
Citation: Schommarz, P.D.; Wang,

R.-J. Development of a Transient

Synchronization Analysis Tool for

Line-Start PM Motors. Energies 2022,

15, 9206. https://doi.org/10.3390/

en15239206

Academic Editor: Adolfo Dannier

Received: 8 November 2022

Accepted: 30 November 2022

Published: 5 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Development of a Transient Synchronization Analysis Tool for
Line-Start PM Motors
Phillip Schommarz and Rong-Jie Wang *

Department of Electrical & Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa
* Correspondence: rwang@sun.ac.za

Abstract: With more stringent IEC energy efficiency standards, electrical machine industry increas-
ingly focuses on new motor technologies. Amongst others, the line-start permanent magnet syn-
chronous machine (LSPMSM) is considered as an attractive alternative to induction machine, es-
pecially for low power and fixed-speed applications. However, the design of LSPMSMs is rather
complex as both steady-state and transient synchronization performances need to be considered. The
synchronization capability determination of a LSPMSM design usually relies on time-consuming
transient finite-element simulations, which is impractical for use in an iterative design optimization
process. This paper compares and evaluates various existing analytical synchronization analysis
methods in an attempt to identify most suitable equations and methods for fast synchronization
analysis. Using the selected methods, a software tool is developed that can seamlessly work with
ANSYS Electronics Desktop to perform rapid transient synchronization analysis. Given its ability
to quickly determine the critical inertia factor of a LSPMSM design, the software tool is further
adapted for use in a highly iterative, multi-objective design optimization procedure. It shows that the
developed software tool can be successfully used in the design of LSPMSMs.

Keywords: analytical modeling; finite element method; line-start motor; permanent magnet machine;
software development; synchronization; transient performance

1. Introduction

Industrial application of electrical motors consumes between 30% and 40% of gen-
erated electrical energy worldwide [1]. With the advent of the new industrial revolution
brought forth by the development of e-mobility and renewable energy systems, the use of
electrical motors will continue to grow at a fast pace. However, hand-in-hand with this
growing demand for electrical motors comes the demand for improvement in their energy
efficiency. With more stringent IEC efficiency standards, electrical motor manufacturers
increasingly focus on new motor technologies as induction motors (IMs) are approaching
their efficiency limits. This is especially true for low power general purpose IMs that drive
fixed-speed loads such as fans, pumps and conveyors.

The line-start permanent magnet synchronous motor (LSPMSM) is an attractive al-
ternative as it promises both higher efficiency and power factor than an IM [2]. While the
efficiency of super-premium (IE4) 2.2 kW IMs has been observed to lie between 86 and
89% [3], LSPMSMs of the same power rating carry the potential to breach the 90% efficiency
barrier. However, the design of LSPMSMs is rather complicated as its rotor structure
contains both permanent magnets and cage windings, both of which can be configured in
numerous ways. Furthermore, LSPMSMs have two distinct regions of operation, namely
asynchronous operation during start-up, and synchronous operation during steady-state.
The trade-off between starting/synchronization capability and higher efficiency and power
factor is a key challenge for LSPMSMs [4].

Determining whether a LSPMSM candidate design synchronizes usually requires
transient finite-element (FE) analysis, which is computationally expensive and not suited

Energies 2022, 15, 9206. https://doi.org/10.3390/en15239206 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15239206
https://doi.org/10.3390/en15239206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6582-9563
https://doi.org/10.3390/en15239206
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15239206?type=check_update&version=1

Energies 2022, 15, 9206 2 of 31

for use in any iterative design optimization procedure [5–7]. As an alternative, various
fast analytical approaches for the synchronization analysis of LSPMSMs have been pro-
posed such as energy methods [8,9], time-domain method [9], semi-numerical method [10],
multi-damping-circuit model [11], reluctance network model [12], and sizing equation
based mathematical model [13], which promise to provide at least a good estimate of
a design’s synchronization capability. The work reported in [14] was probably the first
attempt of incorporating both analytical steady-state and synchronization analysis into the
multi-objective design optimization process of LSPMSMs. However, the optimization was
conducted using the Taguchi method. Apart from that, these analytical approaches are
only captured in literature with hardly any practical implementation in LSPMSM designs.
Since both transient and steady-state operations need to be considered in the design of
LSPMSMs, there is clearly a need to develop a transient synchronization analysis tool that
can be integrated into mainstream electromagnetic simulation software.

This paper presents the development of a time-efficient transient synchronization
analysis tool for use with ANSYS Electronics Desktop software environment, which deter-
mines the critical inertia factor (xcr), a figure of merit for the synchronization capability for
a LSPMSM design. The remainder of the paper is organized as follows: In Section 2, the
electromagnetic torque characteristics of the LSPMSM during transient synchronization
process is first described, followed by the a discussion of recent development of analytical
synchronization determination methods. In Section 3, different variants of synchronization
torque equations and analytical synchronization methods are compared and evaluated in
order to identify most suitable equations and methods for the software tool development.
The detailed steps of software design and implementation is given in Section 4. The ap-
plication example of the developed software tool is demonstrated in Section 5. Relevant
conclusions are drawn in Section 6.

2. Synchronization Analysis of LSPMSMs

With both magnets and cage winding in the rotor of a LSPMSM, there is an inherent
competition of space between them. This requires judicious arrangement of the cage
winding and PM array within a rotor in order to realize a good design. As a result,
a variety of rotor topologies have been created. Some common rotor designs can be
observed in Figure 1. In comparison with IMs, the manufacturing of LSPMSMs are more
costly, particularly for more complex topologies such as the V-type and W-type designs
(Figure 1b,c). These additional costs arise from both the expensive PM materials and the
added mechanical complexity of the interior ducts for hosting the PMs. However, a more
prevalent problem across all rotor topologies is the synchronization capability—and related
critical inertia—of a candidate design [15].

(a) (b) (c) (d)

Figure 1. Various LSPMSM rotor layouts: (a) radial-type; (b) V-type; (c) W-type; (d) spoke-type.

2.1. Electromagnetic Torque Characteristics

To better understand the synchronization capabilities of a LSPMSM design, the electro-
magnetic torque components present at all stages of the synchronization process and their
interactions need to be understood. A visual representation of these torque components
during the asynchronous operation can be seen in Figure 2.

Energies 2022, 15, 9206 3 of 31

Figure 2. Various torque components during the asynchronous operation of a LSPMSM.

2.1.1. Braking Torque

The braking torque, sometimes also called the magnet torque, is the torque component
contributed during start-up by the PMs. The magnets induce current in the stator at a
frequency of (1− s) f , which negatively affect synchronization capabilities [16,17]. The
analytical braking torque equation is given by (1).

Tb = −
mpE2

0R1

2π f
·
[R2

1 + (1− s)2X2
q](1− s)

[R2
1 + (1− s)2XqXd]2

(1)

where E0 is the induced back-EMF, R1 is the stator resistance, and Xd and Xq are the direct
and quadrature axis synchronous reactances, respectively. While the volume of magnets
impacts braking torque greatly (as shown in Figure 3), it also plays an important role to the
power factor of a LSPMSM at steady-state.

Figure 3. Braking torque for various magnet volumes.

2.1.2. Cage and Reluctance Torque

In literature the cage torque of a LSPMSM is often treated the same as that of standard
squirrel-cage IMs [8]. However, as explained in [17], owing to the non-symmetric magnetic
circuit in a LSPMSM rotor, the rotating magnetic field created by rotor current may be
decomposed into two counter-rotating fields. The positive sequence rotating field of the
rotor winding results in an asynchronous torque while the negative sequence rotating field
leads to a reluctance torque component, which hinders the synchronization process for
s < 0.5 and aids it for s > 0.5 [17].

To avoid unnecessary complexity, the reluctance torque is sometimes lumped in
together with the cage torque to form a combined equation [9]. Since different approaches

Energies 2022, 15, 9206 4 of 31

are used in literature to represent cage torque of LSPMSMs, it is necessary to compare and
evaluate them.

2.1.3. Pulsating Torque

Apart from the cage torque and braking torque, which are essentially average torque
components, there are other pulsating torque components that are resulted from the inter-
action of rotor and stator rotating fields of different speed and the slotting effects. These
pulsating torque components are functions of load angle δ and often included in the syn-
chronization analysis [18,19]. However, there are also published work that neglects the
pulsating component entirely [20]. As the oscillations contributed by the pulsating torques
are known to impact synchronization capabilities [14], it seems unwise to neglect the effect
of these torque components.

