Advanced Study of Spray Cooling: From Theories to Applications
Abstract
:1. Introduction
2. Mechanism and Theories of Spray Cooling
3. Experiment and Numerical Simulation for Heat Transfer Enhancement
3.1. Experimental Study
3.1.1. Nozzle
3.1.2. Cooling Medium
3.1.3. Heat Transfer Surface
3.2. Numerical Simulation
4. Research Progress in Main Application Fields
4.1. Electronic
4.2. Aerospace-Oriented Spray Cooling
4.3. Biomedicine
4.4. BTM & BTSM
5. Conclusions and Perspectives
- (1)
- In the research on heat transfer and flow enhancement in the process of spray cooling, the modification of dielectric refrigerants and the reconstruction of heat transfer surfaces have become research hotspots and trends. In the modification of dielectric refrigerants, the use of nanofluids and the addition of high-alcohol surfactants are significant measures for improving the heat transfer capacity of dielectric refrigerants. In the reconstruction of heat transfer surfaces, the depth and width of the microchannel surface are both important factors affecting the heat transfer effect. It can be seen from the current research on spray cooling that the proportion of simulation research is increasing. Simulation studies can clearly observe the changes in the evaporation and condensation states of working material in the two-phase process, which is a good supplement to experimental study.
- (2)
- For the research on spray cooling of electronic chips, researchers have achieved relatively perfect results in the past ten years. The experimental direction has expanded from designing and researching a single-spray cooling system to research of specific application fields such as large-area electronic boards and in-vehicle electronics devices. In future, research is expected to focus on cooling control and practical applications.
- (3)
- In the field of aeronautics and astronautics, the current research on AOSC is mainly carried out by simulating a high-altitude or space environment under ground laboratory conditions. VFEC and other related mathematical models have also achieved high consistency through experimental verification. Wang et al. have started to study the neural network control of AOSC. However, compared with conventional spray cooling technology, AOSC is still in its infancy. Among them, the influence characteristics of gravity on the heat transfer process of spray cooling and related theoretical and experimental studies need to be carried out in depth. Therefore, how to create a low-gravity or no-gravity environment and improve the ground experiment environment of AOSC on the basis of controlling the experimental cost has become a major problem for the research on AOSC.
- (4)
- In the biomedical field, the current research direction is laser shaping research using low-temperature spray cooling (CSC). In order to prevent cell damage or deactivation, the time threshold of different refrigerant sprays and the best spray distance were determined. A mathematical model of laser skin surgery was established to further quantify the cooling ability of the CSC. In the past three years, spray cooling has been used in bone grinding experiments due to its excellent cooling ability. We predict that spray cooling will be the main cooling method in the area of medical cooling in the future.
- (5)
- In terms of BTM and BTSM, with the gradual application of high-nickel batteries, the risk of overheating and thermal runaway of lithium-ion power batteries is gradually increasing. At the same time, the efficient thermal management and thermal safety technologies for power batteries are also progressing. At present, the spray cooling that uses refrigerant and water as coolant has been applied to the research on battery thermal management and thermal safety. The related work mainly focuses on auxiliary cooling in the battery’s normal condition and emergency cooling in the battery’s overheating condition. According to the existing research results, spray cooling has a good theoretical basis and feasibility for battery overheating suppression and thermal safety improvement and has broad application prospects when coupled with a vehicle-mounted thermal management system.
Funding
Data Availability Statement:
Conflicts of Interest
Nomenclature
T | temperature |
A | ampere |
S | second |
K | kelvin |
kg | kilogram |
°C | degree Celsius |
C | discharge rate |
W | watts |
k | thermal conductivity |
v | viscosity |
G | mass flow rate |
mm | millimeter |
m | meter |
Ah | ampere hour |
V | velocity |
f | pulse frequency |
cm | centimeter |
q | heat flux |
d/D | diameter |
g | gram |
P | pressure drop |
Re | Reynolds number |
Pe | Peclet number |
We | Weber number |
Nu | Nusselt number |
Greek symbols | |
spray cone angle | |
density | |
liquid evaporation fraction | |
Subscripts | |
sat | saturation temperature |
surf | surface |
In | inlet |
Acronyms | |
BTMS | battery thermal management system |
BTSM | battery thermal safety management |
BTM | battery thermal management |
CHF | critical heat flux |
CSC | cryogen spray cooling |
HTC | heat transfer coefficient |
CFD | computational fluid dynamics |
VOF | volume of fluid |
SMD | Sauter mean diameter |
VMD | volume median diameter |
ANN | artificial neural network |
IEC | indirect evaporative cooler |
HAS | high alcohol surfactant |
SDS | sodium dodecyl sulfate |
CTAB | cetyltrimethylammonium bromide |
VSFEC | vacuum spray flash evaporation cooling |
NPCMS | nanoscale phase change material paste |
GSCS | gas-atomized spray cooling system |
SJ | synthetic jet |
DSJ | double synthetic jet |
VFEC | vacuum flash evaporation cooling |
PMSM | permanent magnet synchronous motor |
