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Abstract: As the world’s largest carbon emitter, China is facing great pressure to reduce emissions.
With the country’s proposed timeline for carbon peaking and carbon neutralization, a new goal has
been established for China’s low-carbon development. Based on the improved equal proportion
allocation method, this paper allocates the overall carbon emission control goal for 2025 among
30 provinces and cities, based on 2015 figures, and measures and studies the country’s carbon emission
allocation efficiency on this basis. The results show that Beijing, Tianjin, Hebei, Shandong, Zhejiang,
Shanghai, Jiangsu, Guangdong and Inner Mongolia need to increase their emission reduction capacity,
while Jiangxi, Guizhou, Gansu, Qinghai, Hainan and Guangxi have relatively low emission reduction
targets. Based on this allocation scheme, more provinces can reduce carbon emissions by increasing
their efficiency with up-to-date technology, and a new vision for national allocation that is more
easily accepted by all provinces and regions can be developed. Based on the research results of this
paper, each province and region can choose its own low-carbon economic development path within
the constraints of China’s carbon intensity emission reduction targets, without compromising its own
economic development characteristics.

Keywords: carbon emissions; DEA; equal proportion distribution method; carbon peak

1. Introduction

With the beginning of a new stage of global climate governance, reducing carbon diox-
ide emissions has become a common goal of global national development. As the country
producing the most carbon dioxide emissions in the world, to realize the development
of a green, low-carbon economy, China made commitments at the Copenhagen climate
conference and the Paris climate conference to reduce the intensity of emissions and to
designate a year for peak emissions. To successfully implement the country’s goals to reach
a carbon peak in 2030 and carbon neutralization in 2060, all the provinces of China should
work together. Over the past decade, China has actively promoted energy conservation,
emission reduction and climate change initiatives, and it has established a relatively com-
plete low-carbon developmental model and policy system, accumulating rich experience in
relation to carbon peaking and carbon neutralization. Presently, China’s carbon intensity
shows a downwards trend. However, there are still great differences between cities in
responsibility, capacity, efficiency and demand related to carbon emission objectives. The
period of the 14th Five-Year Plan is when China aims to reach a carbon peak and realize
carbon neutralization. All the provinces and cities of China should formulate active and
effective distribution plans through scientific research to help China reach its carbon peak
on time.

The Five-Year Plan is China’s special guidance for the direction of national develop-
ment; 2015 is the end of the 12th Five-Year Plan, and the National Climate Change Program
(2014-2020) of China includes 2015. The 13th Five-Year Plan still highlights the importance
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of carbon emissions. Meanwhile, the overall carbon emission intensity target for the 14th
Five-Year Plan is still 18%, and the results for the allocation of total CO, control targets in
2025 will be discussed in this paper. In context, however, 2014 was a turning point, when a
series of air pollution mitigation actions were launched [1,2]. Therefore, this paper used
2015 data to successfully lay out a plan to reach the national carbon emission reduction
target. We propose a carbon emission allocation scheme based on the improved equal
proportion method, which provides a reference for China in relation to achieving its carbon
emission reduction target in 2025.

2. Literature Review

As the world’s largest carbon emitter, China is facing substantial pressure to reduce
its emissions [3]. Shao et al. [4] constructed a provincial decomposition scheme of China’s
carbon emission quota using the zero-sum gains data envelopment analysis (ZSG-DEA)
model, which shows that China’s current available space for carbon emissions already
presents a deficit. Thus, differentiated emission reduction policies have been implemented
for different provinces to ensure that China can successfully achieve its carbon emission
reduction target by 2030. Most previous studies on carbon emission reduction are based
on national quotas [5-7]. However, in recent years, scholars have begun to study carbon
emissions from the perspective of regional and industrial factors. Some scholars have
suggested that in future research, we can consider methods other than DEA [8]. Against
this background, through a literature review, we find that three other methods are used to
examine carbon emission quotas: the index method, the DEA method and other models.