2.2. Analytical Synchronization Methods

The dynamic performance of LSPMSM is mainly concerned with the starting process
of the machine. Owing to the existence of PMs in the rotor, the starting of the LSPMSM
is more complicated than that of the IM. Furthermore, during the starting process the d-
and q-axis armature reaction reactance vary with time due to the influence of magnetic
saturation. Some researchers use a combination of analytical representation and finite
element modelling for the synchronization analysis [10,21], which, while yielding more
accurate solutions, is time consuming and not suitable for design optimization purposes.

Recently, there are some new developments of the analytical synchronization analy-
sis methods, which are based on the classical approaches by Miller and Honsinger [18,22].
Amongst others, the energy-based analytical approaches by Rabbi et al. [8] and Chama et al. [9],
and the time-domain method by Chama et al. [9] are the most representative. To facilitate fur-
ther discussion in the paper, these methods are referred hereinafter as Energy method (Rabbi
et al.), Energy method (Chama et al.), and Time-domain method (Chama et al.), respectively.

For all the three methods, the analytical representation of the instantaneous torque Ti
is established from a design’s parameters, which is a combination of the torque components
described in Section 2.1 and represented by (2).

Ti(s, δ) = Tp(δ) + Tc(s) + Tb(s)− Tl(s) (2)

where Tp refers to pulsating torque. Subsequently, the instantaneous torque Ti follows the
equation of motion in the slip-load angle plane, captured in (3).

− Jω2
s

p
· s ds

dδ
= Ti(s, δ) (3)

Further treatment of (3) is where analytical approaches differ.

2.2.1. Energy Method (Rabbi et al.)

The treatment of (3) by Rabbi et al. [8] is focused around approximating the last pole
slip of the instantaneous torque. Initially, slip is set to 0, with the aim of solving the equation
Ti(0, δ) = 0. For a majority of cases, this results in two solutions as shown in Figure 4,
namely the load angle δ′s that is the load angle for which the motor reaches synchronous
speed for the first time, and δs that binds the domain in which the critical slip scr will be
found. The critical slip is the local maximum situated between δ′s and δs.

Then, using the value found for δ′s, the last pole slip is approximated as s = scr sin 1
2 (δ
′
s − δ)

in order to find scr. Mathemtically, this is conducted by solving Ti(s, δ′s − π) = 0 as shown
in Figure 5. With δ′s and scr acquired, the required kinetic energy Escr to pull the motor into
synchronization is calculated using (4).

Escr =
∫ 0

scr
− 1

p
Jω2

s s ds =
1

2p
Jω2

s s2
cr (4)

Energies 2022, 15, 9206 5 of 31

Figure 4. Finding δ′s.

Figure 5. Finding the critical slip.

The approximated synchronization energy Esyn, or the energy actually provided by
the instantaneous torque, is calculated using (5).

Esyn =
∫ δ′s

δ′s−π
Ti(scr sin

1
2
(δ′s − δ), δ) dδ (5)

When the apparent rotor kinetic energy Esyn matches the required pull-in energy Escr,
the critical inertia Jcr is reached, which is the largest system inertia a motor design can
successfully synchronize. Using (4) and (5), Jcr can be formulated as (6). Furthermore,
by normalizing the critical inertia to the rotor inertia, the critical inertia factor xcr can
be defined, which can be very useful to quantify the synchronization capability in the
design process.

Jcr =
2pEsyn

s2
crω2

s
(6)

2.2.2. Energy Method (Chama et al.)

The energy-based method by Chama et al. [9] once again starts off by forming the
equation of motion (3) from the instantaneous torque. Instead of relying on any approxima-
tions, the equation of motion is rewritten into the form seen in (7); an implicit, nonlinear
ordinary differential equation (ODE).

ds
dδ

= − p
Jω2

s s
Ti(s, δ) = f (s, δ) (7)

Instead of approximating the last pole slip, as proposed by Rabbi et al. [8], the energy-
based method proceeds to solve the ODE using the implicit Runge–Kutta–Fehlberg method.
The advantages of this ODE solver is its high order of convergence. However, the ODE
can be solved by other numerical methods for ODEs as well, such as the backward differ-
entiation formula (BDF) or the Gauss–Radau method. The choice for ODE method to be

Energies 2022, 15, 9206 6 of 31

used depends on the stiffness of the problem at hand, and thus further comparison will be
performed in Section 4.2.2.

The ODE, when solved, establishes the slip as a function of load angle, an example
of which can be seen in Figure 6. From this direct resolution of the ODE, δ′s and scr can
be obtained.

Figure 6. Slip as a function of δ.

With these values readily available, Escr and Esyn can be calculated and compared
again. In the case of Escr, the method used by Chama et al. is essentially the same as that of
Rabbi et al., i.e., (4). Given the fact that the slip has been established as a function of load
angle, the approximation present in (5) is not necessary anymore. Instead, (8) can be used
to compute Esyn, where scr = s(δscr).

Esyn =
∫ δ′s

δscr
Ti(s(δ), δ) dδ (8)

Once again, when Esyn ≥ Escr, the candidate design synchronizes.

2.2.3. Time-Domain Method (Chama et al.)

The time domain model presented by Chama et al. [9] takes a slightly different ap-
proach. The equation of motion (3) is formulated into a transient variation taking the form
of (9) and (10), where ωrm represents the motor speed in rad/s and θ represents the rotor
angle in radians.

J
∂ ωrm

∂t
= Ti(s, θ) (9)

− 1
p

Jω2
s s

∂s
∂θ

= Ti(s, θ) (10)

Given the relationship between motor speed and slip ωrm = ωs(1−s)
p , and expressing

∂s
∂θ as ∂s

∂t
∂t
∂θ , (9) and (10) can be algebraically transformed into the initial value problem seen

below. This system of equations can also be solved using any implicit ODE method over
any desired period of time.

∂s
∂t

= − p
Jωs

Ti(s, θ)

∂θ

∂t
= sωs

Once the solution to the ODE has been computed, the motor’s speed versus time
graph can be extracted. Two cases can arise: The first case being when synchronization

Energies 2022, 15, 9206 7 of 31

occurs, resulting in the motor’s speed settling around its rated speed nrated. The second
case arising when the motor fails to synchronize; the speed oscillating below rated speed.
Both cases are visualized in Figure 7.

Figure 7. Speed vs. time graphs for a synchronized and un-synchronized motor.

To mathematically determine whether this synchronization process has occurred, the
average speed nrm and gradient of the average speed n′rm of the tail end of the generated
graphs can be calculated. If the following conditions hold, then synchronization occurs.

|nrm − nrated| ≤ 10−2

n′rm ≤ 10−2

3. Appraisal of Analytical Synchronization Equations and Methods

In order to identify most suitable analytical synchronization equations and methods
to be implemented in the software tool, the analytical methods described in Section 2.2
are compared and evaluated in this section. To facilitate the subsequent comparison, the
set of torque components will be standardized and individually examined. A number of
LSPMSM candidate designs with different rotor topologies (radial, V-type, W-type and
spoke-type) are created in ANSYS Electronics Desktop for test and verification purposes.
The details of these designs can be found in Figure A1.

3.1. Cage Torque Equations

To determine the most appropriate cage torque equation for a general use case, ANSYS
Electronics Desktop was used to generate the cage torque curves of the aforementioned
LSPMSM designs. This provides the benchmark cage torque characteristics that various
analytical formulae strive to replicate.

Three different equations selected for comparison are from Soulard et al. [19],
Rabbi et al. [8], and Chama et al. [9]. The required machine parameters for the analyti-
cal cage torque curve are extracted from the ANSYS RMxprt and summarized in Table A1.

Figure 8 shows a cage torque comparison for a radial-type rotor design. To compare
these cage torque curves more generally, each analytical cage torque curve was then
subtracted from the ANSYS-generated benchmark cage torque curve, and the average of
their discrepancy was calculated. This was conducted for each candidate machine design
in the aforementioned test set. The average torque difference for the 12 test machines
can be seen in Figure 9. A condensed box plot data of Figure 9 is shown in Figure 10,
summarizing the medium, minimum, maximum, and interquartile range for each analytical
cage torque equation.

Energies 2022, 15, 9206 8 of 31

Figure 8. Various (Rabbi et al. [8], Chama et al. [9], Soulard et al. [19]) analytical cage torque curves
for the Radial 1 design.

Figure 9. Average torque difference of various (Rabbi et al. [8], Chama et al. [9], Soulard et al. [19])
analytical Tcs from target Tc for each motor design.

It is evident that the cage torque equations presented by Chama et al. [9] and Soulard
et al. [19] compare favorably with that of Rabbi et al.’s [8]. When comparing the equations
by Chama et al. and Soulard et al., Figure 10 highlights that Chama et al.’s cage torque
equation is much more consistent over a variety of designs, with only one outlier in the
form of the Radial 3 design.