EEC | electronic equipment chamber |
PFC | porous foam copper |
LIB | lithium-ion battery |
TR | thermal runaway |
SOC | states of charge |
WM | water mist |
CHVLS | cutaneous hyper-vascular lesions |
AOSC | aerospace-oriented spray cooling |
HF | hydrogen fluoride |
References
- Chen, H.; Ruan, X.H.; Peng, Y.H.; Wang, Y.L.; Yu, C.K. Application status and prospect of spray cooling in electronics and energy conversion industries. Sustain. Energy Technol. Assess. 2022, 52, 102181. [Google Scholar] [CrossRef]
- Kandasamy, R.; Ho, J.Y.; Liu, P.; Wong, T.N.; Toh, K.C.; Chua, S.J. Two-phase spray cooling for high ambient temperature data centers: Evaluation of system performance. Appl. Energy 2022, 305, 117816. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Q.; Yuan, L.; Xue, Z.; Jin, T. Experimental Investigation of Spray Cooling Performance in Non-Boiling Zone on Rough Super hydrophilic/Hydrophobic Surfaces. Int. J. Energy Res. 2022, 46, 19566–19573. [Google Scholar] [CrossRef]
- Xu, R.; Wang, G.; Jiang, P. Spray Cooling on Enhanced Surfaces: A Review of the Progress and Mechanisms. J. Electron. Packag. 2021, 144, 010802. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Zhu, K.; Li, H.; He, W.; Liu, S. Energy saving potential of using heat pipes for CPU cooling. Appl. Therm. Eng. 2018, 143, 630–638. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, T.; Gao, Q.; Han, Z.; Xu, Y.; Yang, K.; Xu, X.; Liu, X. Advance and prospect of power battery thermal management based on phase change and boiling heat transfer. J. Energy Storage 2022, 53, 105254. [Google Scholar] [CrossRef]
- Zhao, J.; Du, M.; Zhang, Z.; Ling, X. Thermal management strategy for electronic chips based on combination of a flat-plate heat pipe and spray cooling. Int. J. Heat Mass Transf. 2021, 181, 121894. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, T.; Gao, Q.; Han, Z.; Jin, Y.; Li, L.; Yang, K.; Xu, Y.; Liu, X.; Xu, X.; et al. Assessment and management of health status in full life cycle of echelon utilization for retired power lithium batteries. J. Clean. Prod. 2022, 379, 134583. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, W.; Wang, J.; Liu, C.; Yuan, M. Numerical investigation on heat transfer enhancement and surface temperature non-uniformity improvement of spray cooling. Int. J. Therm. Sci. 2022, 173, 107374. [Google Scholar] [CrossRef]
- She, Y.; Jiang, Y. Investigation on the spray cooling performance with liquid nitrogen. Int. Commun. Heat Mass Transf. 2022, 136, 106200. [Google Scholar] [CrossRef]
- Lin, Y.-K.; Zhou, Z.-F.; Fang, Y.; Tang, H.-L.; Chen, B. Heat transfer performance and optimization of a close-loop R410A flash evaporation spray cooling. Appl. Therm. Eng. 2019, 159, 113966. [Google Scholar] [CrossRef]
- Salman, A.S.; Abdulrazzaq, N.M.; Oudah, S.K.; Tikadar, A.; Anumbe, N.; Paul, T.C.; Khan, J.A. Experimental investigation of the impact of geometrical surface modification on spray cooling heat transfer performance in the non-boiling regime. Int. J. Heat Mass Transf. 2019, 133, 330–340. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, Q.; Meng, X.; Jin, K.; Xu, J.; Sun, J.; Wang, Q. Experimental investigation on intermittent spray cooling and toxic hazards of lithium-ion battery thermal runaway. Energy Convers. Manag. 2021, 252, 115091. [Google Scholar] [CrossRef]
- Tian, J.; Chen, B.; Li, D. Light transmittance dynamics and spectral absorption characteristics during auxiliary cryogen spray cooling in laser dermatology. Lasers Med Sci. 2022, 37, 2079–2086. [Google Scholar] [CrossRef] [PubMed]
- Bonacina, C.; Giudice, S.D.; Comini, G. Dropwise Evaporation. J. Heat Transf. 1979, 101, 441. [Google Scholar] [CrossRef]
- Oliphant, K.; Webb, B.; McQuay, M. An experimental comparison of liquid jet array and spray impingement cooling in the non-boiling regime. Exp. Therm. Fluid Sci. 1998, 18, 1–10. [Google Scholar] [CrossRef]
- Fabbri, M.; Jiang, S.; Dhir, V.K. A Comparative Study of Cooling of High Power Density Electronics Using Sprays and Microjets. J. Heat Transf. 2005, 127, 38–48. [Google Scholar] [CrossRef]
- Pautsch, A.G.; Shedd, T.A. Adiabatic and diabatic measurements of the liquid film thickness during spray cooling with FC-72. Int. J. Heat Mass Transf. 2006, 49, 2610–2618. [Google Scholar] [CrossRef]
- Si, C.Q.; Tian, C.Q.; Liang, N.; Xv, H.B. Performance Analysis of Air-Blast Nozzle Spray Cooling; The Chinese Association of Refrigeration: Beijing, China, 2009; p. 4. [Google Scholar]
- Wang, Y.; Liu, M.; Liu, D.; Xu, K. Heat Flux Correlation for Spray Cooling in the Nonboiling Regime. Heat Transf. Eng. 2011, 32, 1075–1081. [Google Scholar] [CrossRef]
- Chen, W.M. Experimental Study of Closed-Cycle SPRAY Cooling in Non Boling Regime; Huazhong Unibersity of Science and Technology: Wuhan, China, 2018. [Google Scholar]
- Mesler, R. A mechanism supported by extensive experimental evidence to explain high heat fluxes observed during nucleate boiling. AIChE J. 2010, 22, 246–252. [Google Scholar] [CrossRef]
- Yang, J.; Chow, L.C.; Pais, M.R. Nucleate Boiling Heat Transfer in Spray Cooling. J. Heat Transf. 1996, 118, 668–671. [Google Scholar] [CrossRef]
- Pais, M.; Tilton, D.; Chow, L.; Mahefkey, E. High-heat-flux, low-superheat evaporative spray cooling. In Proceedings of the 27th Aerospace Sciences Meeting, Reno, NV, USA, 9–12 January 1989. [Google Scholar]
- Rini, D.P.; Chen, R.-H.; Chow, L.C. Bubble Behavior and Nucleate Boiling Heat Transfer in Saturated FC-72 Spray Cooling. J. Heat Transf. 2001, 124, 63–72. [Google Scholar] [CrossRef]
- Horacek, B.; Kiger, K.T.; Kim, J. Single nozzle spray cooling heat transfer mechanisms. Int. J. Heat Mass Transf. 2005, 48, 1425–1438. [Google Scholar] [CrossRef]