The index method employs rational quota allocation by assigning index weights under
different principles and combining allocation principles. When constructing a regional
carbon dioxide emission model, Wang [9] selected five indicators, namely per capita GDP,
industrial energy efficiency, the no fossil energy utilization ratio and per capita emissions,
for research. Some scholars have established a comprehensive index system based on the
principles of fairness, efficiency and feasibility to allocate carbon emissions according to
regional differences [10]. However, this method ignores the differences among provinces
and regions, which may lead to deviations in the distributions of results; moreover, certain
difficulties arise in implementing such distribution schemes nationwide [11].

Data envelopment analysis (DEA) is used for decision making, and it is a mathematical
programming approach used to evaluate the relative efficiency of emission reduction [12].
The DEA method has been the most widely used for analysis in recent years. It is an effective
method for evaluating the efficiency of CO, emissions [13] because it focuses on efficiency
factors. It can be used to evaluate carbon emission performance and analyse the potential
for emission reduction. Feng [8], using the DEA common weight method, calculated carbon
emission quotas for all the provinces of China, providing a new perspective on the national
allocation of carbon quotas that can be accepted by all provinces and regions. Liu and
Wang [14] introduced the DEA method, analysed the applicability of distribution methods
from the perspective of fairness and efficiency and tested the impact of different distribution
methods on the market. Based on the results of an efficiency evaluation, Zhu Weiwei used
the DEA method to allocate carbon emission reductions and ultimately provided a new
perspective on fair and effective carbon emission reduction allocation [15]. In addition,
other scholars [16] have used the DEA method to optimize China’s initial carbon emissions
allocation scheme. Based on empirical results, Liu and Wang [14] suggested that DEA can
be used to improve the fairness of the initial carbon emission rights allocation.

In addition to the index method and the DEA method, the directional distance function
(DDF) model was used to point out that the emission reduction target should be divided
into different stages, such that it could be achieved in steps [17]. Feng [8] constructed a
regional allocation scheme for carbon emission allocation by improving the technique for
order of preference by similarity to an ideal solution (TOPSIS). Cui et al. [18] calculated the
radiation effect of carbon emissions across different regions based on the Shapley algorithm.
The CGE model, ELC model, Gini coefficient optimization model and other methods have
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been applied in relevant research [18]. Francis also used a DEA model to analyse energy
efficiency in West African countries. The results show that gross national income and
urbanization negatively influence West Africa’s energy efficiency [19].

The above literature provides a good overview and reference for the study of carbon
emission reduction allocation. The allocation method mainly distributes pollutant quotas
from the perspectives of fairness, efficiency, economy or environmental quality, which is
reasonable [10,20,21]. The recent research on carbon emission quota allocation has mainly
focused on efficiency, fairness and responsibility [19].

There are few studies on the allocation of carbon emission quotas from the perspective
of the two constraints of total carbon emissions and intensity; such studies are helpful in
achieving the goal of carbon emission reduction [22,23]. In view of this, this study constructs
a target allocation index system for total carbon dioxide control based on differences in
economic development levels, carbon dioxide emissions and main functional areas across
regions and uses the improved equal proportion allocation method to study the governance
of provinces, autonomous regions and municipalities directly under the central government.
On this basis, the DEA model is used to analyse the distribution results to provide a basis
for the distribution of China’s overall carbon dioxide throughout various regions.

3. Research Methods
3.1. Carbon Emission Measurement

To date, no official authority has published standards for measuring CO, emissions.
Therefore, according to Lu [24], the IPCC National Greenhouse Gas Inventory Guide can
provide scientific data; the IPCC is regarded as an authority in the international context,
and it can provide a scientific basis for government and policy makers.

According to Xiang, Yang, Xie et al. (2022), there are 18 kinds of energy sources for
production and living, considering the actual energy use in different regions, but different
studies can limit the selection of energy sources based on different situations [25]. Referring
to the method used by the Intergovernmental Panel on Climate Change (IPCC, 2006) [26]
and combining it with the data from the China Energy Statistical Yearbook, Yan, Wang and
Dong (2022) used eight major energy sources to calculate carbon emissions, according to
the specific research context [27]. For this paper, the data for calculating carbon emissions
are from the China Statistical Yearbook 2015 and include 9 energy sources that are all fossil
fuels: raw coal, coke, crude oil, gasoline, kerosene, diesel, fuel oil, natural gas and liquefied
petroleum gas. The calculation formula for carbon emissions is as follows:

9
Gt = Zj:l E]t X (5] X 1’]] (1)

1 9
Gé = Zj:l E]t X 5] X 17] (2)

where G; and G represent the carbon emissions of the whole country during year  and the
carbon emissions of a particular province during year f, respectively. The unit is millions
of tonnes. Ej; and E! represent the country’s conversion coefficient for energy j during
year t calculated in standard coal and the province’s conversion coefficient for standard
coal corresponding to energy j in year f, respectively. The unit is millions of tonnes. §;
is the standard coal conversion coefficient of energy j. 7; stands for the carbon emission
coefficient of energy ;.

The standard coal coefficient and coefficient of carbon emissions of each of the 9 energy
sources are shown in Table 1.
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Table 1. Standard coal coefficient and coefficient of carbon emissions of the energy sources.

Types of Energy Standard Coal Coefficient Coefficient of Carbon Emissions
Raw coal 0.714 0.756
Coke 0.971 0.855
Crude oil 1.429 0.586
Gasoline 1.472 0.554
Kerosene 1.472 0.571
Diesel 1.457 0.5921
Fuel oil 1.429 0.619
Natural gas 1.330 0.448
Liquefied petroleum gas 1.741 0.504

For the standard coal coefficient, the unit used for natural gas and liquefied petroleum gas is kg standard
coal/cubic metres, and the units used for the other seven energy sources are millions of tonnes of standard
coal/millions of tonnes. For the coefficient of carbon emissions, the unit of the nine energy sources is millions of
tonnes of carbon/millions of tonnes of standard coal.

3.2. Improved Equal Proportion Allocation Method

The improved equal proportion allocation method aims to adjust the reduction pro-
portions appropriately according to the different provinces. It also reflects the differences
among the provinces and ensures fairness. Suppose Q; is the base carbon emissions of
region i, and C refers to the total target reduction rate in relation to the base period region;
then, the target reduction rate of region i is:

X; =X X« 3)

Formula (3) will be used for the target reduction rate of the region later.
The amount of carbon cuts in each region is eventually denoted as AQ;:

m T .
M(w < Q) = Cril Qi y Lj=17ij X W)
1 1) —
X Q n <W % Qi) %Z?:l 271:1 rij X wj

i=1 n m .. .
i=1 Zj:] Tij X Wj

AQ; = X Q; 4

In Formula (4), x; represents the target reduction rate of region i; X represents the
CYriii Qi
=1 (@i X Qj)

ij represents the normalized value

average target reduction rate of all # regions, and x = ; &; represents the relative

Z]m:] Ti/' X w] .y
5 Xl Oy i<
of the j index in region i; and w; represents the weight of index j.

reduction factor of region i, and a; =

3.3. DEA Model

At present, the DEA models that are widely used include C?R and BC?. Among
them, the C2R model is a DEA model with constant returns to scale based on the efficiency
index (output-input ratio) of the focal decision-making unit and the efficiency index of
all decision-making units (including target decision-making units); however, the BC?
model adds the constraint condition Z}g’zl Ax = 1. Following the literature on carbon
emission allocation [19], this paper constructs a BC?> model based on traditional DEA to
calculate the corresponding technical efficiency of carbon emission allocation, which is
more stable because constraint conditions can take into account more situations and ensure
data integrity.

If there are a total of 1 decision-making units in a production system, every decision-
making unit DMU;(i = 1,2, ...n) has m types of input and s types of output. Moreover, X;
is the input, and Y; is the output. The BC? model can be shown as:
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In Formula (5), X; = (x1;,%2i,+ , %), Y; = (Y11, Y2i, -+ ,Ysi) ", and x; and y; repre-
sent the input and output, respectively. When x;; > 0, the DMU; of decision-making unit
i has input variables of input type k; when y,; > 0, the DMU; of decision-making unit i
has output variables of output type r. s* and s~ refer to slack variables, e refers to the
unit row vector, 8;, refers to the relative efficiency value of the decision-making unit, and A
is the weight vector. ;; relates to s~ and s*, which decrease strictly monotonically, and
0 <6, <1 Ifand only if ;) = 1, thens™ = 0. If st =0, the decision-making unit is
effective. If §;, < 1, the decision-making unit is invalid.

