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Abstract: The gradual expansion of power transmission networks leads to an increase in short-circuit
current (SCC), which has an impact on the secure operation of transmission networks when the
SCC exceeds the interrupting capacity of the circuit breakers. In this regard, optimal transmission
switching (OTS) is proposed to reduce the short-circuit current while maximizing the loadability
with respect to voltage stability. However, the OTS model is a complex combinatorial optimization
problem with binary decision variables. To address this problem, this paper employs the deep
Q-network (DQN)-based RL algorithm to solve the OTS problem. Case studies on the IEEE 30-bus
system and 118-bus system are presented to demonstrate the effectiveness of the proposed method.
The numerical results show that the DQN-based agent can select the effective branches at each step
and reduce the SCC after implementing the OTS strategies.

Keywords: transmission network planning; short-circuit current limitation; maximum loadability;
deep reinforcement learning

1. Introduction
1.1. Motivations

With the gradual expansion of power transmission networks, the electrical distance
between substations has become shorter, which has, in turn, led to an increase in short-
circuit current (SCC). When the SCC magnitude exceeds the interrupting capacity of circuit
breakers (CBs), the circuit breakers may not be able to interrupt the electric arc. In this case,
the branch cannot be opened and, therefore, the short-circuit fault is not isolated, which
will lead to damage to the CBs and, more importantly, will endanger the security of the
power system. To address this problem, the replacement of CBs with higher interrupting
capacity and the installation of a fault current limiter [1–3] have been proposed. However,
investment in equipment is necessary for the above-mentioned countermeasures. On the
contrary, network reconfiguration can reduce the SCC in an economical way, as it does not
require investment in equipment.

However, transmission network reconfiguration is a complex combinatorial optimiza-
tion problem, which is difficult to compute using conventional mathematical programming
algorithms. Inspired by the success of reinforcement learning (RL) in solving combinatorial
optimization problems, this paper employs the deep Q-network (DQN)-based RL algorithm
to solve the OTS problem with the purpose of reducing the short-circuit current while
maintaining the maximum loadability of the transmission network.

1.2. Related Works
1.2.1. Optimal Transmission Switching

Transmission network reconfiguration is also called optimal transmission switching
(OTS) [4]. It has been reported that OTS can be used to reduce transmission loss [5,6],
relieve overloads and voltage violations [7,8], and reduce operating costs [4,9]. With the
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above-mentioned benefits, OTS has been incorporated with unit commitment (UC) [10,11]
and transmission expansion planning (TEP) [12] in order to enhance the flexibility of
transmission system’s operation and planning. In [13,14], OTS and UC are coordinated to
reduce short-circuit current. In the literature, OTS is usually modeled as a mixed integer-
programming (MIP) problem with massive binary variables that are related to each branch
in the power network. Therefore, OTS is a complex combinatorial optimization problem.
To enhance the computation efficiency, some efforts focus on the computational strategies
including solution space reduction [15] and sensitivity analysis [16].

1.2.2. Application of Reinforcement Learning in Power Engineering

In recent years, reinforcement learning has gained more attention as an alternative
method for solving combinatorial optimization problems [17]. In the field of power en-
gineering, RL-based methods have been proposed for operation planning [18], voltage
control [19], wide-area-damping control [20], and so on. In [21], a proximal policy optimiza-
tion (PPO) is proposed to learn the control strategy for power systems’ dynamic security.
In [22], the multi-agent deep deterministic policy gradient (MADDPG) is proposed to
regulate the static var compensators (SVCs) in order to enhance the voltage stability of
urban power grids.

1.3. Organization of This Paper

The rest of this paper is organized as follows. The problem’s description and formula-
tion are discussed in Section 2. The deep reinforcement learning-based optimal transmission
strategy is proposed in Section 3. In Section 4, case studies on two benchmark system are
presented. Finally, the study’s conclusions are presented in Section 5.

2. Problem Description and Formulation
2.1. Computation of Short-Circuit Current

In high-voltage power networks, the short-circuit current of a three-phase short-circuit
fault is usually higher than other types of short-circuit faults. Therefore, the three-phase
short-circuit current is computed to determine whether the maximum short-circuit current
has exceeded the interrupting capacity of the circuit breakers.

In addition, as the resistance is significantly smaller than the reactance for high-
voltage transmission lines and transformers, the resistances of all the devices are neglected
in practical applications [23]. Under this assumption, the nodal admittance matrix Yscc for
short circuit current computation is different from the one for power flow computation.
The elements in the nodal admittance matrix Yscc can be computed as follows (1) and (2):

Yii = ∑
k=〈i,j〉|〈j,i〉∈L

πk
xk

+ ∑
g∈G

1
x′′dg
− bCi (1)

Yij = − ∑
k=〈i,j〉|〈j,i〈∈L

πk
xk

(2)

where Yii and Yij are the diagonal and the off-diagonal elements in Yscc. L is the set of
branches, including the transmission lines and the transformers. xk is the reactance of the
kth branch, while πk denotes the operating status of the kth branch. πk = 1 indicates that
the kth branch is closed; otherwise, πk = 0 indicates that the kth branch is opened. G is the
set of generators, while x′′dg is the d-axis sub-transient reactance of the gth generator. bCi is
the shunt capacitor at node i.