- Cai, C.; Liu, H.; Jia, M.; Yin, H.; Xie, R.; Yan, P. Numerical investigation on heat transfer of water spray cooling from single-phase to nucleate boiling region. Int. J. Therm. Sci. 2020, 151, 106258. [Google Scholar] [CrossRef]
- Selvam, R.P.; Bhaskara, S.; Balda, J.C.; Barlow, F.; Elshabini, A. Computer Modeling of Liquid Droplet Impact on Heat Transfer During Spray Cooling. In Proceedings of the HT2005: Proceedings of the ASME Summer Heat Transfer Conference 2005, San Francisco, CA, USA, 17–22 July 2005; Volume 2, pp. 179–188. [Google Scholar]
- Liang, G.; Mudawar, I. Review of spray cooling—Part 1: Single-phase and nucleate boiling regimes, and critical heat flux. Int. J. Heat Mass Transf. 2017, 115, 1174–1205. [Google Scholar] [CrossRef]
- Mugele, R.A.; Evans, H.D. Droplet Size Distribution in Sprays. Ind. Eng. Chem. 1951, 43, 1317–1324. [Google Scholar] [CrossRef]
- Mudawar, I.; Valentine, W.S. Determination of the local quench curve for spray-cooled metallic surfaces. J. Heat Treat. 1989, 7, 107–121. [Google Scholar] [CrossRef]
- Yao, S.C.; Choit, K.J. Heat transfer experiments of mono-dispersed vertically impacting sprays. Int. J. Multiph. Flow 1987, 13, 639–648. [Google Scholar] [CrossRef]
- Ghodbane, M.; Holman, J.P. Experimental study of spray cooling with Freon-113. Int. J. Heat Mass Transf. 1991, 34, 1163–1174. [Google Scholar] [CrossRef]
- Estes, K.A.; Mudawar, I. Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces. Int. J. Heat Mass Transf. 1995, 38, 2985–2996. [Google Scholar] [CrossRef]
- Mudawar, I.; Estes, K.A. Optimizing and Predicting CHF in Spray Cooling of a Square Surface. J. Heat Transf. 1996, 118, 672–679. [Google Scholar] [CrossRef]
- Nasr, G.G.; Sharief, R.A.; James, D.D.; Jeong, J.R.; Yule, A.J. Studies of High Pressure Water Sprays from Full-Cone Atomizers; ILASS-Europe: Toulouse, France, 1999. [Google Scholar]
- Cheng, W.-L.; Han, F.-Y.; Liu, Q.-N.; Fan, H.-L. Spray characteristics and spray cooling heat transfer in the non-boiling regime. Energy 2011, 36, 3399–3405. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Li, Y.F.; Huang, C.F. HFE-7100/HFE-7300 spray quenching via a piezoelectric atomizer with a single-hole micronozzle. Appl. Therm. Eng. 2020, 175, 115343. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Zhao, R.; Long, W.-J.; Liu, R.-X.; Cheng, W.-L. Theoretical study of heat transfer enhancement mechanism of high alcohol surfactant in spray cooling. Int. J. Therm. Sci. 2021, 163, 106816. [Google Scholar] [CrossRef]
- Jia, J.Y.; Guo, Y.X.; Wang, W.D.; Zhou, S.R. Modeling and experimental research on spray cooling. In Proceedings of the Twenty Fourth Annual Ieee Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 16–20 March 2008; pp. 118–123. [Google Scholar]
- Zhao, R. Studu on Heat Transfer Mechanism in Spray Cooling and Terrestrial Simulation of Heat Transfer in Space. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2009. [Google Scholar]
- Geng, X.C. Simulation Analysis and Heat Transfer Performance of Spray Cooling Liquid Film. Master’s Thesis, Xidian University, Xi’an, China, 2010. [Google Scholar]
- Cheng, W.L.; Zhao, Y.; Han, F.Y.; Liu, Q.N.; Fan, H.L. Experimental and Theoretical Analysis of Heat Transfer Characteristics of Spray Cooling in a Closed Loop. J. Astronaut. 2010, 31, 1666–1671. [Google Scholar]
- Xie, J.; Zhao, R.; Duan, F.; Wong, T. Thin liquid film flow and heat transfer under spray impingement. Appl. Therm. Eng. 2012, 48, 342–348. [Google Scholar] [CrossRef]
- Xie, N.N. Experimental and Theoretical Study on Spray Cooling and Its Heat Transfer Enhancement. Ph.D. Thesis, Institution of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China, 2012. [Google Scholar]
- Cheng, W.-L.; Han, F.-Y.; Liu, Q.-N.; Zhao, R. Theoretical investigation on the mechanism of surface temperature non-uniformity formation in spray cooling. Int. J. Heat Mass Transf. 2012, 55, 5357–5366. [Google Scholar] [CrossRef]
- Qi, H.; Zhang, W.; Gong, L. Liquid film flow and heat transfer model under spray impact. CIESC J. 2018, 69, 2014–2022. [Google Scholar]
- Zhao, X.; Zhang, B.; Xi, X.; Yin, Z. Analysis and prediction of single-phase and two-phase cooling characteristics of intermittent sprays. Int. J. Heat Mass Transf. 2019, 133, 619–630. [Google Scholar] [CrossRef]
- Bhatia, B.; De, A.; Gutheil, E. Mathematical modeling of flash boiling phenomena in superheated sprays at low degree of superheat using dirichlet hyperboloids. Int. J. Multiph. Flow 2020, 130, 103366. [Google Scholar] [CrossRef]
- Liu, P.; Kandasamy, R.; Wong, T. Experimental study and application of an artificial neural network (ANN) model on pulsed spray cooling heat transfer on a vertical surface. Exp. Therm. Fluid Sci. 2021, 123, 110347. [Google Scholar] [CrossRef]
- Jiang, S.; Dhir, V.K. Spray cooling in a closed system with different fractions of non-condensibles in the environment. Int. J. Heat Mass Transf. 2004, 47, 5391–5406. [Google Scholar] [CrossRef]
- Tao, Y.; Huai, X.; Wang, L.; Guo, Z. Experimental characterization of heat transfer in non-boiling spray cooling with two nozzles. Appl. Therm. Eng. 2011, 31, 1790–1797. [Google Scholar] [CrossRef]
- Karwa, N.; Kale, S.R.; Subbarao, P.J.E.T.; Science, F. Experimental study of non-boiling heat transfer from a horizontal surface by water sprays. Exp. Therm. Fluid Sci. 2008, 32, 571–579. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Tien, C.H. R-134a spray dynamics and impingement cooling in the non-boiling regime. Int. J. Heat Mass Transf. 2007, 50, 502–512. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Liu, D.; Xu, K.; Chen, Y. Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime. Exp. Therm. Fluid Sci. 2010, 34, 933–942. [Google Scholar] [CrossRef]