4. Construction of the Index
4.1. Indicator Selection

According to the pathway of “generation, emission reduction, emission” [4], a total
carbon dioxide allocation index system should be constructed based on the following three
principles: emission responsibility, emission capacity and emission efficiency. Total carbon
dioxide reduction rules are determined according to the connotation of each principle and
its differential allocation criteria (as shown in Table 2).

Table 2. Total carbon emission reduction and distribution indicator system.

Im.hciitorS/ Index Regulations Explanation Neg?t.l ve/
Principles Positive
o Carbon dioxide The hlgher carbon dioxide Everyone has the responsibility to reduce .
Responsibility . . emissions per person are, the o . Negative
emissions per capita carbon dioxide emissions
smaller the cuts are
. - Regions with high levels of economic
Ability Per GDP The higher GDP per capita is, development should shoulder more Positive
the larger the cuts are o L. .
responsibility for carbon dioxide reduction
The proportion of . . The higher the investment in
environmental The larger the investments in . Lo
s . . . environmental protection is, the greater the .
Ability protection environmental protection are, - . Positive
. regional support for carbon dioxide
investment to the larger the cuts are S L
emission reduction is
government revenue
The higher fiscal revenue is, the greater the
s . The higher the revenue is, the ~ economic strength of the focal region is and .
Ability Fiscal revenue . i Positive
larger the cuts are the greater its responsibility to
reduce emissions is
The higher carbon dioxide emissions per
.. The greater the carbon unit of GDP are, the higher the
. Carbon emissions per . . . . . . 2. . .
Efficiency unit of GDP intensity per unit of GDP is, corresponding emission efficiency is and Negative

the smaller the cuts are

the lower the carbon emissions
per unit of GDP are

China is a responsible country, and coping with climate change is a common re-
sponsibility of society as a whole. Therefore, in the prioritization of indicators, emission
responsibility comes first. To successfully achieve China’s goal of a carbon peak, every-
one has to assume responsibility for carbon dioxide emission reduction. Therefore, we
select the indicator “cumulative carbon emissions per capita”. The greater the cumulative
carbon emissions per capita of a region are, the worse the total carbon emissions of the
corresponding province and city are; thus, this is a negative indicator. Required emission
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capacities have been established by each province and city, but due to the different de-
velopment degrees of each region, this emission capacity varies greatly. The indicators
“GDP per capita”, “environmental protection investment” and “fiscal revenue” represent
the emission capacity of each region. The higher the per capita GDP of a region is, the
higher its levels of regional economic development and matched total carbon emissions
are. The greater a region’s investment in environmental protection is, the greater the
regional support for emission reduction is. A higher fiscal revenue is accompanied by a
greater regional economic strength, a decreased need for emission reduction and a greater
responsibility for emission reduction. Therefore, per capita GDP, environmental protection
investment and fiscal revenue are positive indicators. Emission efficiency can be improved
by reducing per unit carbon emissions. Therefore, carbon emissions per unit of GDP are a
negative indicator.

4.2. Data Selection

In this paper, 2015 was taken as the base year, and the data were taken from sources
that included the “China Environmental Statistical Annual Report” (2016), the “China
Environmental Statistical Yearbook” (2016) and the “China Statistical Yearbook” (2016).
Missing data were processed using regression analysis.

4.3. Data Processing

Since the data of the indicators have different orders of magnitude and dimensions,
to eliminate these influences, the indicators should be standardized. The entropy weight
method can clearly reflect the utility of the entropy value of index information and prevent
the interference of human subjectivity. The index processing and calculation methods for
the entropy weight are as follows:

(1) Data are standardized. When the indicator is a positive indicator:
rij = (Xij — Xmin / (XMiTmax) (6)
When the indicator is a negative indicator:
tij = (Xijmax/ (XMinyax ) (7)

(2) The information value d; of indicator j is calculated as:

d] =1+ CZ?:l pl']'li’l pz] (8)

where p;; = r;;/ YL rijand ¢ = ﬁ

(3) The weights of the evaluation indicators are confirmed. The weight of indicator j can
be calculated as:

wj=d;/ Y dj )

The five original indicators of overall carbon emission allocation were normalized
according to Formulas (8) and (9), and then the entropy weights of each overall CO,
allocation indicator were calculated as shown in Table 3.