After forming the nodal admittance matrix Yscc, the nodal impedance matrix Zscc can
be computed by the inversion of Yscc:

Zscc = Y−1
scc (3)
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As we are focusing on the three-phase short-circuit current, the SCC of node i can be
computed by (4):

I∗scc,i =
V0

i
Zii
≈ 1

Zii
(4)

where I∗scc,i is the per unit value of the SCC. V0
i is the voltage magnitude under the normal

operating condition and V0
i can be approximated by 1.0 p.u. Zii is the ith diagonal element

of the nodal impedance matrix Zscc.

2.2. Formulation of Optimal Transmission Switching for Short-Circuit Current Limitation

In this paper, the optimal transmission switching strategy is studied from the per-
spective of transmission network development. During the long-term development of
transmission networks, there may be a period in which the network is confronted with
a short-circuit current problem. Instead of minimizing the operating cost by combining
OTS with unit commitment, the proposed OTS model attempts to reduce the short-circuit
current while maximizing the loadability of the transmission network. The objective of the
proposed OTS model is three-fold, as given in (5)–(8):

min〈 f1, f2, f3〉 (5)

Here,

f1 = ∑
i∈B

Ilimit
scc,i − Iscc,i

Ilimit
scc,i

(6)

f2 =
λ0 − λOTS

λ0
(7)

f3 =
1

NL
∑
k∈L

(1− πk) (8)

where Ilimit
scc,i is the maximum limit of the short-circuit current at node i and Iscc,i is the real

value of the short-circuit current. λ0 and λOTS are the maximum loadability coefficients
computed by the continuation power flow (CPF) [24]. NL is the number of branches in the
power network.

It is clear that the objective f1 minimizes the over-current of SCC while the objective
f2 attempts to maintain the loadability of the power network after transmission switching.
Furthermore, the objective f3 is set to reduce the number of branches that need to be
switched off. The constraints are listed as follows:

(1) The network connectivity constraint. In other words, the transmission-switching
strategy should not cause network splitting.

(2) The power flow constraint:

PG,i − PD,i = Vi

n

∑
j=1

Vj
(
Gij cos δij + Bij sin δij

)
(9)

QG,i −QD,i = Vi

n

∑
j=1

Vj
(
Gij sin δij − Bij cos δij

)
(10)

(3) The branch power flow security constraint:∣∣Sij
∣∣ ≤ Smax

ij (11)

(4) The bus voltage magnitude security constraint:

Vmin
i ≤ Vi ≤ Vmax

i (12)
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where PG,i and PD,i are the active power generation and the active power load at node i,
while QG,i and QD,i are the reactive power generation and the reactive power load. Vi and
Vj are the bus voltage variables. Gij and Bij are the real part and the imaginary part of the
corresponding element in the nodal admittance matrix for power flow computation. δij
denotes the phase angle different between node i and node j. Sij is the power flow from
node i to node j and Smax

ij is the maximum limit. Vmin
i and Vmax

i are the security limits of
the bus voltage magnitude.

3. Optimal Transmission Switching Based on Deep Reinforcement Learning
3.1. Brief Introduction to Deep Q-Learning

In the general framework of reinforcement learning, an agent interacts with the en-
vironment E and, more importantly, learns to select the actions a based on the rewards r
provided by the environment. Intuitively, the environment E represents the problem to be
solved. At each step t, the agent generates an action at according to the partial or complete
observation of the current state st of the environment E based on its policy π(at|st). After
implementing the action at, the environment E returns a reward rt+1 and the new state st+1
to the agent. During the procedure of RL, the agent learns to improve the policy π(at|st) in
order to maximize the aggregated rewards.

The conventional algorithm for RL is the Q-learning algorithm. The optimal Q-
function Q∗(s, a) can be defined as the maximum return that can be obtained starting from
the current observation s by taking the action a and following the optimal policy thereafter.
The optimal Q-function obeys the Bellman optimality equation as shown in (13):

Q∗(s, a) = E
[

r + γmax
a′

Q∗
(
s′, a′

)]
(13)

where E[·] denotes the computation of the expectation of the immediate rewards r and the
maximum future rewards. γ is the discount coefficient. s′ and a′ are the possible next states
and the corresponding actions.