Furthermore, closer inspection of Figure 8 reveals that Chama et al.’s [9] analytical
cage torque equation tends to approximate the target cage torque curve better in the region
nearing s = 0; closer to synchronization. This is confirmed by the box plot in Figure 11,
which only takes the latter half of synchronization into account. Soulard et al.’s [19] equation
approximates better near the region s = 1; the start of the synchronization process.

For determining synchronization capabilities of LSPMSM designs, the region between
asynchronous and synchronous operation is of utmost importance. Therefore, the analytical
cage torque Equation (11) used by Chama et al. [9] appears to be a good option.

Energies 2022, 15, 9206 9 of 31

Figure 10. Box plot of average torque difference of various (Rabbi et al. [8], Chama et al. [9], Soulard
et al. [19]) analytical Tc equations from target Tc for the design set.

Figure 11. Box plot of average torque difference of various (Rabbi et al. [8], Chama et al. [9], Soulard
et al. [19]) analytical Tc equations from target Tc for the region 0.5 > s ≥ 0 for the design set.

Tc =
mp
2π f

·
sR′2V2

ph

(sR1 + c1R′2)
2 + s2(X1 + c1X′2)

2 (11)

where the factor c1 is given by c1 = 1 + X1
Xm

.

3.2. Pulsating Torque

The direct comparison of various pulsating torque equations found across literature to
a benchmark pulsating torque curve generated by a FE program such as ANSYS Electronics
Desktop is unfortunately impossible, seeing as isolating this component is not feasible.

However, an alternative approach can be taken. Firstly, the instantaneous torque is
created from the selected best suited equations, i.e., (1) for Tb, (11) for Tc, and (12) for Tl
will be used to populated (13).

Since LSPMSMs are often used for constant speed operation such as in pumps, com-
pressors, and fans [23], for the sake of simplicity, a general fan load torque curve will be
used in this study, which takes the form seen in (12).

Tl = Trated(1− s)2 (12)

This leaves only Tp to be varied, where analytical pulsating torque equations from
Soulard et al. [19], Rabbi et al. [8], and Tang [17] can be inserted for comparison.

Ti(s, δ) = Tp(δ) + Tc(s) + Tb(s)− Tl(s) (13)

Energies 2022, 15, 9206 10 of 31

To form a basis for comparison, a transient FE synchronization simulation is first con-
ducted using ANSYS Maxwell for a LSPMSM design. Then the following steps are performed:

• extract time-varied slip s(t) and rotor angle θ(t) curves from ANSYS Maxwell;
• approximate load angle δ(t) from rotor angle θ(t);
• select Tp equation for comparison and create Ti(s(t), δ(t)) by inserting extracted s(t)

and δ(t);
• compare analytical Ti curve to actual ANSYS Maxwell Ti curve.

Following these steps, Figure 12 was created for the pulsating analytical equations
mentioned above.

Unlike Soulard et al. [19], Tang [17] and Rabbi et al.’s [8] analytical formulae correctly
meet the target curve once synchronisation has occurred and can be argued for. Tang’s [17]
Tp seems to result in a curve more accurately representing the magnitude of the initial
instantaneous torque, while Rabbi et al.’s [8] Tp seems to be a better fit nearing the region
of synchronization.

For this reason, both Tp equations will be carried forward into the analytical methods
comparison in Section 3.3. To simplify notation, Tang’s [17] Tp will be hence referred to as
Tpa and Rabbi et al.’s [8] will be referred to as Tpb. The equations for Tpa and Tpb are given
in (14) and (15), with the individual components listed in Appendix B.1.

Tpa = Tpa1 sin δ + Tpa2 cos δ + Tpa3 sin 2δ + Tpa4 cos 2δ (14)

Tpb = Tpb0 + Tpb1 sin δ + Tpb2 sin 2δ + Tpb3 cos δ + Tpb4 cos 2δ (15)

Figure 12. Ti for various (Rabbi et al. [8], Tang [17], Soulard et al. [19]) Tp cases.

3.3. Analytical Methods

When comparing different analytical synchronization methods mentioned in Section 2.2,
two factors will be considered. Firstly, the consistency/accuracy of the method in determining
the critical inertia factor, and secondly, any additional resulting outcomes which might prove
meritorious to a designer.

3.3.1. Critical Inertia Factor

In order to compare the critical inertia factors produced by each method, the actual
critical inertia factors of the test machines need to be determined. This was conducted
through a binary search approach using transient FE analysis. The values determined
by this process can be seen in the column labelled “FEM” in Table 1 and represent the
target which the analytical methods aim to meet. For the three different analytical methods,
each method follows a somewhat different approach for the critical inertia factor (xcr)
determination. Rabbi et al.’s method, mentioned in Section 2.2.1, determined xcr using (6),
while both Chama et al. methods used a linear search approach. The linear search approach

Energies 2022, 15, 9206 11 of 31

was implemented by simply increasing the load inertia by a factor, until this factor fails
synchronization; the factor before that is xcr.

The results of this comparison can be seen in Table 1. While accuracy is of some
importance, a consistent trend in increase/decrease of xcr seen across a cluster of machines
is much more so. This is due to the fact, that when a designer makes a design change, the
critical factor should accurately reflect the resulting impact on xcr as well. Additionally, if
the trend is not obeyed, xcr would be of little use in the cost function of an iterative design
optimization procedure. In Table 1, a cluster of green represents where a trend was correctly
followed, while a cluster of pink represents where it was not.

Table 1. xcr determined by various analytical methods for the machine set.

Chama et al. (Time) Chama et al. (Energy) Rabbi et al.
Design FEM Tpa Tpb Tpa Tpb Tpa Tpb
Radial 1 44 110 52 111 52 213 69
Radial 2 40 112 49 113 50 225 67
Radial 3 93 0 66 0 66 556 44
V-Type 1 55 114 57 114 58 193 72
V-Type 2 39 120 40 121 40 306 58
V-Type 3 58 110 60 111 60 175 72
W-Type 1 65 121 60 122 60 218 77
W-Type 2 48 122 31 124 31 386 47
W-Type 3 164 200 158 201 158 174 120
Spoke 1 48 59 42 59 42 67 42
Spoke 2 45 42 34 43 34 38 28
Spoke 3 152 199 154 200 154 131 72

From Table 1 it is clear, that for use across a variety of different rotor topologies, both of
Chama et al.’s methods with Tpb (Equation (15)) are the most fitting to accurately determine
the trend of xcr. While Tpa demonstrates the correct trend for some rotor design and method
combinations, the predicted critical inertia values are much less comparable than when Tpb
is used.

3.3.2. Influence of an ANSYS Electronics Bug to Xcr Determination

While Table 1 demonstrates Chama et al.’s analytical methods correctly following the
xcr trend for the V-Types, W-Types, and Radial Types, there are cases (e.g., Radial 3) which
show a large difference between the FEM and analytically predicted xcr values. It was later
found that a certain geometry conversion bug in ANSYS Electronics Desktop is largely
responsible for this discrepancy.

One of such cases is demonstrated in Figure 13, where Figure 13a,c display two RMxprt
LSPMSM designs with the only difference of 0.01 mm in PM thickness. While the RMxprt
model layouts look identical, the respective Maxwell-2D FEM models seen in Figure 13b,d
distinctly vary, as the red circles highlight. Clearly, for the 4.58 mm case, the cage slot was
accidentally shifted by 1-slot pitch.

The time-domain method (Chama et al.) predicts a critical inertia factor of 60 for both
designs from their RMxprt models. However, because of the unexpected slot shifting, the
actual critical inertia factors, as determined through FE analysis in ANSYS Maxwell, differ
greatly. The actual xcr for the 4.59 mm case is 58, very close to the analytically predicted
xcr. For the 4.58 mm case on the other hand, where the alignment was shifted, the actual
xcr is 32, far from what was predicted for it by the analytical model and thus disturbing
the trend.

Energies 2022, 15, 9206 12 of 31

(a) (b)

(c) (d)

Figure 13. Geometry conversion bug found in ANSYS Electronics Desktop. (a) ANSYS RMxprt
geometry (PM thickness 4.58 mm); (b) generated ANSYS Maxwell model for (a); (c) ANSYS RMxprt
geometry (PM thickness 4.59 mm); (d) generated ANSYS Maxwell model for (c).

3.3.3. Computational Aspects

During the creation of Table 1, the computational time to calculate the critical factors
of all machines was noted, and can be seen in Table 2. The energy approach by Chama
et al. is most time consuming among the three methods. The computational time of a
specific method may not be a major concern for a single-run critical inertia factor analysis.
However, it is critically important when the analysis is used in a multi-objective, highly
iterative optimization procedure.

Table 2. Computational time to determine test machine’s xcr per method.