Table 3. Weight of the carbon total allocation index.

Per Capita . . Carbon Emissions
Index Carbon Emissions Per GDP Environmental Input Fiscal Revenue per Unit of GDP
O entropy 0.27 0.16 0.10 0.16 0.32

value
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5. Results Analysis
5.1. Analysis of Total Carbon Dioxide Distribution

Based on the proportional distribution, the 30 cities are presented in Figure 1. From the
distribution results regarding overall CO, control, it can be seen that in terms of the actual
target of reducing China’s overall carbon emission intensity by 18%, there are obvious
differences in the CO; reduction rates across the regions. After adjusting the adjustment
coefficient, we find that there are obvious differences across the carbon intensity reduction
targets allocated by the provinces. As shown in Table 4, Jiangsu has the highest reduction
rate, 31.40%, and this region is followed by Guangdong and Inner Mongolia, which have
rates of 31.15% and 28.23%, respectively. There are nine provinces with carbon emission
intensity reduction rates that are higher than the general national target. These provinces
are Beijing, Tianjin, Hebei, Shandong, Zhejiang, Shanghai, Jiangsu, Guangdong and Inner
Mongolia. The reduction rates of these provinces, 21.19%, 20.67%, 18.73%, 21.91%, 20.33%,
23.51%, 31.40%, 31.15% and 28.23%, respectively, are higher than the general national target.
Among these regions, Beijing, Tianjin, Zhejiang, Shanghai and Guangdong have high levels
of economic development, and their per capita GDP and levels of environmental protection
investment are also higher than those of the other regions. Therefore, they play a prominent
role in emission reduction capacity. Hebei and Inner Mongolia, as important provinces
in the production of China’s heavy industry and energy for transmission, have high per
capita cumulative carbon emissions and great emission reduction responsibilities. The ratio
of environmental protection investment to financial expenditures in these regions is also
high, and their carbon emissions per unit of GDP are low. Therefore, based on their high
emission reduction potential and low emission reduction costs, the allocated reduction
targets of these regions are also relatively high.

400,000.00
350,000.00
300,000.00
250,000.00
200,000.00
150,000.00 o
100,000.00 o
50,000.00
0.00 — T T B E e o s L B o T E i A E e e e
S8 & P D O P Sl IV S SN e ST N - S PR B SI
ey ,@»‘“ Q\i @\“\D:\,\w'i ;@mf@&” S %&? & F @ \}e}“;\\zw o Q\\\“%‘ & & R \\\«\“1 & ‘é‘c\\&\io‘“ﬂh\\\o BN O“QZ@J @;\@&D\«‘m \§. . S-}@
2 @” B & \?\Q;\
Figure 1. Proportionally distributed quantity/(million t) of 30 cities.
Table 4. Allocation of total CO, control targets in China, 2025.
City Reduction Rate/% National Reduction Rate/% Distribution Difference/%
Beijing 21.19 20.50 0.69
Tianjin 20.67 20.50 0.17
Hebei 18.73 19.00 —0.27
Shandong 2191 20.50 1.41
Zhejiang 20.33 20.50 —-0.17
Shanghai 23.51 20.50 3.01
Jiangsu 31.40 20.50 10.9
Hainan 3.85 12.00 —8.15
Guangdong 31.15 20.50 10.65
Fujian 13.18 19.50 —6.32
Shaanxi 12.73 18.00 —5.27
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City Reduction Rate/% National Reduction Rate/% Distribution Difference/%
Shanxi 11.79 18.00 —6.21
Henan 13.49 19.50 —6.01

Neimenggu 28.23 17.00 11.23
Hubei 13.47 19.5 —6.03
Hunan 12.13 18.00 —5.87
Jiangxi 7.70 19.50 —11.8
Anhui 10.03 18.00 -7.97

