circular trajectory is centered.

Figure 23 shows the trajectory of the Cartesian space vector
→
v abc. Since the assumed

initial condition is
→
v abc(0) = 0, the transient trajectory starts at the axes’ origin. Moreover,

due to the zero component in the voltage source, the capacitor voltages have a transient
behavior including the zero component v0(t). This component is responsible for a transient
trajectory converging to a g1g2 plane different from the αβ plane.
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3.3. Third Case Study: Three-Bus Power System 
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Figure 23. Trajectory of the Cartesian space vector
→
v abc in the case En 6= 0. The red line shows the

transient behavior, starting at t = 0, converging towards the new steady state on the g1g2 plane.

Figure 24a shows the trajectory of the space vector v(t) on the αβ plane. The steady-
state trajectory at the end of the transient is elliptical since, in this case, the negative-
sequence component of the voltage is not zero (as a consequence of the assumption En 6= 0).
The corresponding time-domain behavior of the real and the imaginary parts of the space
vector v(t), i.e., the components vα(t) and vβ(t), is shown in Figure 24b.
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Figure 24. Trajectory of the space vector v(t) on the αβ plane (a) and time-domain behavior of the
corresponding α and β components (b) in the case En 6= 0. In this case, the space-vector trajectory of
the new steady state is elliptical.

The zero-component voltage v0(t), which is responsible for driving the Cartesian
space vector

→
v abc in Figure 23 from the axes’ origin to the g1g2 plane instead of the αβ

plane, is not affected by the negative-sequence component in the voltage source. Therefore,
its time behavior is the same as in Figure 18.

Figure 25a shows the trajectory of the Park space vector vdq(t) on the dq plane. The
trajectory converges towards a circular trajectory, due to the negative-sequence component,
centered on the positive-sequence phasor (blue line). Figure 25b shows the corresponding
time-domain behavior of the d and q components of the Park space vector vdq(t), i.e., the
voltages vd(t) and vq(t), converging towards the real part and the imaginary part of the
positive-sequence phasor in Figure 25a (blue line), with a superimposed double-frequency
steady-state solution due to the negative-sequence component. Also in this case, due to
the specific numerical values of the imaginary part of the eigenvalues, we expect transient
components at 2ω. This is apparent in Figure 25b, where both the transient oscillating
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behavior and the steady-state oscillating behavior with a period T = 10 ms (i.e., half period
with respect to the source frequency f = 50 Hz) can be identified.
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Figure 25. Trajectory of the Park space vector vdq(t) on the dq plane (a) and time-domain behavior of
the corresponding d and q components (b) in the case En 6= 0. The straight blue line in (a) shows the
positive-sequence phasor where the steady-state circular trajectory is centered.

3.3. Third Case Study: Three-Bus Power System

Figure 26 shows a three-bus medium-voltage (MV) 60 Hz power system [23]. The
analytical methods outlined in Section 2 can be used to study the transient behavior
of the power system once it is energized by the generator at t = 0. Also in this case,
the analytical results have been checked against numerical results obtained by means of
Matlab/Simulink simulations.
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Generator and loads data are reported in Figure 26. The positive-sequence and the zero-
sequence impedances of the lines are Z = 0.1901 + j0.3937 Ω/km and
Z0 = 0.368 + j1.84 Ω/km, respectively. Notice that, in order to use the analytical re-
sults derived in Section 2, the loads must be converted into equivalent impedances. This
can be easily done by recalling that the complex power SL and the impedance ZL of a given
load are related by ZL = |V|2/S∗L, where |V| is the reference phase-to-phase voltage (i.e.,
|V| = 12.47 kV in this case), and the asterisk denotes a complex conjugate. Figure 27 shows
the topology of the space-vector equivalent circuit. Notice that the same topology holds for
the zero components in case the ground is involved in the current path.
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Figure 26.

The space-vector equivalent circuit corresponding to Figure 27 can be solved by
resorting to the conventional state-space approach, leading to the dynamical model in
Equation (15). Notice that the effective dynamical order of the circuit in Figure 27 is four
(instead of seven) because the seven inductive currents have three independent constraints
given by the Kirchhoff Laws at the three buses. By assuming that the network is energized
by the generator at t = 0, and by setting the generator with a 5% negative-sequence
voltage component, the trajectory of the Cartesian space vector of the generator currents
is represented in Figure 28. Notice that, since the generator currents have a null zero
component, the Cartesian space vector lies on the αβ plane. The space vector ig(t) of
the generator currents is represented in Figure 29a, whereas the corresponding α and β
components are represented in Figure 29b as functions of time. Notice that the steady-state
trajectory in Figure 29a is elliptical because of the 5% negative-sequence component in the
generator voltage. Figure 30a shows the trajectory of the Park space vector of the generator
currents, whereas Figure 30b shows the time-domain behavior of the corresponding dq
components. Notice that, in Figure 30a, the negative-sequence component in the steady-
state currents results in the small circle around the phasor (blue line) corresponding to
the positive-sequence component solution. The negative-sequence component can also
be observed in Figure 30b, where oscillations at frequency 2 f = 120 Hz can be detected.
Notice that, in this case, the oscillations have only the component at frequency 2 f , whereas
the phenomenon of frequency shifting cannot be observed because the eigenvalues of
the network in Figure 27 are real eigenvalues (complex conjugate eigenvalues would be
possible only for an RLC network).

Finally, the effect of the zero-component current can be investigated by considering
the ground connections of the load and of the secondary of the transformer (normally
wye-connected to avoid the circulation of zero-component currents). In this case, the zero-
component current has a transient behavior (see Figure 31), leading to a Cartesian space
vector lying on the g1g2 plane (see Figure 32) instead of the αβ plane, as in Figure 28.
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Figure 29. Space vector of the generator currents on the αβ plane (a) and time-domain behavior of
the corresponding α and β components (b).
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Figure 30. Park space vector of the generator currents on the dq plane (a) and time-domain behavior
of the corresponding d and q components (b). The circle in (a) corresponds to the negative-sequence
component in the steady-state solution.
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Figure 31. Time-domain behavior of the zero-component current.
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Figure 32. Trajectory of the Cartesian space vector of the generator currents. The trajectory lies on the
g1g2 plane instead of the αβ plane because of the zero component of the generator currents.

4. Conclusions

The analytical tools used in the paper allow a comprehensive investigation of the
properties of three-phase transients with unbalanced sources and involving the fourth wire.
In particular, a complete geometrical representation is given by the Cartesian space vector
of a three-phase variable, whereas the space vectors based on the Clarke transformation
allow us to study the original three-phase transient as a superposition of two independent
transients. The dq0 representation provided by the Park transformation was also discussed,
and the effects of the frequency shift with respect to the Clarke transformation were shown
through specific case studies.

The methodology and the properties derived and discussed in the paper provide a gen-
eral theoretical framework for three-phase transient analysis. Thus, the paper is intended
to provide a theoretical contribution, whereas the selection of numerical methods for the
effective solution of time-domain equations is the topic of the cited relevant literature.
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