- Abbasi, B.; Kim, J.; Marshall, A. Dynamic pressure based prediction of spray cooling heat transfer coefficients. Int. J. Multiph. Flow 2010, 36, 491–502. [Google Scholar] [CrossRef]
- Xie, J.; Gan, Z.; Duan, F.; Wong, T.; Yu, S.; Zhao, R. Characterization of spray atomization and heat transfer of pressure swirl nozzles. Int. J. Therm. Sci. 2013, 68, 94–102. [Google Scholar] [CrossRef]
- Wang, J.-X.; Li, Y.-Z.; Mao, Y.-F.; Li, E.-H.; Ning, X.; Ji, X.-Y. Comparative study of the heating surface impact on porous-material-involved spray system for electronic cooling—An experimental approach. Appl. Therm. Eng. 2018, 135, 537–548. [Google Scholar] [CrossRef]
- Wang, J.-X.; Li, Y.-Z.; Zhong, M.-L.; Zhang, H.-S. Investigation on a gas-atomized spray cooling upon flat and micro-structured surfaces. Int. J. Therm. Sci. 2021, 161, 106751. [Google Scholar] [CrossRef]
- Zhao, X.; Yin, Z.; Zhang, B.; Yang, Z. Experimental investigation of surface temperature non-uniformity in spray cooling. Int. J. Heat Mass Transf. 2020, 146, 118819. [Google Scholar] [CrossRef]
- Hsieh, S.-S.; Tsai, H.-H. Thermal and flow measurements of continuous cryogenic spray cooling. Arch. Dermatol. Res. 2006, 298, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Liu, M.H.; Li, D.; Xv, K. Experiment Study on Non-Boiling Heat Transfer Performance in Spray Cooling for High-Power Laser. Chin. J. Lasers 2009, 36, 1973–1978. [Google Scholar]
- Martínez-Galván, E.; Antón, R.; Ramos, J.C.; Khodabandeh, R. Effect of the spray cone angle in the spray cooling with R134a. Exp. Therm. Fluid Sci. 2013, 50, 127–138. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, W.L.; Peng, Y.H.; Zhang, W.W.; Jiang, L.J. Experimental study on optimal spray parameters of piezoelectric atomizer based spray cooling. Int. J. Heat Mass Transf. 2016, 103, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Huang, X.; Chen, Y.; Zhang, H. Experimental investigation of water spraying in an indirect evaporative cooler from nozzle type and spray strategy perspectives. Energy Build. 2020, 214, 109871. [Google Scholar] [CrossRef]
- Xin, H.; Chen, B.; Zhou, Z.F. Influence Research of Experimental Conditions on Multi-pulsed Spraying Cooling Heat Transfer Characteristics. J. Eng. Thermophys. 2020, 41, 2220–2224. [Google Scholar]
- Lin, L.; Ponnappan, R. Heat transfer characteristics of spray cooling in a closed loop. Int. J. Heat Mass Transf. 2003, 46, 3737–3746. [Google Scholar] [CrossRef]
- Pautsch, A.; Shedd, T. Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72. Int. J. Heat Mass Transf. 2005, 48, 3167–3175. [Google Scholar] [CrossRef]
- Tan, Y.; Xie, J.; Duan, F.; Wong, T.N.; Toh, K.; Choo, K.; Chan, P.; Chua, Y. Multi-nozzle spray cooling for high heat flux applications in a closed loop system. Appl. Therm. Eng. 2013, 54, 372–379. [Google Scholar] [CrossRef]
- Gao, X.; Li, R. Effects of nozzle positioning on single-phase spray cooling. Int. J. Heat Mass Transf. 2017, 115, 1247–1257. [Google Scholar] [CrossRef]
- Xue, R.; Ruan, Y.; Liu, X.; Zhong, X.; Chen, L.; Hou, Y. Internal and external flow characteristics of multi-nozzle spray with liquid nitrogen. Cryogenics 2021, 114, 103255. [Google Scholar] [CrossRef]
- Bandaru, S.V.R.; Villanueva, W.; Thakre, S.; Bechta, S. Multi-nozzle spray cooling of a reactor pressure vessel steel plate for the application of ex-vessel cooling. Nucl. Eng. Des. 2021, 375, 111101. [Google Scholar] [CrossRef]
- Cheng, W.-L.; Liu, Q.-N.; Zhao, R.; Fan, H.-L. Experimental investigation of parameters effect on heat transfer of spray cooling. Heat Mass Transf. 2010, 46, 911–921. [Google Scholar] [CrossRef]
- Zhifu, Z.; Weitao, W.; Bin, C.; Guoxiang, W.; Liejin, G. An experimental study on the spray and thermal characteristics of R134a two-phase flashing spray. Int. J. Heat Mass Transf. 2012, 55, 4460–4468. [Google Scholar] [CrossRef]
- Wang, J.-X.; Li, Y.-Z.; Zhang, H.-S.; Wang, S.-N.; Mao, Y.-F.; Zhang, Y.-N.; Liang, Y.-H. Investigation of a spray cooling system with two nozzles for space application. Appl. Therm. Eng. 2015, 89, 115–124. [Google Scholar] [CrossRef]
- Zhou, N.Y.; Jiang, Y.L.; Wang, Y. Experimental study on open spray cooling system with H2O as coolant. World SciTech R D 2016, 038, 286–291. [Google Scholar]
- Liu, N.; Zhan, T.J.; Hong, C.F. Influence of Pressure Parameters on Heat Transfer Performance of Spray Cooling. Electron. Compon. Mater. 2018, 37, 100–105. [Google Scholar]
- Liu, L.; Wang, X.; Ge, M.; Zhao, Y. Experimental study on heat transfer and power consumption of low-pressure spray cooling. Appl. Therm. Eng. 2020, 184, 116253. [Google Scholar] [CrossRef]
- Schwarzkopf, J.; Cader, T.; Okamoto, K.; Li, B.Q.; Ramaprian, B. Effect of Spray Angle in Spray Cooling Thermal Management of Electronics. In Proceedings of the ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, Charlotte, NC, USA, 11–15 July 2004. [Google Scholar]
- Silk, E.A.; Kim, J.; Kiger, K. Spray cooling of enhanced surfaces: Impact of structured surface geometry and spray axis inclination. Int. J. Heat Mass Transf. 2006, 49, 4910–4920. [Google Scholar] [CrossRef]
- Visaria, M.; Mudawar, I. Theoretical and experimental study of the effects of spray inclination on two-phase spray cooling and critical heat flux. Int. J. Heat Mass Transf. 2008, 51, 2398–2410. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Liu, D.; Xv, K. Heat Transfer Performance of Inclined Spray Cooling in Non-boiling Regime. CIESC J. 2009, 60, 1912–1919. [Google Scholar]
- Zhang, Y.D.; Zhang, W.; Qin, S. Research Progress of Spray Cooling Heat Transfer Mechanism. Chin. J. Refrig. Technol. 2020, 40, 34–41+53. [Google Scholar]