The basic idea behind many reinforcement learning algorithms is to estimate the
Q-function by using the Bellman equation as an iterative update, as shown in (14):

Qi+1(s, a) = E
[

r + γmax
a′

Q∗
(
s′, a′

)∣∣∣∣s, a
]

(14)

When the action space grows, it is impractical to use the Q-table to form the optimal
policy. To address this problem, the deep Q-network-based RL algorithm [25] was proposed
by Google DeepMind. In DQN, the neural network is used to approximate the Q-function
as shown in (15):

Q(s, a; θ) ≈ Q∗(s, a) (15)

Then, the Q-network can be trained by minimizing a sequence of loss functions:

Li(θi) = Es,a∼ρ(·)

[
(yi −Q(s, a; θi))

2
]

(16)

Here,

yi = Es′∼E

[
r + γmax

a′
Q∗
(
s′, a′; θi

)∣∣∣∣s, a
]

(17)

where yi is the target for iteration i and ρ(·) is a probability distribution over sequences and
actions that is referred to as the behavior distribution. The parameters from the previous
iteration θi remain fixed when optimizing the loss function Li(θi).
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3.2. The Proposed Methodology

We consider the procedure of optimal transmission switching for short-circuit current
limitation as a Markov decision process (MDP). The settings of the MDP for optimal
transmission switching are as follows.

(1) The environment. The targeted transmission network is considered as the inter-
active environment for the DRL agent. The computation of the power flow, short-circuit
current, and maximum load can be used to compute the rewards.

(2) The state. The state of the environment is set as the network structure, which
is represented by the operating state of the branches. In this regard, the state s can be
formulated as (18):

s =
[
π1, π2, · · · , πNL

]
(18)

(3) The action. The DRL agent chooses a branch to be switched off at each step.
(4) The reward. The reward is an important component for reinforcement learning as

the agent tunes the network parameter of the Q-network according to the reward. Based
on the OTS model described in Section 2, the reward function can be defined by (19):

R =


Rp, i f power f low converged
csc + cVSA + cTS, otherwise

−Rp, i f power f low diverged or islanding
(19)

where

csc = ∑
i∈B

Ilimit
scc,i − Iscc,i

Ilimit
scc,i

(20)

cVSA =
λOTS − λ0

λ0
(21)

cTS = − 1
NL

∑
k∈L

(1− πk) (22)

(5) The training procedure. During the training procedure, the DRL agent interacts
with the environment and thus learns to maximize the reward by selecting the most
prospective action. As the action is generated by the Q-network, which is a deep neural
network that takes the state as the input and outputs the Q-values for all the potential
actions, the training procedure can be viewed as the process that fine-tunes the Q-network.
Firstly, the Q-network is initialized with random weights. At the start of each episode,
the state of the environment is reset, which means all the branches are closed, and the
initial network structure is retained. Then, we generate a random seed ε. If ε is lower
than the threshold (usually 0.1), select a random branch; otherwise, the state is fed into
the Q-network and then the branch that is related to the highest Q-value is selected. After
selecting the branch, this branch is switched off, and the state and the corresponding
network structure are updated. The reward in (19) is computed by determining the power
flow, short-circuit current, and the continuation power flow computation. The record
(st, at, rt, st+1) is stored in the replay memoryD. If the SCC at all the nodes is lower than the
limit, the episode is terminated. The episodes repeat until the maximum episode is reached.
In addition, during the interactive training procedure, when the size of the replay memory
D is larger than the pre-set capacity ND , the recorded instances in the replay memory D
are used to learn the weights of the Q-network by using back propagation algorithms such
as the ADAM algorithm. The pseudo-code of the training procedure is demonstrated in
Algorithm 1.
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Algorithm 1 Training Procedure of OTS Agent

(1) Input: the network structure of the power system
(2) Output: the well-trained Q-network
(3) Initialize the Q-network and the replay memory D with capacity ND
(4) for episode = 1 to M, do:
(5) Reset the state
(6) for t = 1 to T, do:
(7) With probability ε, select a random action; otherwise, generate the action via

the Q-network
(8) Update the state
(9) Perform power flow computation, short-circuit computation, and continuation

power flow computation according to the changed network structure under the
current state

(10) Compute the reward by (19)
(11) Store (st, at, rt, st+1) in the replay buffer
(12) If the SCC at all the nodes is lower than the limit, do:
(13) End the loop of t
(14) end if
(15) end for
(16) if the size of D is larger than ND , do:
(17) Sample a minibatch of S samples from D
(18) Update the parameters of Q-network by a gradient descent step on (16)
(19) end if
(20) end for

(6) Decision making for OTS-based short-circuit current limitation. With the well-
trained Q-network, the Markov decision process for optimal transmission switching starts
with the initial network structure. At each step, the Q-network generates an action that is
related to the switching of a branch and is expected to obtain the highest reward. Implement
the action and then compute the short-circuit current under the changed network structure.
If there are any nodes at which the short-circuit current exceeds the interrupting capacity
of the circuit break, the action of branch switching continues. Otherwise, if there is no
node that suffers from a short-circuit current problem, the MDP for OTS ends, and the final
network structure is used as the optimal solution.