Type of Method Time (s)

Time-Domain Method (Chama et al.) 33.667
Energy Method (Chama et al.) 450.852
Energy Method (Rabbi et al.) 0.500

Computationally, Rabbi et al.’s energy method outperforms both Chama et al.’s meth-
ods greatly. This is because Rabbi et al.’s method only focuses on the last pole slip and
uses a sinusoidal approximation to estimate xcr with (6). Chama et al.’s methods on the
other hand take the entire asynchronous region into account and rely on linearly increas-
ing the multiplier factor to determine xcr, which is a far more computationally intensive
approach. However, the energy method by Rabbi et al. fails to consistently predict the
critical inertia factor trend (see Table 1). The time-domain method (Chama et al.) appears
to be the best option, given the fact that it correctly predicts the critical inertia factor trend
while at the same time not being too time demanding. Thus, it will be implemented in the
multi-objective optimization procedure in Section 5. Note that all the computer simulations
in this paper were conducted on a PC with Intel Core i7-3700 CPU 3.4 GHz, 16 GB RAM
running 64-bit Windows 10.

Energies 2022, 15, 9206 13 of 31

4. Software Design

Python was selected as the programming language for this development. Given its
maturity and prevalence for scientific use, a variety of libraries to perform such tasks exist,
the most notable being SciPy. In addition, a variety of graphical user interfacing (GUI)
libraries exist as well, such as Tkinter and PyQt. The language also allows for compilation
into executable files, thus meeting all necessary criteria for the development.

4.1. Overall Layout

Although the time-domain method (Chama et al.) has been identified as the most
appropriate method to be implemented by the program, it would be beneficial to also
include the energy-based methods in the implementation. This can be useful when a
designer wants additional confirmation for a factor or graph produced by the time-based
method. To accommodate these multiple methods, a facade structural pattern approach—as
described in [24]—will be used. This facade will control a single “solver” class which, in
turn, will interface with the various methods.

The solver class controls which methods are used, which xcr approach is taken, and
which parameters are passed between GUI and synchronization method. A list of all input
and output parameters the solver class controls can be seen in Figure 14.

Figure 14. Input and output parameters managed by solver class.

4.2. Implementation of Methods

The methods as a whole are implemented as functions, with the required machine
values being passed as arguments. Seeing as all methods require for the creation of Ti, as
outlined in Section 2.2, the instantaneous torque equation is captured in a nested function,
with parameters s and δ. Implementing the instantaneous torque as a function will allow
for a variety of different actions to be performed on it.

4.2.1. Energy Method (Rabbi et al.)

The steps needed for the energy method (Rabbi et al.) are summarized in the flowchart
below (Figure 15), where steps 1 and 2, as highlighted in yellow, require root finding algo-
rithms. For this purpose, SciPy’s root function is used, with the Ti function as implemented
in Section 4.2 passed as argument. Step 3’s Esyn requires functional integration, which is
performed using SciPy’s quad function. Escr is simply computed, and the final return value of
the process is the Boolean value defined by Esyn ≥ Escr. This value is passed to the “solver”
class, with the facade updating accordingly.

Energies 2022, 15, 9206 14 of 31

Figure 15. Flowchart implementing the energy method (Rabbi et al.).

4.2.2. Energy Method (Chama et al.)

The steps needed for the energy method (Chama et al.) can be seen in Figure 16. Step
1 requires solving the ODE seen in (7). While Chama et al. recommend solving this with
the Runge–Kutta–Fehlberg method (RK45), by choosing to use SciPy’s solve_ivp function,
other approaches can be considered as well.

Table 3 compares the critical inertia factors xcr found by using FEM and different
ODE solver methods such as the recommended RK45, Radau IIA, backward differentiation
formula (BDF), and combined Adams and BDF method (LSODA). All of these are methods
specifically aimed at numerically integrating implicit ODE equations.

From the table, the proposed RK45 method seems to deviate from the target xcr values
the most, especially for the V-Type 3 and W-Type 3 designs. While the other methods fall
relatively close in terms of xcr predicted, when it comes to computational time taken greater
variation can be observed across the various methods. Table 4 summarizes the run-times
for the different ODE methods, with the adaptive LSODA method executing noticeably
faster than its peers.

Figure 16. Flowchart implementing the energy method (Chama et al.).

Since the ODE solver returns the slip versus load angle curve as a numerical array,
steps 4 and 5—highlighted in orange in Figure 16—cannot be performed in the same
manner as steps 3 and 4 were for the energy method (Rabbi et al.) in Figure 15. Thus for
this numerical integration step, SciPy’s Simpson method is used.

However, while the energy comparison step Esyn ≥ Escr is mentioned in Chama et al.’s
method, the paper also mentions that one advantage of the direct resolution of the ODE is
that it allows for “easily recognizing the synchronization capability of the machine” [9] as
well. This happens when the slip never reaches zero, and thus Figure 16 can be reduced to
the flowchart seen in Figure 17.

This has no impact on the xcr determination, but in combination with a binary search
approach, reduces the computational time of the LSODA ODE solver to 161.292 s.

Energies 2022, 15, 9206 15 of 31

Table 3. xcr determined by the energy method (Chama et al.) with various ODE solvers compared to
target xcr determined through FEM.

Type of LSPMSM FEM RK45 Radau BDF LSODA

Radial 1 44 55 51 52 52
Radial 2 40 53 49 50 49
Radial 3 93 72 66 66 66

V-Type 1 55 61 57 58 58
V-Type 2 39 43 39 40 40
V-Type 3 58 81 59 59 60

W-Type 1 65 65 60 60 60
W-Type 2 48 34 31 31 31
W-Type 3 164 0 157 158 109

Spoke 1 48 60 42 42 42
Spoke 2 45 50 34 34 34
Spoke 3 152 175 154 154 154

Table 4. Computational time to determine xcr using the energy method (Chama et al.) with different
ODE solvers.

ODE Method Time (s)

RK45 402.086
Radau 550.320
BDF 450.852
LSODA 276.545

Figure 17. Adapted flowchart implementing the eneryg method (Chama et al.).

4.2.3. Time-Domain Method (Chama et al.)

The steps needed for the time-domain method (Chama et al.) are illustrated in
Figure 18. Step 1, solving the ODE problem, is performed using the LSODA method,
which was identified as the fastest ODE solver in Section 4.2.2. For fast computation of the
averages nrm and n′rm (steps 3 and 4 in purple), the last section of the generated curve and
its derivative are accumulated using the built-in Python function sum and then divided
using the function len. The aforesaid derivative is calculated using SciPy’s splev function.

Figure 18. Flowchartimplementing the time-domain method (Chama et al.).

Energies 2022, 15, 9206 16 of 31

To determine the critical inertia factor, a binary search approach is taken, following
the logic seen in Figure 19. The minimum factor is initialized as 0, and the maximum factor
as 500. This maximum value was chosen, seeing as it provides enough headroom above
the commonly observed xcr values, but not too far above to slow the search process down
substantially. While the linear search approach used earlier in Section 3.3.3 took 33.667 s,
determination of the same 12 xcr values was reduced to 18.822 s with the binary search
method.

Figure 19. Flowchart implementing binary search approach to determine xcr.

4.3. Graphical User Interface

To implement the graphical user interface for the program, the PyQt library was used.
This library was chosen, seeing as it allows for a drag-and-drop design process using the
Qt Designer software tool. Qt Designer then produces a *.ui file, which can be easily loaded
with a specific PyQt function. This approach allows for independent changing of user
interface elements, without needing to change the code behind them.

The interface is divided into 4 areas. The first area is used for inputting the machine’s
parameters needed to perform the analytical synchronization process. While these fields
will be automatically filled by the script mentioned in Section 4.4, allowing the user access
to these fields makes the program free-standing from ANSYS Electronics. The fields
available in this area are for machine parameters E0, Xd, Xq, R1, X1, R2, X2d, X2q, and
Jrot. Additionally, the area adjusts dynamically to support a slider and button used for
loading specific machine parameters after the additional features mentioned in Section 4.3.1
are used.

The second area contains the selection of the synchronization method to be used,
along with any additional input fields. These input fields are for testing synchronization
with a specific rotor inertia multiplier, testing for synchronization with specific additional
load inertia, and for selecting whether the critical inertia factor should be determined.
Additionally, the solver area adjusts to incorporate supplementary input fields dependent
on solver type. An example of this can be seen in Figure 20.

The third area is used for displaying the various graphs generated by the methods.
The selection for available graphs also adjusts according to the synchronization method
selected earlier. The graphing area is implemented by using an embedded Matplotlib area.
A “Clear Graphs” button is implemented as well, allowing for comparison of curves for
different input values. The legend is auto-generated depending on whether a constant
inertia value or a rotor inertia multiplier is added.