- Zhang, Y.L.; Weng, W.K.; Han, H.; Ren, H. Experimental Investigation on Heat Transfer and Pressure Drop Characteristics of Liquid Cooling Plate with Array of Micro Jets. Chin. J. Refrig. Technol. 2017, 37, 27–32. [Google Scholar]
- Chen, R.; Wang, H.; Yv, Y.S.; Zhou, J.; Zhu, X.; Liao, Q.; Yang, B.H. Temperature Distribution of Heat Transfer Surface in Spry Cooling with Ammonia. J. Chongqing Univ. 2012, 35, 46–51. [Google Scholar]
- Ren, Z.F. Experimental Study and Numerical Simulation on the Performance of Airborne Spray Cooling. Master’s Thesis, Nanjing University of Aeronautic and Actronautics, Nanjing, China, 2016. [Google Scholar]
- Jafari, M.; Jowkar, S.; Morad, M. Low flow rate spray cooling by a flow blurring injector. Int. Commun. Heat Mass Transf. 2021, 122, 105168. [Google Scholar] [CrossRef]
- Chen, R.-H.; Chow, L.C.; Navedo, J.E. Effects of spray characteristics on critical heat flux in subcooled water spray cooling. Int. J. Heat Mass Transf. 2002, 45, 4033–4043. [Google Scholar] [CrossRef]
- Sun, S.P. Research on Spray Cooling System for Electronic with Hing Heat Flux. Master’sThesis, Chongqing University, Chongqing, China, 2010. [Google Scholar]
- Liu, J.H.; Sun, W.; Liu, X.F.; Hou, Y. Influences of Spray Chamber Pressure and Nozzzle Bore Diameter on Spray Cooling Performance. High Power Laser Part. Beams 2013, 25, 2546–2550. [Google Scholar]
- Li, D.; Chen, B.; Wu, W.; Wang, G.; He, Y. Multi-scale modeling of tissue freezing during cryogen spray cooling with R134a, R407c and R404a. Appl. Therm. Eng. 2014, 73, 1489–1500. [Google Scholar] [CrossRef]
- Chen, S.; Liu, J.; Liu, X.; Hou, Y. An experimental comparison of heat transfer characteristic between R134-a and R22 in spray cooling. Exp. Therm. Fluid Sci. 2015, 66, 206–212. [Google Scholar] [CrossRef]
- Tian, J.-M.; Chen, B.; Li, D.; Zhou, Z.-F. Transient spray cooling: Similarity of dynamic heat flux for different cryogens, nozzles and substrates. Int. J. Heat Mass Transf. 2017, 108, 561–571. [Google Scholar] [CrossRef]
- Liu, H.; Cai, C.; Yan, Y.; Jia, M.; Yin, B. Numerical simulation and experimental investigation on spray cooling in the non-boiling regime. Heat Mass Transf. 2018, 54, 3747–3760. [Google Scholar] [CrossRef]
- Yuwei, Z.; Ni, L. Research progress of spray cooling with surfactant. Electron. Compon. Mater. 2016, 35, 18–22. [Google Scholar]
- Han, F.Y. Study on Heat Transfer Performance, Enhancement, and Surface Temperature Non-Uniformity in Spray Cooling. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2011. [Google Scholar]
- Cheng, W.; Xie, B.; Han, F.; Chen, H. An experimental investigation of heat transfer enhancement by addition of high-alcohol surfactant (HAS) and dissolving salt additive (DSA) in spray cooling. Exp. Therm. Fluid Sci. 2013, 45, 198–202. [Google Scholar] [CrossRef]
- Cheng, W.-L.; Zhang, W.-W.; Jiang, L.-J.; Yang, S.-L.; Hu, L.; Chen, H. Experimental investigation of large area spray cooling with compact chamber in the non-boiling regime. Appl. Therm. Eng. 2015, 80, 160–167. [Google Scholar] [CrossRef]
- Bhatt, N.H.; Raj, R.; Varshney, P.; Pati, A.R.; Chouhan, D.; Kumar, A.; Munshi, B.; Mohapatra, S.S. Enhancement of heat transfer rate of high mass flux spray cooling by ethanol-water and ethanol-tween20-water solution at very high initial surface temperature. Int. J. Heat Mass Transfer 2017, 110, 330–347. [Google Scholar] [CrossRef]
- Liu, N.; Yu, Z.; Zhu, T.; Yin, X.; Zhang, H. Effects of microstructured surface and mixed surfactants on the heat transfer performance of pulsed spray cooling. Int. J. Therm. Sci. 2020, 158, 106530. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Qiu, Y.-H. Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface. Heat Mass Transf. 2006, 43, 699–706. [Google Scholar] [CrossRef]
- Kim, S.; Bang, I.; Buongiorno, J.; Hu, L. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int. J. Heat Mass Transf. 2007, 50, 4105–4116. [Google Scholar] [CrossRef]
- Bansal, A. Alumina Nanofluid for Spray Cooling Heat Transfer Enhancement. In Proceedings of the 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, BC, Canada, 8–12 July 2007. [Google Scholar]
- Bellerová, H.; Tseng, A.A.; Pohanka, M.; Raudensky, M. Heat transfer of spray cooling using alumina/water nanofluids with full cone nozzles. Heat Mass Transf. 2012, 48, 1971–1983. [Google Scholar] [CrossRef]
- Bellerová, H.; Tseng, A.A.; Pohanka, M.; Raudensky, M. Spray cooling by solid jet nozzles using alumina/water nanofluids. Int. J. Therm. Sci. 2012, 62, 127–137. [Google Scholar] [CrossRef]
- Chang, T.-B.; Syu, S.-C.; Yang, Y.-K. Effects of particle volume fraction on spray heat transfer performance of Al2O3–water nanofluid. Int. J. Heat Mass Transf. 2012, 55, 1014–1021. [Google Scholar] [CrossRef]
- Ravikumar, S.V.; Haldar, K.; Jha, J.M.; Chakraborty, S.; Sarkar, I.; Pal, S.K.; Chakraborty, S. Heat transfer enhancement using air-atomized spray cooling with water–Al2O3 nanofluid. Int. J. Therm. Sci. 2015, 96, 85–93. [Google Scholar] [CrossRef]
- Peng, Y.H.; Cheng, W.L. Experimental investigation on the effect of heat transfer enhancement of vacuum spray flash evaporation cooling using Al2O3–water nanofluid. Energy Procedia 2017, 142, 3766–3773. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sarkar, I.; Ashok, A.; Sengupta, I.; Pal, S.K.; Chakraborty, S. Synthesis of Cu-Al LDH nanofluid and its application in spray cooling heat transfer of a hot steel plate. Powder Technol. 2018, 335, 285–300. [Google Scholar] [CrossRef]
- Li, Y.Y.; Cheng, W.L.; Zhao, Y. Experimental Study on the Effect of Dispersants on the Spray Cooling Heat Transfer of Nanofluid. Fluid Mach. 2020, 48, 58–61+79. [Google Scholar]