Yunnan 8.97 18.00 -9.03
Guizhou 6.91 18.00 —11.09
Sichuan 13.80 19.50 -5.70
Chonggqing 12.49 19.50 -7.01
Guangxi 7.36 17.00 —9.64
Gansu 5.77 17.00 —11.23
Qinghai 8.77 12.00 —3.23
Ningxia 17.63 17.00 0.63
Xinjiang 13.97 12.00 1.97
Liaoning 16.57 18.00 —1.43
Jilin 11.28 18.00 —6.72
Heilongjiang 10.97 17.00 —6.03

Most of the areas with low reduction rates are underdeveloped; these include Jiangxi,
Guizhou, Gansu and Qinghai, which have reduction rates of 7.70%, 6.91%, 5.77% and 8.77%,
respectively. These regions are located in southwestern or northwestern China and have
a low per capita GDP, low fiscal expenditures and environmental protection investments
that are lower than the national average, along with a low emission reduction capacity.
Therefore, their reduction rates are also low. The reduction rates of Hainan and Guangxi
are 3.85% and 7.36%, respectively, because their per capita carbon dioxide emissions, per
capita GDP, proportion of environmental protection investment to fiscal expenditures and
carbon emissions per unit of GDP are low; thus, their allocated reduction rates are also low.
Although the reduction rates of the other regions are not higher than the national target,
they are at an intermediate level compared with the lower-level regions. For example, the
reduction rates of Fujian, Shaanxi, Shanxi, Henan, Hubei, Hunan, Chongqing, Ningxia,
Xinjiang, Liaoning and Jilin are 13.18%, 12.73%, 11.79%, 13.49%, 13.47%, 12.13%, 12.49%,
17.63%, 13.97%, 16.57% and 11.28%, respectively. By adjusting their industrial and energy
structures, these regions can improve their emission reduction capacity and achieve their
allocated reduction targets through future development.

To date, the provincial carbon emission allocation targets have not all been announced
(only Hebei has announced a target of 19%), but the overall carbon emission intensity target
of the 14th Five-Year Plan is still 18%, which is the same as that of the 13th Five-Year Plan.
Therefore, the provincial reduction targets shown in the table are analysed with reference
to the 13th Five-Year Plan. They are 20.5%, 19.5%, 18%, 17% and 12%, respectively. The
specific objectives of each province are shown in Table 3. By comparing the reduction
targets of various provinces according to the improved equal proportion allocation method,
we find that the reduction targets of Beijing, Tianjin, Shandong, Shanghai, Jiangsu, Guang-
dong, Inner Mongolia, Ningxia and Xinjiang are higher than the national distribution
targets, and the reduction targets of the other 21 provinces are lower than the national
distribution targets. Among them, Inner Mongolia exceeded its national distribution tar-
get by the widest margin. On the one hand, this reflects the fairness of China’s rational
distribution. Due to the difficulties faced in achieving rapid low-carbon transformation in
Inner Mongolia, the national distribution plan gives this region a target of only 17%. On
the other hand, according to data from 2015, Inner Mongolia’s per capita carbon dioxide
emissions, environmental protection investment and carbon emissions per unit GDP are
among the highest in the country, which indicates that Inner Mongolia needs to bear more
responsibility for emission reduction in the process of economic development. The 28.23%
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target assigned to this region in this paper can better urge Inner Mongolia to adjust its
industrial structure and energy structure, which would be more conducive to the overall
progress of national carbon emission reduction and the improvement of economic benefits.
Gansu falls the farthest below the national distribution target, with a distribution target
of 5.77% and a national distribution target of 17%. This reflects the country’s full trust in
this region’s emission reduction capacity. However, based on 2015 data, Gansu’s carbon
emissions per unit of GDP are high, and its investment in environmental protection is not
substantial, which means that Gansu’s emission reduction potential is limited and that
pursuing such a reduction may result in high economic costs. From the perspective of
the overall economic interests of the country;, it is not recommended to increase regional
emission reduction targets. Appropriate targets can encourage provinces and cities to
increase their emission reduction capacity and reach emission reduction targets faster.