The last area is an output logging area, showing the critical inertia factor (if the option
is selected) and whether synchronization has occurred. Any additional information is also
displayed here.

All areas combine into the final layout seen in Figure 21. The width of the machine
parameter and solver areas is fixed, while the shared space between console and graph
area can be adjusted in order to meet the user’s needs.

Energies 2022, 15, 9206 17 of 31

(a) (b)

Figure 20. Solver UI area adjusting by solver method: (a) solver area for the time-domain method
(Chama et al.), (b) solver area for the energy method (Chama et al.).

Figure 21. Final GUI layout of analytical synchronization program.

4.3.1. Additional Features

Three additional features (namely, Loading, saving, and batch testing) are added for
convenience sake, accessible through the top left menu button as can be seen in Figure 22a.
All three features use comma-separated values (CSV) files.

Energies 2022, 15, 9206 18 of 31

The “Load Parameters” feature loads a number of machines’ parameters from a CSV
file into the program. Using the slider in the top right as seen in Figure 21, these various
parameters can then be loaded into their respective fields for testing.

The “Save Parameters” feature appends the machine parameters currently present in
the program to a CSV file of choice. If no file exists, a new one can be created.

The “Batch Test Parameters” feature uses the current solver settings to test the synchro-
nization and—if selected—critical inertia factor of machine parameters contained within a
CSV file. These machine parameters are also loaded into the program, similar to the load
feature, and the output of the tests is shown in the console.

To remove clutter from the program, some of the input settings listed in Figure 14
have been extracted to an “Additional Settings” dialog. The dialog is accessible through the
menu, as can be seen in Figure 22a, and opens the window seen in Figure 22b. Common
machine settings occupy these fields by default.

(a) (b)

Figure 22. Additional program features: (a) menu connecting to additional features and settings,
(b) additional settings window.

4.4. Integration with ANSYS Electronics Desktop

ANSYS Electronics Desktop offers programming capabilities through their scripting
environment [25]. Further, ANSYS specific libraries are also accessible. The scripting
environment implements IronPython 2.7, which implements Python 2.7 and NET frame-
work 4.0. Thus, scripts can be coded in either Python or VBScript. Considering Python’s
additional flexibility, all scripts were written in Python. These scripts can also be added to
ANSYS Electronics Desktop as “Tools”, allowing them to be run from the “Tools” tab by
the press of a button.

To integrate the program flawlessly into ANSYS Electronics Desktop, a script was
written which:

• Extracts available machine parameters from an RMxprt design.
• Approximates inaccessible machine parameters.
• Launches and automatically populates the analytical synchronization program with

the required values.

4.4.1. Extraction of Available Parameters

The scripting library’s functionality is limited, seeing as it is mainly used to change AN-
SYS specific features. As a result, no direct function is present in the scripting environment
for accessing the solution data of an RMxprt design.

In order to overcome this problem, the “output variable” commands of the script-
ing environment are exploited. The script contains the names of the desired machine
parameters, as listed in ANSYS. Then, for each parameter, the following steps are taken:

Energies 2022, 15, 9206 19 of 31

• create temporary output variable using CreateOutputVariable;
• obtain output variable value using GetOutputVariable;
• delete temporary output variable using DeleteOutputVariable.

Using this approach, eight of nine parameters needed for analytical synchronization
determination can be extracted from an RMxprt design. These parameters are E0, Xd, Xq,
R1, X1, R2, X2d, and X2q.

4.4.2. Approximation of Inaccessible Parameters

The machine parameter that cannot be extracted from RMxprt is the rotor inertia
Jrot, which is only available after a Maxwell design was created from the RMxprt design.
To make the analytical synchronization program standalone, an approximation of the
combined rotor inertia is computed and then passed to the program. This approximated
inertia value can still be changed by the user in the program.

The rotor’s inertia can be modeled as three separate inertia values. Firstly, the rotor
body inertia, which contains the cage windings, magnets, and the steel rotor core. Secondly,
the end rings’ combined inertia which are located at the ends of the rotor. Lastly, the shaft
inertia internal to the rotor.

Using the scripting function GetPropertyValue allows for retrieval of the rotor inner
radius ri and rotor outer radius ro. Using the approach mentioned in Section 4.4.1, the
total cage bar mass, total magnet mass, and rotor steel mass can be extracted as well.
The rotor body is then approximated as a hollow cylinder, with the cage bar mass being
approximated at the edge of the rotor radius. The end rings are also approximated as two
hollow cylinders. The shaft is assumed to be roughly 1.75 times longer than the rotor body
length, which can be extracted from RMxprt.

The final rotor inertia approximation is then computed using (16).

Jrot = Jbody + Jrings + Jshaft (16)

The approximate rotor inertias are compared to the rotor inertias generated by ANSYS
Maxwell in Table 5, which shows that the approximated rotor inertias are reasonably close
to the ones generated by Maxwell.

Table 5. Approximate and Maxwell rotor inertias.

Machine Maxwell Jrot (kgm2)
Approximated Jrot

(kgm2) % Difference

Radial 1 0.0090446 0.0081215 10.21
Radial 2 0.0090446 0.0081178 10.25
Radial 3 0.0090446 0.007938 12.23

V-Type 1 0.0090446 0.0081899 9.45
V-Type 2 0.0090446 0.0082991 8.24
V-Type 3 0.0090446 0.0081992 9.35

W-Type 1 0.0090446 0.0080894 10.56
W-Type 2 0.0090446 0.0082279 9.03
W-Type 3 0.0090446 0.0077131 14.72

Spoke 1 0.0090446 0.0083418 7.77
Spoke 2 0.0090446 0.0083635 7.53
Spoke 3 0.0090446 0.0077431 14.39

4.5. Software Design Summary

The program described in this section is bundled into an executable using the pyin-
staller library, after which the path to the executable is linked into the ANSYS script. The
script gathers all retrievable parameters as shown in Section 4.4.1, and approximates all
inaccessible parameters as described in Section 4.4.2.

Energies 2022, 15, 9206 20 of 31

The analytical synchronization program is then automatically launched with all pa-
rameters passed as system arguments. These arguments are then parsed into the program’s
machine parameter fields. The aforementioned script can be linked to the ‘Tool’ bar in
ANSYS Electronics Desktop allowing for retrieval, approximation, launching, and parsing
to happen with the click of one button.

5. Application of the Developed Software Tool

The analytical program developed in Section 4 has the ability to predict the critical
inertia factor xcr of a LSPMSM motor design. Using the critical inertia factor as a design ob-
jective in a multi-objective design procedure is of interest, but has so far only been achieved
through use of the Taguchi method, a low-iteration multi-objective design strategy [14].

Given the developed program’s integration with ANSYS Electronics Desktop, this
section aims to evaluate the effectiveness of the developed program in a highly iterative,
multi-objective optimization procedure using more conventional iterative strategies.

5.1. Software Adaptation

In order to be used for this iterative procedure, the developed software tool needs
to be adapted for the task at hand: it needs to be as fast as possible. A light-weight
version was thus developed, which does not feature the GUI, forces use of the time-domain
method (Chama et al.), and returns the critical inertia factor upon completion. Given
the simplification present here, it would have been ideal to perform this calculation in
the ANSYS scripting environment for even faster speeds. However, due to the scripting
environment’s restricted nature, no additional libraries can be installed into it, preventing
the use of SciPy functions.

Initially, the light-weight program was compiled in Python directly from its larger
counterpart, and then converted into an executable file using the pyinstaller library. How-
ever, early testing of the program in the iterative process showed that it was still far too
slow to be used for a highly iterative procedure. In an attempt to correct this, the light-
weight program was rewritten into the Go programming language. Go was chosen due
to the fact that it is designed around speed, easily and cleanly compiles into light-weight
executables, and has a growing supplementation of user created libraries. To replace the
role SciPy’s ODE solver played, the Godesim library was used. Godesim only employs the
Runge–Kutta–Fehlberg method at the moment, but as Table 6 demonstrates, this does not
cause it to differ too much from it’s Python counterpart, and the correct xcr trend is obeyed,
making it suitable for the task at hand.

The Go program’s execution time proves to be far superior compared to its Python
counterpart. Initialization scores and five iterations of the procedure described in Section 5.2
took the Python version 35 min and 17 s, while the Go version only needed 8 min and 26 s.

Table 6. Comparing Go and Python ODE solvers for predicting xcr.

Machine Python LSODA xcr Go RK45 xcr

Radial 1 52 51
Radial 2 49 49
Radial 3 66 61

V-Type 1 57 57
V-Type 2 40 39
V-Type 3 60 59

Energies 2022, 15, 9206 21 of 31

Table 6. Cont.