- Kim, J.; You, S.; Choi, S.U. Evaporative spray cooling of plain and microporous coated surfaces. Int. J. Heat Mass Transf. 2015, 47, 3307–3315. [Google Scholar] [CrossRef]
- Srikar, R.; Gambaryan-Roisman, T.; Steffes, C.; Stephan, P.; Tropea, C.; Yarin, A. Nanofiber coating of surfaces for intensification of drop or spray impact cooling. Int. J. Heat Mass Transf. 2009, 52, 5814–5826. [Google Scholar] [CrossRef]
- Bostanci, H.; Rini, D.P.; Kizito, J.P.; Singh, V.; Seal, S.; Chow, L.C. High heat flux spray cooling with ammonia: Investigation of enhanced surfaces for HTC. Int. J. Heat Mass Transf. 2014, 75, 718–725. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.L.; Xv, M.H. Heat Transfer Characteristics in Closed-loop Spray Cooling of Micro-structued Surfaces. High Power Laser Part. Beams 2012, 24, 2053–2058. [Google Scholar] [CrossRef]
- Xie, J.; Tan, Y.; Duan, F.; Ranjith, K.; Wong, T.N.; Toh, K.; Choo, K.; Chan, P. Study of heat transfer enhancement for structured surfaces in spray cooling. Appl. Therm. Eng. 2013, 59, 464–472. [Google Scholar] [CrossRef]
- Yang, Q. Experiments Investigation of Spray Cooling on Enhanced Surfaces with Ammonia. Master’s Thesis, Chongqing University, Chongqing, China, 2013. [Google Scholar]
- Yang, B.; Wang, H.; Zhu, X.; Liao, Q.; Ding, Y.; Chen, R. Heat transfer enhancement of spray cooling with ammonia by microcavity surfaces. Appl. Therm. Eng. 2013, 50, 245–250. [Google Scholar] [CrossRef]
- Fan, L.-W.; Li, J.-Q.; Li, D.-Y.; Zhang, L.; Yu, Z.-T. Regulated transient pool boiling of water during quenching on nanostructured surfaces with modified wettability from superhydrophilic to superhydrophobic. Int. J. Heat Mass Transf. 2014, 76, 81–89. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, P.-X.; Ouyang, X.-L.; Chen, J.-N.; Christopher, D.M. Experimental investigation of spray cooling on smooth and micro-structured surfaces. Int. J. Heat Mass Transf. 2014, 76, 366–375. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, P.-X.; Christopher, D.M.; Liang, X.-G. Experimental investigation of spray cooling on micro-, nano- and hybrid-structured surfaces. Int. J. Heat Mass Transf. 2015, 80, 26–37. [Google Scholar] [CrossRef]
- Chen, J.N.; Zhang, Z.; Ouyang, X.L.; Jiang, P.X. Dropwise Evaporative Cooling of Heated Surfaces with Various Wettability Characteristics Obtained by Nanostructure Modifications. Nanoscale Res. Lett. 2016, 11, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.H.; Ji, X.B.; Wang, Y.; Xv, J.L. Pool Boiling Heat Transfer on Superhydrophilic and Superhydrophobic Surfaces. Chem. Ind. Eng. Prog. 2016, 35, 3793–3798. [Google Scholar]
- Huang, L.; Jiang, Y.L.; Liu, H. Experimental Study on Spray Cooling of Surface with Micro-grooves. J. Refrig. 2018, 39, 81–88. [Google Scholar]
- Zhang, Y.F. Experimental Study on Droplet Impacting and Spray Cooling on Microstructured Surfaces. Master’s Thesis, Dalian University of Technology, Dalian, China, 2020. [Google Scholar]
- Xu, R.N.; Cao, L.; Wang, G.Y.; Chen, J.N.; Jiang, P.X. Experimental Investigation of Closed Loop Spray Cooling with Micro- and Hybrid Micro-/Nano-engineered Surfaces. High Power Laser Part. Beams 2020, 180, 2053–2058. [Google Scholar] [CrossRef]
- Selvam, R.P.; Lin, L.; Ponnappan, R. Computational Modeling of Spray Cooling: Current Status and Future Challenges. Aip Conf. Proc. 2005, 746, 55–63. [Google Scholar] [CrossRef]
- Selvam, R.P.; Lin, L.; Ponnappan, R. Direct simulation of spray cooling: Effect of vapor bubble growth and liquid droplet impact on heat transfer. Int. J. Heat Mass Transf. 2006, 49, 4265–4278. [Google Scholar] [CrossRef]
- Sarkar, S.; Selvam, R.P. Direct Numerical Simulation of Heat Transfer in Spray Cooling Through 3D Multiphase Flow Modeling Using Parallel Computing. J. Heat Transf. 2009, 131, 121007. [Google Scholar] [CrossRef]
- Nikolopoulos, N.; Theodorakakos, A.; Bergeles, G. Three-dimensional numerical investigation of a droplet impinging normally onto a wall film. J. Comput. Phys. 2007, 225, 322–341. [Google Scholar] [CrossRef]
- Liu, H.; Xie, M.Z.; Jia, M.; Liu, H.S.; Wang, S.C. Single Droplet Impacting onto Different Size Non-heated Surface. J. Jiangsu Univ. 2011, 32, 533–539. [Google Scholar]
- Cheng, W.-L.; Han, F.-Y.; Liu, Q.-N.; Zhao, R.; Fan, H.-L. Experimental and theoretical investigation of surface temperature non-uniformity of spray cooling. Energy 2011, 36, 249–257. [Google Scholar] [CrossRef]
- Trujillo, M.F.; Lewis, S.R. Thermal boundary layer analysis corresponding to droplet train impingement. Phys. Fluids 2012, 24, 112102. [Google Scholar] [CrossRef]
- Hou, Y.; Tao, Y.J.; Huai, X.L. Numerical Simulation and Analysis of Multi-nozzle Spray Cooling. J. Eng. Thermophys. 2012, 33, 1362–1366. [Google Scholar]
- Yan, H. The Experimental Study and Numerical Simulation of Mulyi-Nozzle Spray Cooling. Ph.D. Thesis, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China, 2014. [Google Scholar]
- Montazeri, H.; Blocken, B.; Hensen, J.L. CFD analysis of the impact of physical parameters on evaporative cooling by a mist spray system. Appl. Therm. Eng. 2015, 75, 608–622. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.L.; Wei, L.; Shen, S.Q.; Chen, Y. The flow and heat transfer characteristics of double droplets impacting on flat liquid film. Acta Phys. Sin. 2014, 63, 243–249. [Google Scholar]
- Montazeri, H.; Blocken, B.; Hensen, J. Evaporative cooling by water spray systems: CFD simulation, experimental validation and sensitivity analysis. Build. Environ. 2014, 83, 129–141. [Google Scholar] [CrossRef]