In general, it is possible for the carbon dioxide allocation levels of all the provinces
and cities of China to reach the national allocation level by 2025. Under the constraints
of carbon intensity emission reduction targets, provinces and cities can improve relevant
emission reduction technologies through reasonable resource allocation, promote the ad-
justment and optimization of their industrial structures and energy structures and lay a
solid foundation for achieving a carbon peak. The carbon emissions of some regions are
declining because these regions are able to make rational and effective use of invested
resources and environmental factors, which also shows that the corresponding technical
efficiency of China’s overall carbon dioxide emission reduction capacity has increased.
This increase in technical efficiency means that indicators of China’s total carbon emissions
do not exist or that little resource investment is wasted at the existing technical level.
Therefore, measuring and analysing the technical efficiency of China’s carbon emission
reduction is of great significance in terms of reducing the carbon emission indicators in
provincial administrative regions and realizing these regions’ potential for carbon dioxide
emission reduction.

5.2. Analysis of the DEA Model

DEAP 2.1 software was used to settle the technical and scale efficiency, according to
Wang [28]. Therefore, with the help of DEAP 2.1, the DEA model analysis results obtained
in this study are shown in Figure 2.

1.2
1 2
0.8 [
.‘
0.6 l'
[
0.4 £
/ 1 e
0.2 // ./N}
O T T 1 1 1 T 1 1 1 T T 1 1 1 1 1 1 1 T T 1 1 1 1 1 1 1 T 1 |
DL L DB O P A DA S D P ON DR PO O O
S & ST FNFSEE S S T ST S IL 6 6
@ FAEE WX & 5 T XL WTW e O TS @
5V K S & S
G ¥ ¥
—&— Technical Efficiency TE Scale Efficiency SE(k)

Figure 2. Technical efficiency and scale efficiency of 30 cities.

Technical benefits reflect the efficiency brought by technical factors. Values equal
to 1 indicate the rational use of elements. Values less than 1 indicate that there is still
room to improve technical efficiency in the use of elements. As shown in Figure 2, the
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technical benefits of Hainan, Henan, Qinghai and Ningxia indicate reasonable use, while
the technical benefits of Shandong, Jiangsu, Sichuan and Liaoning are low, indicating that
their technical efficiency needs to be improved. Although the technical benefit values of
Beijing, Tianjin and Shanghai have not reached 1, these regions can quickly develop rational
use through appropriate adjustments. Although when used as the target city, Beijing did
not present technical benefits, when considering the margins for data error and practical
experience, Beijing has made contributions to carbon emissions.

Economies of scale reflect the efficiency brought by scale. Values equal to 1 indicate
that the corresponding returns of scale are unchanged (optimal state). Values less than
1 indicate that the returns of scale have increased (if the scale is too small, it can be expanded
to increase benefits). Values greater than 1 indicate that the returns of scale have decreased
(if the scale is too large, it can be reduced to increase benefits). As shown in Figure 2, the
scaled return values of Hainan and Ningxia have reached the optimal state. The scaled
income values of Hebei, Hubei, Sichuan, Qinghai and Liaoning are 0.999, 0.897, 0.966,
0.953 and 0.966, respectively; these values are very close to 1, so the optimal state can be
quickly achieved by appropriately adjusting the scale. The other regions need to strive to
expand their scale and achieve the optimal state.

Return to scale analysis is used to study returns to scale according to returns to a scale
coefficient (lambda value). If a return to scale coefficient is equal to 1, the corresponding
return to scale remains unchanged (optimal state); if a return to scale coefficient is less than
1, the return to scale is increasing (if the scale is too small, it can be expanded to increase
benefits); and if a return to scale coefficient is greater than 1, the return to scale is decreasing
(if the scale is too large, it can be reduced to increase benefits). According to Figure 3, the
scale returns of Hainan and Ningxia have reached the optimal state. Although the values
of Hebei and Henan are 1.005 and 1.034, respectively, little control can be implemented to
maintain the optimal state. The values of Hubei, Sichuan and Liaoning are 0.897, 0.966 and
0.967, respectively, indicating that these three regions are close to the optimal state, so a
slight expansion of the scale can help them reach this state.

Figure 3. Return to scale analysis.