Machine Python LSODA xcr Go RK45 xcr

W-Type 1 60 60
W-Type 2 31 31
W-Type 3 158 108

Spoke 1 42 42
Spoke 2 34 34
Spoke 3 154 120

5.2. Differential Evolution Implementation

Differential evolution (DE) was chosen as the multi-objective optimization procedure
to be implemented. DE begins by initializing a starting population with a set number
of members. Each member x has a number of features y. Then, three members of the
population are chosen at random and each of their features are mutated following (17) to
produce a mutated member.

ymutation = yx1 + (yx2 − yx3) (17)

Crossover is then performed between the mutated member and a chosen member of
the population. This involves, for each feature, generating a random value between 0 and 1
and comparing it to the crossover rate, which was set at 0.5. If the value is greater than the
crossover rate, the mutated feature replaces the chosen member’s feature. After crossover
is completed, the new member’s score is generated according to the overall evaluation
criterion (OEC), and if it is greater than the chosen member’s score, the chosen member
is replaced. Each iteration of DE performs mutation, crossover, and comparison for each
member of the population.

Ideally, DE would have been performed in ANSYS Electronics Desktop using ANSYS
Optimetrics; however, interfacing with Optimetrics for each iteration of the optimization
process is not possible. Instead, DE was coded in the scripting environment in Python.
Figure 23 demonstrates how these various environments are iteratively used and interact.

Figure 23. The differential evolution process.

Optimization Problem

It is known that there is a competing relationship between the critical inertia factor (xcr)
and the power factor (PF) for the design of a LSPMSM [14], which means finding a design
that maximizes both factors is unfeasible. Instead, a trade-off between the two factors can

Energies 2022, 15, 9206 22 of 31

be found. Thus, the optimization problem has multiple objectives and constraints, which is
formulated as follows:

Maximize : F(X) =
3

∑
m=1

ωm fm (18)

where X represents the vector of geometric variables illustrated in Figure 24, and fm is
populated by the objective functions seen below, which can be weighted differently through
ωm.

f1 =
xcr

xcr max
; f2 =

PF
PFmax

; f3 =
1

1 + (Pout − Prated)2

The output power Pout is included in the optimization problem to ensure a working
design. Essentially, Pout is a constraint and not in contest with the other objectives. Its
weighting is kept as 0.5 in this optimization study.

(a) (b)

Figure 24. Parameters to be varied during optimization: (a) available slot parameters, (b) available
magnet parameters.

5.3. Parameter Restrictions

Given the extreme variety of possible rotor layouts, invalid designs are more than likely
to be created during crossover and random initialization. While the DE method will simply
replace these designs in the next iteration, some software restrictions are implemented as
well to limit the occurrence of this happening.

For the DE procedure, the radial rotor topology seen in Figure 1a was chosen, and
thus the successive restrictions implemented are specifically for this type. The stator
design remains constant, leaving only the slot design and rotor dimensions to be varied.
Figure 24a shows the slot parameters which can be varied, while Figure 24b shows the
magnet dimensions which can be varied.

Initialization begins by pre-defining a minimum and maximum value for all parame-
ters. These initial minima and maxima are only used during the initialization process, and
are then replaced per DE iteration.

Magnet Restrictions

While the slot parameters exhibit no complicated relationships, the magnet parameters
do, and thus the order in which magnet parameters are changed matters greatly. The order
is determined such that the subsequent parameter restrictions are only dependent on the
ones before it. Table 7 summarizes these relationships.

Energies 2022, 15, 9206 23 of 31

Table 7. Restrictions for magnet dimensional parameters.

Parameters Minimum Maximum

1. D1 2 ri 2(ro − slot depth − CDG)
2. O1 ri D1/2
3. MagT > 0 D1/2 − O1

4. Rib
√

2
(

O1−
√

D1
2

2 −O12
) √

2O1− 1

5. MagW > 0 Equation (22)

D1’s maximum restriction is defined by the outer rotor radius, slot depth, and cage
duct gap (CDG), which was set as 0.1 mm. The CDG ensures that there is at least some gap
between D1 and the created slots. The slot depth is calculated using (19).

slot depth = Hs0 + Hs2 +
Bs1

2
+

Bs2
2

(19)

The minimum rib restriction makes sure that the slot in which the magnet sits does
not protrude D1. The maximum rib restriction ensures that MagW is not forced to be 0.

The maximum magnet width is restricted by two cases which can arise. The inner case
is demonstrated in Figure 25a and thus is restricted by (20). The outer case is demonstrated
in Figure 25b and as a result, restricted by (21).

(a) (b)

Figure 25. Possible magnet width restrictions: (a) inner magnet width restriction, (b) outer magnet
width restriction.

innermax = 2
(

O1−
√

2
Rib

2

)
(20)

outermax = 2

√(D1
2

)2
− (O1 + MagT)2

 (21)

MagWmax = min(outermax, innermax) (22)

These restrictions were coded in the scripting environment. Mutation ignores the max-
imum and minimum values and simply creates the mutated parameters. Then, crossover
is performed first for all slot properties, followed by crossover for the magnet properties
in the order seen in Table 7. The minimum and maximum values for each parameter
are first calculated from the preceding parameters, after which the mutated value is—if
necessary—clamped into its respective range.

5.4. Optimization Procedure Results
5.4.1. Initial DE Procedure

The DE procedure described in Section 5.2 was run for 100 iterations, with the OEC set
as seen in (18). Given the importance of reaching the desired output power, ω3 was set as
0.5. For initial demonstration purposes, ω1 and ω2 were set as 0.25 each, thus directing the
DE process to find a 50/50 balance between the critical inertia factor and the power factor.

Energies 2022, 15, 9206 24 of 31

PFmax is always 1 and from experience xcr max was set as 100. The average population
score per iteration can be seen in Figure 26, with a clear increase in average score being
observable.

Figure 26. Average population score per iteration.

Evolution of both the power factor and critical inertia factor can be observed in
Figure 27. Note that the colour map represents when last a machine design was present in
an iteration’s population. From Figure 27 it is clear that early iterations of the procedure
produced designs which predicted a zero critical inertia factor. However, at around iteration
20, designs were created which predicted a low xcr. One machine can also be seen with a
full zero score during initialization due to an invalid rotor layout. Without the restrictions
placed in Section 5.3, a high number of invalid initial designs could occur.

Figure 27. Evolution of the power factor and critical inertia factor per iteration.

5.4.2. Varying Weightings

To further test the applicability of the analytical critical inertia factor program for multi-
objective optimization, the weightings ω1 and ω2 were adjusted to various distributions in
order to shift priority between the critical inertia factor and the power factor. ω3 was kept
constant at 0.5.

Energies 2022, 15, 9206 25 of 31

Figure 28 summarizes later members of the DE populations with these varied weight-
ings. A clear competing relationship between the critical inertia factor and the power factor
can be observed. By varying these weightings, designs can be created which prioritize
either the critical inertia factor or the power factor. This establishes what is known as a
Pareto front, a set of non-dominated solutions a designer can choose from [14]. While some
outliers exist, a general trend between critical inertia factor and power factor is observable.

Figure 28. Late DE iterations with varied weightings.

5.4.3. Confirmation of Optimized Critical Inertia Factors

To check the validity of the optimization procedure, three different LSPMSM designs
(marked by crosses in Figure 28) from differently weighted populations were chosen for
comparison, and their actual critical inertia factors were determined by FE analysis. The
rotor layouts of the three LSPMSM designs can be seen in Figure 29.

(a) (b) (c)

Figure 29. Three designs chosen from the DE optimization results for comparison: (a) design 1,
(b) design 2, (c) design 3.

The analytically predicted and actual critical inertia factors, as well as power factors,
output power, and weightings which produced the designs, are given in Table 8. As can
be seen from the table, the predicted xcr values fall short of the actual ones. The bug
mentioned in Section 3.3.2 was present in all three designs when their Maxwell 2D models
were created. While this distortion of xcr values due to the geometry conversion bug
is undesirable, Table 8 demonstrates that the trend set by the analytical program is still
maintained, proving the validity of use for the analytical program in the procedure. It may
be inferred that a better correlation between the xcr values by analytical method and FE
analysis can be expected without the influence of the identified ANSYS bug.

Energies 2022, 15, 9206 26 of 31

Table 8. Critical inertia factors, lifetimes, and scores of DE designs.