- Chen, J.-N.; Zhang, Z.; Xu, R.-N.; Ouyang, X.-L.; Jiang, P.-X. Numerical Investigation of the Flow Dynamics and Evaporative Cooling of Water Droplets Impinging onto Heated Surfaces: An Effective Approach To Identify Spray Cooling Mechanisms. Langmuir 2016, 32, 9135–9155. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, B.; Wang, X.-S. Numerical simulation of cryogen spray cooling by a three-dimensional hybrid vortex method. Appl. Therm. Eng. 2017, 119, 319–330. [Google Scholar] [CrossRef]
- Beni, M.S.; Zhao, J.; Yu, K.N. Investigation of droplet behaviors for spray cooling using level set method. Ann. Nucl. Energy 2018, 113, 162–170. [Google Scholar] [CrossRef]
- Kaltenbach, C.; Laurien, E. CFD simulation of spray cooling in the model containment THAI. Nucl. Eng. Des. 2018, 328, 359–371. [Google Scholar] [CrossRef]
- Raoult, F.; Lacour, S.; Carissimo, B.; Trinquet, F.; Delahaye, A.; Fournaison, L. CFD water spray model development and physical parameter study on the evaporative cooling. Appl. Therm. Eng. 2018, 149, 960–974. [Google Scholar] [CrossRef]
- Ma, H.; Si, F.; Zhu, K.; Wang, J. Quantitative research of spray cooling effects on thermo-flow performance of the large-scale dry cooling tower with an integrated numerical model. Int. J. Heat Mass Transf. 2019, 141, 799–817. [Google Scholar] [CrossRef]
- Brentjes, A.; Pozarlik, A.K.; Brem, G. Numerical simulation of evaporating charged sprays in spray chilling. J. Electrost. 2020, 107, 103471. [Google Scholar] [CrossRef]
- Wan, H.; He, G.; Xue, Z.; Li, W. Numerical study and experimental verification on spray cooling with nanoencapsulated phase-change material slurry (NPCMS). Int. Commun. Heat Mass Transf. 2021, 123, 105187. [Google Scholar] [CrossRef]
- Abdolzadeh, M.; Ameri, M. Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells. Renew. Energy 2009, 34, 91–96. [Google Scholar] [CrossRef]
- Yan, Z.; Duan, F.; Wong, T.; Toh, K.; Choo, K.; Chan, P.; Chua, Y.; Lee, L. Large area spray cooling by inclined nozzles for electronic board. In Proceedings of the 2010 12th Electronics Packaging Technology Conference, Singapore, 8–10 December 2010; pp. 76–78. [Google Scholar]
- Hsieh, S.-S.; Hsu, Y.-F.; Wang, M.-L. A microspray-based cooling system for high powered LEDs. Energy Convers. Manag. 2014, 78, 338–346. [Google Scholar] [CrossRef]
- Yan, Z.B.; Duan, F.; Wong, T.N.; Toh, K.C.; Choo, K.F.; Chan, P.K.; Chua, Y.S.; Lee, L.W. Large area impingement spray cooling from multiple normal and inclined spray nozzles. Heat Mass Transf. 2013, 49, 985–990. [Google Scholar] [CrossRef]
- Xie, J.; Tan, Y.; Wong, T.; Duan, F.; Toh, K.; Choo, K.; Chan, P.; Chua, Y. Multi-nozzle array spray cooling for large area high power devices in a closed loop system. Int. J. Heat Mass Transf. 2014, 78, 1177–1186. [Google Scholar] [CrossRef]
- Wang, J.-X.; Li, Y.-Z.; Li, J.-X.; Li, C.; Zhang, Y.; Ning, X.-W. A gas-atomized spray cooling system integrated with an ejector loop: Ejector modeling and thermal performance analysis. Energy Convers. Manag. 2018, 180, 106–118. [Google Scholar] [CrossRef]
- Tie, P.; Cheng, D.X.; Chen, W.B.; Zhang, Z.T.; Bao, T. The heat transfer feature of jet impinement cooling for GaN chip. Cryog. Supercond. 2019, 47, 55–59. [Google Scholar]
- Hadipour, A.; Zargarabadi, M.R.; Rashidi, S. An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis. Renew. Energy 2020, 164, 867–875. [Google Scholar] [CrossRef]
- He, W.; Luo, Z.B.; Deng, X.; Peng, W.Q.; Zhao, Z.J. Experimental investigation on the vectoring spray based on a novel synthetic jet actuator. Appl. Therm. Eng. 2020, 179, 115677. [Google Scholar] [CrossRef]
- Golliher, E.L.; Zivich, C.P.; Yao, S.C. Exploration of Unsteady Spray Cooling for High Power Electronics at Microgravity Using NASA Glenn’s Drop Tower. In Proceedings of the Asme 2005 Summer Heat Transfer Conference Collocated with the Asme Pacific Rim Technical Conference & Exhibition on Integration & Packaging of MEMS, NEMS, and Electronic Systems, San Francisco, CA, USA, 17–22 July 2005; pp. 609–612. [Google Scholar] [CrossRef]
- Cheng, W.-L.; Chen, H.; Hu, L.; Zhang, W.-W. Effect of droplet flash evaporation on vacuum flash evaporation cooling: Modeling. Int. J. Heat Mass Transf. 2015, 84, 149–157. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Wang, S.; Liu, Y.; Zhong, M. Ground experimental investigations into an ejected spray cooling system for space closed-loop application. Chin. J. Aeronaut. 2016, 29, 630–638. [Google Scholar] [CrossRef]
- Wang, Z.; Xing, Y.; Liu, X.; Zhao, L.; Ji, Y. Computer modeling of droplets impact on heat transfer during spray cooling under vibration environment. Appl. Therm. Eng. 2016, 107, 453–462. [Google Scholar] [CrossRef]
- Wang, J.-X.; Li, Y.-Z.; Yu, X.-K.; Li, G.-C.; Ji, X.-Y. Investigation of heat transfer mechanism of low environmental pressure large-space spray cooling for near-space flight systems. Int. J. Heat Mass Transf. 2018, 119, 496–507. [Google Scholar] [CrossRef]
- Wang, C.; Song, Y.; Jiang, P. Modelling of liquid nitrogen spray cooling in an electronic equipment cabin under low pressure. Appl. Therm. Eng. 2018, 136, 319–326. [Google Scholar] [CrossRef]
- Wang, J.-X.; Li, Y.-Z.; Li, G.-C.; Ji, X.-Y. Ground-Based Near-Space-Oriented Spray Cooling: Temperature Uniformity Analysis and Performance Prediction. J. Thermophys. Heat Transf. 2019, 33, 617–626. [Google Scholar] [CrossRef]