4. Results

Case studies on the IEEE 30-bus system and the 118-bus system are presented herein to
demonstrate the effectiveness of the proposed deep reinforcement learning-based optimal
transmission-switching method. The data of these testing systems can be found in [26]. The
sub-transient reactance of each generator in both cases is set uniformly as 0.1 p.u.

4.1. Illustrative Case Study on the Modified IEEE 30-Bus System

The network structure of the IEEE 30-bus system is shown in Figure 1. One transmis-
sion line from Bus-11 to Bus-21 is added as in [13] for the case study on the IEEE 30-bus
system. Under this network structure, the short-circuit current magnitudes of all the buses
are computed and are shown in Figure 2.
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The maximum limit of short-circuit current is set to be 12 kA, and the objective is to
reduce the SCC of the non-generator buses to this limit. According to the discussion in
Section 3.2, the environment for OTS is set, and then the DQN-based agent is trained based
on Algorithm I. Except for the branches that will cause islanding if they are switched off, the
others are all considered in the action space of the agent. With the well-trained Q-network,
the transmission-switching strategy for short-circuit current limitation is generated. During
this decision process, the Branches 4–12 is switched off at the first step and then the Branches
6–9 is switched off at the second step. After these two steps, there is no bus at which the
short-circuit current exceeds the maximum limit. Then, the OTS strategy is generated, and
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the short-circuit current magnitudes after transmission switching are shown in Figure 3. It
can be seen from Figure 3 that the SCCs are reduced below the limitation.
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4.2. Comparative Case Study with Conventional Genetic Algorithm

The proposed OTS model is a typical combinatorial optimal model with binary vari-
ables. Conventionally, this kind of optimal model is solved by evolutionary programming
algorithms such as genetic algorithms (GA) [27,28]. To further demonstrate the effective-
ness of the proposed method, a comparative case study is carried out. The individuals of
the population are represented by (18), which is the state of the power network environ-
ment. The number of populations is 100, and the individuals are initialized by independent
random sampling. The maximum iteration is 100. The mutation rate is 0.2, while the
crossover rate is 0.9. The numerical results are shown in Table 1. While the OTS solutions
of both methods are feasible, as the SCC of the non-generator buses has been reduced to
lower than 12 kA and the minimum margins of the SCCs are comparable to each other, the
maximum loadability of the proposed method is 4.0817 times of the base condition, which
is higher than that of the genetic algorithm.

Table 1. Comparative results between the proposed method and genetic algorithm.

Methods Branches to Be
Switched Off

The Minimum
Margin of SCC

The Maximum
Loadability

Proposed method 4–12\6–9 0.71 kA 4.0817
Genetic algorithm 4–6\6–9\6–10 0.92 kA 2.7047

4.3. Scalability Case Study on the IEEE 118-Bus System

A case study on the IEEE 118-bus system is presented herein to validate the scalability
of the proposed method. The maximum limitation in this case is 25 kA. The short-circuit
current magnitudes of all the buses before transmission switching are shown in Figure 4. It
can be seen that the SCC of Bus-66 is the highest among all the buses in the testing system.
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In this testing system, 103 branches are not allowed to be switched off due to islanding
and N-1 reliability. The remaining 83 branches are used to form the action space. After
the training of the DQN-based agent, the transmission-switching strategy for short-circuit
current limitation is generated. The branches that are switched off during the decision
process are Branch 65–68, Branch 60–61, and Branch 65–66. The short-circuit current
magnitudes after transmission switching are shown in Figure 5. It can be seen that after
the switching of these three branches, the short-circuit current can be reduced below
the limitation, which further demonstrates the effectiveness of the proposed DRL-based
OTS method.
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5. Conclusions

To prevent the short-circuit current from exceeding the interrupting capacity of the
breakers, an optimal transmission-switching model has been proposed in this paper to
reduce the short-circuit current while maximizing the loadability of the transmission
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network. Considering that this optimal transmission-switching model is a complex combi-
natorial optimization problem with binary decision variables, the deep Q-network-based
reinforcement-learning algorithm was proposed to search for the optimal solution. Case
studies on two benchmark testing systems were presented.

The numerical results show that (1) the proposed method can select the effective
branches at each step and reduce the short-circuit current after implementing the
transmission-switching strategies, (2) the proposed method outperforms the conventional
genetic algorithm in terms of the performance of the solution, and (3) the case studies on the
IEEE 118-bus system demonstrate that the proposed method can be applied to transmission
networks of different scales.
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