Analytical
xcr

FEM xcr ω1 ω2 PF Pout (kW)

Design 1 63 43 0.02 0.48 0.979 2.2
Desing 2 75 55 0.25 0.25 0.951 2.2
Design 3 82 57 0.48 0.02 0.917 2.2

5.4.4. Computational Time

While some improvements in computational time were achieved in Section 5.1, per-
forming the process in the ANSYS scripting environment adds to the computational cost
greatly. For each machine design tested, the ANSYS model needs to be set and analyzed
by ANSYS before the required parameters can be retrieved and the critical inertia factor
calculated. On average, one iteration of the DE process took approximately 1.5 min or 6 s
per design. Better computational time could be achieved if the program were to be merged
with ANSYS Optimetrics, a task currently impossible.

6. Conclusions

The work in this paper began by gathering and comparing various methods and
equations for determining the synchronization status of LSPMSMS. For synchronization
torque equations, (1), (11), and (15) were identified as the most fitting equations. The
time-domain method (Chama et al.) was determined to be the best method in terms of
computational time and the ability of predicting the critical inertia factor trend.

Using the selected methods, a software tool was created which captured their indi-
vidual advantages in terms of speed and visual aid. Some useful features were added
to broaden the tool’s use. Utilizing ANSYS scripting, the software tool was then inte-
grated with ANSYS Electronics Desktop. The script was developed to automatically extract
available parameters and to approximate inaccessible ones, providing a seamless interface
between ANSYS Electronics Desktop and the analytical synchronization tool.

Given the software tool’s ability to quickly determine the critical inertia factor, it
was subsequently adjusted to be used in a highly iterative optimization procedure. This
involved re-coding it into a programming language more suited for this recursive operation.
Next, the optimization method ‘differential evolution’ was programmed in the ANSYS
scripting environment, where the analytical tool and ANSYS RMxprt were employed recur-
sively to successfully perform multi-objective highly iterative optimization for LSPMSMs.
The results highlighted the usefulness of the tool’s ability to quickly determine a machine’s
critical inertia factor and how it can be used in conjunction with ANSYS Electronic Desktop
software suite to form a multi-objective design optimization procedure for LSPMSMs.

Although the critical inertia factors predicted by both the FEM and the analytical
software tool show the same trend and consistency, there are often discrepancies between
their values. It was found that a geometry conversion bug of ANSYS Electronics Desktop is
most likely the cause. Better correlation between these xcr values may be expected without
the influence of this ANSYS bug.

Author Contributions: Conceptualization, P.S. and R.-J.W.; methodology, P.S. and R.-J.W.; software,
P.S.; validation, P.S. and R.-J.W.; formal analysis, P.S.; investigation, P.S.; resources, P.S. and R.-J.W.;
data curation, P.S.; writing—original draft preparation, P.S.; writing—review and editing, P.S. and
R.-J.W.; visualization, P.S.; supervision, R.-J.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Energies 2022, 15, 9206 27 of 31

List of Symbols

Symbols Definition

s Slip
scr Critical slip
δ Load angle (rad)
θ Rotor angle (rad)
f Frequency (Hz)
ωs Electrical synchronous speed (rad/s)
ωrm Motor rotational speed (rad/s)
nrm Average motor rotational speed (rpm)
nrated Motor rated speed (rpm)
xcr Critical inertia factor
Jcr Critical inertia
Tb Braking torque (Nm)
Tc Cage torque (Nm)
Tp Pulsating torque (Nm)
Tl Load torque (Nm)
Trated Rated torque (Nm)
Ti Instantaneous torque (Nm)
E0 RMS induced back-EMF (V)
R1 Stator resistance (Ω)
X1 Stator reactance (Ω)
Xd Direct axis synchronous reactance (Ω)
Xq Quadrature axis synchronous reactance (Ω)
R2d Direct axis rotor resistance (Ω)
R2q Quadrature axis rotor resistance (Ω)
R′2 Referred rotor resistance (Ω)
Xad Direct axis reaction reactance (Ω)
Xaq Quadrature axis reaction reactance (Ω)
Escr Critical synchronisation energy (J)
Esyn Synchronisation energy (J)
PF Power factor
Pout Output power (W)
Prated Rated power (W)

Appendix A. Test Machine Set

Table A1. Test machine parameters.

E0 Xd Xq R1 X1 R′
2 X2

Radial 1 433.666 128.667 590.551 9.14949 13.0161 10.4612 8.44202
Radial 2 449.729 125.196 590.551 9.14949 13.0161 10.4612 8.43316
Radial 3 301.781 122.485 526.218 19.542 11.4 5.46636 5.78165

V-Type 1 458.604 141.214 590.551 9.14949 13.0161 10.1826 7.56974
V-Type 2 479.15 106.323 590.551 9.14949 13.0161 10.1826 7.48063
V-Type 3 453.474 149.655 590.551 9.14949 13.0161 10.1826 7.5913

W-Type 1 445.096 136.028 590.551 9.14949 13.0161 9.85417 7.83725
W-Type 2 497.386 93.797 590.551 9.14949 13.0161 9.85417 7.72939
W-Type 3 335.239 216.471 527.534 9.14949 12.716 5.46636 7.6169

Spoke 1 436.092 206.069 590.551 9.14949 13.0161 12.2775 7.719285
Spoke 2 403.516 252.735 590.551 9.14949 13.0161 12.2775 7.83847
Spoke 3 270.129 187.855 527.534 9.14949 12.716 5.46636 7.543815

Energies 2022, 15, 9206 28 of 31

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A1. Test machine set rotor layouts: (a) Radial 1, (b) Radial 2, (c) Radial 3, (d) V-type 1, (e)
V-type 2, (f) V-type 3, (g) W-type 1, (h) W-type 2, (i) W-type 3, (j) Spoke-type 1, (k) Spoke-type 2, (l)
Spoke-type 3.

Energies 2022, 15, 9206 29 of 31

Appendix B. Detailed Equations

Appendix B.1. Pulsating Torque Equation Components

Appendix B.1.1. Tang

Tpa1 = mp(bg′ + ha′ − de′ − f1c′) (A1a)

Tpa2 = mp(ce′ + ec′ − ag′ − ga′) (A1b)

Tpa3 =
mp
2

(ah + bg− c f1 − de) (A1c)

Tpa4 =
mp
2

(ce + bh− d f1 − ag) (A1d)

a = Kd1Vph

b = Kd2Vph

c = Kq1Vph

d = Kq2Vph

e =
Vph

2π f
(a2Kd1 + b2Kd2)

f1 =
Vph

2π f
(a2Kd1 − b2Kd2)

g =
Vph

2π f
(c2Kq1 + d2Kq2)

h =
Vph

2π f
(c2Kq1 − d2Kq2)

a′ = −(1− s)2Xq
E0

Dm

c′ = −(1− s)R1
E0

Dm

e′ =
Xda′ + E0

2π f

g′ =
Xqc′

2π f

Dm = R2
1 + XdXq(1− s)2

Kd1 =
[R1 − (1− 2s)d2] f2 + (1− 2s)c2e2

e2
2 + f 2

2

Kd2 =
[R1 − (1− 2s)d2]e2 − (1− 2s)c2 f2

e2
2 + f 2

2

Kq1 =
[R1 − (1− 2s)b2]e2 − (1− 2s)a2 f2

e2
2 + f 2

2

Kq2 = − [R1 − (1− 2s)b2] f2 + (1− 2s)a2e2

e2
2 + f 2

2

a2 = Xd −
s2X2

adX2d

R2
2d + (sX2d)2

b2 =
sX2

adR2d

R2
2d + (sX2d)2

c2 = Xq −
s2X2

aqX2q

R2
2q + (sX2q)2

Energies 2022, 15, 9206 30 of 31

d2 =
sX2

aqR2q

R2
2q + (sX2q)2

e2 = R2
1 + sR1(b2 + d2) + (1− 2s)(a2c2 − b2d2)

f2 = sR1(a2 + c2)− (1− 2s)(a2d2 + b2c2)

Appendix B.1.2. Rabbi et al.

Tpb0 =
mpR1Xq

π f (R2
1 + XdXq)2

[
(Xd − Xq)

(
V2

ph

2
− 1 + E2

0

)
− E2

0

(
R2

1
Xq

+ Xd

)]
(A2a)

Tpb1 =
mpE0Vph

2π f (R2
1 + XdXq)2

[(Xd − Xq)(R2
1 − XdXq) + (R2

1 + XdXq)Xd] (A2b)

Tpb2 =
mpV2

ph

4π f (R2
1 + XdXq)2

[(Xd − Xq)(XdXq − R2
1)] (A2c)

Tpb3 =
mpE0VphR1

2π f (R2
1 + XdXq)2

[(R2
1 + XdXq)− 2Xq(Xd − Xq)] (A2d)

Tpb4 =
mpV2

phR1

4π f (R2
1 + XdXq)2

[(Xd − Xq)(Xd + Xq)] (A2e)

References
1. De Almeida, A.T.; Ferreira, F.J.T.E.; Fong, J.A. Standards for Efficiency of Electric Motors. IEEE Ind. Appl. Mag. 2011, 17, 12–19.