6. Conclusions

Based on 2015 data, this paper calculates the distribution of the 2025 carbon emission
reduction targets of 30 provinces in China. A comprehensive comparison of the two
examined allocation schemes shows that the DEA method mainly considers differences in
regional environmental status and energy resource endowment between provinces. On
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the other hand, the improved equal proportion allocation method takes the improvement
of carbon emissions based on regional total carbon dioxide control as the standard and
pays more attention to optimizing the overall relationship between regional economies
and carbon emissions; moreover, this allocation scheme is relatively easy to implement.
On the basis of fairness and efficiency, the improvement ratio method takes into account
the development trends and carbon control policy guidance in different provinces and
cities, which is different from the decomposition logic and margin focus of the original DEA
method. The improvement ratio method can meet the carbon emission target decomposition
requirements of provinces with different development characteristics. In addition, the
data from the basis year are real data from the government, which is consistent with
China’s Five-Year Plan, and it shows the carbon emission reduction effect of real data.
Therefore, a combination of these two methods can be used to better realize the sustainable
development of a low-carbon economy.

According to the results of the equal proportion allocation method, Beijing, Tianjin,
Hebei, Shandong, Zhejiang, Shanghai, Jiangsu, Guangdong and Inner Mongolia need to
increase their emission reduction capacity, while Jiangxi, Guizhou, Gansu, Qinghai, Hainan
and Guangxi have relatively low emission reduction targets. Recent research [14] has
stated that Jiangsu and Zhejiang should actively promote and develop energy-saving and
emissions reduction technologies to ease the pressure of CO, emissions reduction nationally.

According to the DEA distribution results, the technical benefits of Hainan, Henan,
Qinghai and Ningxia are at a reasonable level, while those of Shandong, Jiangsu, Sichuan
and Liaoning are relatively low; this indicates that the technical efficiency of these regions
needs to be improved. Although the technical benefit values of Beijing, Tianjin and Shanghai
are less than 1, the technical benefits of these regions could be developed to reach a
reasonable level quickly through appropriate adjustments. As shown in Lu’s (2022) research,
resource allocation should be adjusted among different regions [24]. Therefore, even though
all 30 provinces and cities have good comprehensive benefits, different countries should
make adjustments based on their individual situation.

In contrast to those of previous studies [29,30], the total carbon allocation index of
this paper covers social and economic indicators as well as environmental protection
indicators. In addition to considering per capita cumulative carbon emissions, per capita
GDP and carbon emissions per unit of GDP, this paper includes environmental protection
input and fiscal revenue to ensure the rationality and comprehensiveness of the results.
In summary, to ensure the realization of a carbon peak, China’s 30 provinces and cities
should strengthen their technological innovation according to the development conditions
of their individual regions and promote rational energy, environmental and economic
planning and integration. The goal of a carbon peak can be realized smoothly through a
multidimensional system. For example, green investment, green financial planning and the
establishment of a green economic growth mechanism should be supported.

Policy Recommendations

1.  Measures for local conditions should be adjusted, and resource endowments should be
comprehensively considered. Reasonable carbon emission intensity indicators should
be utilized, and the total carbon emissions of cities that exceed the overall national
carbon emission intensity target should be controlled. The industrial transformation
of cities that fail to meet the overall national carbon emission intensity target should
be strengthened, and their industrial structure should be upgraded and adjusted.
Such cities should be helped to achieve their expected goals as quickly as possible.
The market orientation of green technology innovation systems should be actively
established, the relevant basic theory and application research should be strengthened
and support and guidance for the use of low-carbon technology should be provided.

2. The carbon emission trading mechanism should be gradually improved, and regional
collaborative emission reduction should be realized with the help of cross-provincial
authority trading. A coordinated development plan is needed with attention to re-
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gional differences and synergies in relation to a carbon peak. All regions should
achieve the goal of a carbon peak in an orderly manner according to their own eco-
nomic development levels, industrial structure and technical conditions. For example,
the emission reduction targets and responsibilities for common progress based on the
current coordinated development of Beijing, Tianjin and Hebei are mentioned.

3. A dynamic evaluation mechanism should be established. Although the targets of
30 provinces and cities have been reasonably assigned, dynamically adjusting the
distribution model is conducive to ensuring the long-term sustainable development
of carbon emission reductions. These carbon emission targets should be adjusted in a
timely manner according to the regional development progress.
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