[CrossRef]
2. Stoia, D.; Cernat, M.; Jimoh, A.G.; Nicolae, D. Analytical design and analysis of Line-Start Permanent Magnet Synchronous

Motors. In Proceedings of the IEEE AFRICON Conference, Nairobi, Kenya, 23–25 September 2009; pp. 1–7. [CrossRef]
3. Oshurbekov, S.; Kazakbaev, V.; Prakht, V.; Dmitrievskii, V.; Goman, V.V. Energy Efficiency Analysis of Fixed-Speed Pump Drives

with Various Types of Motors. Appl. Sci. 2019, 9, 5295. [CrossRef]
4. Palangar, M.F.; Soong, W.L.; Bianchi, N.; Wang, R.J. Design and Optimization Techniques in Performance Improvement of Line-Start

Permanent Magnet Synchronous Motors: A Review. IEEE Trans. Magn. 2021, 57, 1–14. [CrossRef]
5. Niaz Azari, M.; Mirsalim, M. Performance Analysis of a Line-start Permanent Magnet Motor with Slots on Solid Rotor Using

Finite-element Method. Electr. Power Compon. Syst. 2013, 41, 1159–1172. [CrossRef]
6. Mingardi, D.; Bianchi, N. FE-aided analytical method to predict the capabilities of line-start synchronous motors. In Proceedings

of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 5123–5130.
[CrossRef]

7. Vannini, A.; Simonelli, C.; Marfoli, A.; Papini, L.; Bolognesi, P.; Gerada, C. Modelling, Analysis, and Design of a Line-Start
Permanent Magnet Synchronous Motor. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM),
Valencia, Spain, 5–8 September 2022; pp. 834–840. [CrossRef]

8. Rabbi, S.F.; Rahman, M.A. Critical Criteria for Successful Synchronization of Line-Start IPM Motors. IEEE J. Emerg. Sel. Top.
Power Electron. 2014, 2, 348–358. [CrossRef]

9. Chama, A.; Sorgdrager, A.; Wang, R.J. Analytical synchronization analysis of line-start permanent magnet synchronous motors.
Prog. Electromagn. Res. 2016, 48, 183–193. CrossRef]

10. Yan, B.; Yang, Y.; Wang, X. A semi-numerical method to assess start and synchronization performance of a line-start permanent
magnet synchronous motor equipped with hybrid rotor. IET Electr. Power Appl. 2021, 15, 487–500. [CrossRef]

11. Zhou, Y.; Huang, K.; Sun, P.; Dong, R. Analytical Calculation of Performance of Line-Start Permanent-Magnet Synchronous Motors
Based on Multidamping-Circuit Model. IEEE Trans. Power Electron. 2021, 36, 4410–4419. [CrossRef]

12. Farooq, H.; Bracikowski, N.; La Delfa, P.; Hecquet, M. Modelling of Starting and Steady-State performance of Line Start
Permanent Magnet Synchronous Motor using Reluctance Network. In Proceedings of the 2022 International Conference on
Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022; pp. 226–231. [CrossRef]

13. Palangar, M.F.; Mahmoudi, A.; Kahourzade, S.; Soong, W.L. Optimum Design of Line-Start Permanent-Magnet Synchronous
Motor Using Mathematical Method. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE),
Detroit, MI, USA, 11–15 October 2020; pp. 2064–2071. [CrossRef]

14. Sorgdrager, A.J.; Wang, R.J.; Grobler, A.J. Multiobjective Design of a Line-Start PM Motor Using the Taguchi Method. IEEE Trans.
Ind. Appl. 2018, 54, 4167–4176. [CrossRef]

15. Hassanpour Isfahani, A.; Vaez-Zadeh, S. Line start permanent magnet synchronous motors: Challenges and opportunities.
Energy 2009, 34, 1755–1763. [CrossRef]

http://doi.org/10.1109/MIAS.2010.939427
http://dx.doi.org/10.1109/AFRCON.2009.5308177
http://dx.doi.org/10.3390/app9245295
http://dx.doi.org/10.1109/TMAG.2021.3098392
http://dx.doi.org/10.1080/15325008.2013.809819
http://dx.doi.org/10.1109/ECCE.2014.6954104
http://dx.doi.org/10.1109/ICEM51905.2022.9910937
http://dx.doi.org/10.1109/JESTPE.2013.2295178
http://dx.doi.org/10.2528/PIERM16050311
http://dx.doi.org/10.1049/elp2.12043
http://dx.doi.org/10.1109/TPEL.2020.3025172
http://dx.doi.org/10.1109/ICEM51905.2022.9910893
http://dx.doi.org/10.1109/ECCE44975.2020.9236205
http://dx.doi.org/10.1109/TIA.2018.2834306
http://dx.doi.org/10.1016/j.energy.2009.04.022

Energies 2022, 15, 9206 31 of 31

16. Sorgdrager, A. Development of Line-Start Permanent Magnet Synchronous Machines Using the Taguchi Method. Ph.D. Thesis,
Stellenbosch University, Stellenbosch, South Africa, 2017.

17. Tang, R.Y. Modern Permanent Magnet Machines: Theory and Design; China Machine Press: Beijing, China, 1997.
18. Miller, T.J.E. Synchronization of Line-Start Permanent-Magnet AC Motors. IEEE Power Eng. Rev. 1984, PER-4, 57–58. [CrossRef]
19. Soulard, J.; Nee, H.P. Study of the synchronization of line-start permanent magnet synchronous motors. In Proceedings of the

Conference Record of the 2000 IEEE Industry Applications Conference, Thirty-Fifth IAS Annual Meeting and World Conference
on Industrial Applications of Electrical Energy (Cat. No. 00CH37129), Rome, Italy, 8–12 October 2000; Volume 1, pp. 424–431.
[CrossRef]

20. Elistratova, V.; Hecquet, M.; Brochet, P.; Vizireanu, D.; Dessoude, M. Analytical approach for optimal design of a line-start
internal permanent magnet synchronous motor. In Proceedings of the 2013 15th European Conference on Power Electronics and
Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–7. [CrossRef]

21. Jędryczka, C.; Knypiński, U.; Demenko, A.; Sykulski, J.K. Methodology for Cage Shape Optimization of a Permanent Magnet
Synchronous Motor Under Line Start Conditions. IEEE Trans. Magn. 2018, 54, 1–4. [CrossRef]

22. Honsinger, V.B. Permanent Magnet Machines: Asychronous Operation. IEEE Trans. Power Appar. Syst. 1980, PAS-99, 1503–1509.
[CrossRef]

23. Behbahanifard, H.; Sadoughi, A. Line Start Permanent Magnet Synchronous Motor Performance and Design: A Review. J. World’s
Electr. Eng. Technol. 2015, 4, 58–66.

24. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley
Professional Computing Series; Pearson Education: London, UK, 1994.

25. ANSYS, Inc. ANSYS Electronics Desktop: Maxwell Scripting Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2021.

http://dx.doi.org/10.1109/MPER.1984.5525902
http://dx.doi.org/10.1109/IAS.2000.881145
http://dx.doi.org/10.1109/EPE.2013.6631924
http://dx.doi.org/10.1109/TMAG.2017.2764680
http://dx.doi.org/10.1109/TPAS.1980.319574

	Introduction
	Synchronization Analysis of LSPMSMs
	Electromagnetic Torque Characteristics
	Braking Torque
	Cage and Reluctance Torque
	Pulsating Torque

	Analytical Synchronization Methods
	Energy Method (Rabbi et al.)
	Energy Method (Chama et al.)
	Time-Domain Method (Chama et al.)

	Appraisal of Analytical Synchronization Equations and Methods
	Cage Torque Equations
	Pulsating Torque
	Analytical Methods
	Critical Inertia Factor
	Influence of an ANSYS Electronics Bug to Xcr Determination
	Computational Aspects

	Software Design
	Overall Layout
	Implementation of Methods
	Energy Method (Rabbi et al.)
	Energy Method (Chama et al.)
	Time-Domain Method (Chama et al.)

	Graphical User Interface
	Additional Features

	Integration with ANSYS Electronics Desktop
	Extraction of Available Parameters
	Approximation of Inaccessible Parameters

	Software Design Summary

	Application of the Developed Software Tool
	Software Adaptation
	Differential Evolution Implementation
	Parameter Restrictions
	Optimization Procedure Results
	Initial DE Procedure
	Varying Weightings
	Confirmation of Optimized Critical Inertia Factors
	Computational Time

	Conclusions
	AppendixA
	AppendixB
	AppendixB.1
	AppendixB.1.1
	AppendixB.1.2

	References