- Dai, T.; Diagaradjane, P.; Bs, M.A.Y.; Pikkula, B.M.; Thomsen, S.; Anvari, B. Laser-induced thermal injury to dermal blood vessels: Analysis of wavelength (585 nm vs. 595 nm), cryogen spray cooling, and wound healing effects. Lasers Surg. Med. 2005, 37, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-J.; Cheng, S.M.; Chiu, L.L.; Wong, B.J.; Ting, K. Minimizing superficial thermal injury using bilateral cryogen spray cooling during laser reshaping of composite cartilage grafts. Lasers Surg. Med. 2008, 40, 477–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holden, P.K.; Chlebicki, C.; Wong, B.J. Minimally Invasive Ear Reshaping With a 1450-nm Diode Laser Using Cryogen Spray Cooling in New Zealand White Rabbits. Arch. Facial Plast. Surg. 2009, 11, 399–404. [Google Scholar] [CrossRef]
- Yang, M.; Li, C.H.; Zhang, Y.B.; Wang, Y.G.; Li, B.K.; Li, R.Z. Theoretical Analysis and Experimental Research on Temperature Field of Microscale Bone Grinding under Nanoparticle Jet Mist Cooling. J. Mech. Eng. 2018, 54, 194–203. [Google Scholar] [CrossRef]
- Xv, J.G.; Cui, J.J.; Dong, N.N.; Cao, L. Transient spray cooling system for high-power laser treatment. Opt. Precis. Eng. 2019, 27, 1309–1317. [Google Scholar]
- Kung, W.-M.; Chang, C.-J.; Chen, T.-Y.; Lin, M.-S. Cryogen spray cooling mitigates inflammation and injury-induced CISD2 decline in rat spinal cord hemisection model. J. Integr. Neurosci. 2020, 19, 619–628. [Google Scholar] [CrossRef]
- Tian, J.; Chen, B.; Zhou, Z.; Li, D. Theoretical Study on Cryogen Spray Cooling in Laser Treatment of Ota’s Nevus: Comparison and Optimization of R134a, R404A and R32. Energies 2020, 13, 5647. [Google Scholar] [CrossRef]
- Wu, W.; Li, D.; Chen, B.; Wang, G. A new mathematical model for accurate quantification of cryogen spray cooling in cutaneous laser surgery using realistic boundary conditions. Lasers Med Sci. 2021, 36, 1609–1617. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, L.; Du, X.; Yang, Y. Pre-cooling of air by water spray evaporation to improve thermal performance of lithium battery pack. Appl. Therm. Eng. 2019, 163, 114401. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, Y.; Wang, G.; Deng, F.; Zhu, J. An experimental investigation of refrigerant emergency spray on cooling and oxygen suppression for overheating power battery. J. Power Sources 2019, 415, 33–43. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Q.; Wang, G.; Zhang, T.; Zhang, Y. Experimental study on active control of refrigerant emergency spray cooling of thermal abnormal power battery. Appl. Therm. Eng. 2020, 182, 116172. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Y.; Chen, G. Heat-pipe based spray-cooling thermal management system for lithium-ion battery: Experimental study and optimization. Int. J. Heat Mass Transf. 2020, 163, 120494. [Google Scholar] [CrossRef]
- Lei, S.; Shi, Y.; Chen, G. A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling. Appl. Therm. Eng. 2019, 168, 114792. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Y.; Wang, X.; Kong, X.; Li, G. Cooling control of thermally-induced thermal runaway in 18,650 lithium ion battery with water mist. Energy Convers. Manag. 2019, 199, 111969. [Google Scholar] [CrossRef]
- Larsson, F.; Andersson, P.; Blomqvist, P.; Lorén, A.; Mellander, B.-E. Characteristics of lithium-ion batteries during fire tests. J. Power Sources 2014, 271, 414–420. [Google Scholar] [CrossRef]
- Zhang, L.; Duan, Q.; Liu, Y.; Xu, J.; Sun, J.; Xiao, H.; Wang, Q. Experimental investigation of water spray on suppressing lithium-ion battery fires. Fire Saf. J. 2020, 120, 103117. [Google Scholar] [CrossRef]
- Liu, T.; Tao, C.; Wang, X. Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules. Appl. Energy 2020, 267, 115087. [Google Scholar] [CrossRef]
Nozzle Diameter | Injection Medium | Year | Author | Remarks |
---|---|---|---|---|
Freon-113 | 1991 [33] | Ghodbane, Holman | θ: The spray cone angle | |
FC-72 and water | 1995 [34] | I. Mudawar, K.A. Estes | ||
FC-72, FC-87 | 1996 [35] | P: nozzle pressure drop; : nozzle diameter | ||
1999 [36] | Nasr | = 0.61–1.7 mm | ||
Water | 2011 [37] | Cheng | R: the cross-section radius at a certain spray height. D: diameter of the heating surface D = 12 mm. | |
HFE-7100, HFE-7300 | 2020 [38] | Hsieh | 60 ≤ ≤ 140 10 ≤ ≤ 40 | |
2021 [39] | Li, Zhao | : 3.2~6.5 Height of nozzle: 10~20 |
Characterization of Heat Transfer | Injection Medium | Year | Author | Impingement Conditions | Maximum Error | Remarks |
---|---|---|---|---|---|---|
Water | 1998 [16] | Oliphant | = 100–1000 | 12% | ||
Water | 2004 [51] | Jiang, Dhir | = 1000–2000 = 1.76–6.7 | 10% | : heater area; : heater surface diameter; : liquid thermal conductivity; : liquid viscosity. | |
Water | 2011 [52] | Tao, Huai | = 520–2600 = 2.09–7.74 | |||
Water | 2007 [53] | Karwa | = 65–285 | 7.73% | : mass flux of water per unit area of the surface. | |
R134A | 2007 [54] | Hsieh, Tien | = 70–85 = 28–50 | The of this formula is defined as: | ||
Water | 2010 [55] | Wang, Liu | = 15.7–24.9 kg·s−1/m2 | 2.5% | is the ambient temperature and the length scale in is surface size. | |
PF-5060 | 2010 [56] | Abbasi | = 0–5000 kPa | 25% | No boiling heat transfer. | |
Water | 2011 [37] | Cheng | = 2.1–6.8 | 7% | : heating surface temperature; : working fluid inlet temperature; : saturation temperature of working fluid. | |
FC-72 | 2012 [45] | Xie | Low pressure and low flow | 20% | C1 = 0.21, C2 = 7.5, C3 = 5 1, 2, 3 correspond to different types of nozzles. | |
Water | 2013 [57] | Xie | 12,600 20,250 0.21.0 | 14% | is determined based on nozzle orifice conditions. | |
Water | 2018 [58] | Wang, Li | 2363.4 ≤ ≤ 4073.9 | 1.84% | Spray height: 8 cm, PFC semi-covered flat surface, consider two phase. | |
2668.4 ≤ ≤ 4341.3 | 1.50% | Spray height: 8 cm. PFC fully covered flat surface onside ring two phases. | ||||
Water | 2021 [59] | 9% | ||||
Water | 2020 [60] | Zhao, Yin | 35 80 110.8 116.2 2.3 8.8 | 30.7% | Used to predict nucleate boiling regimes. : local spray volumetric flux. | |
Water | 2021 [48] | Zhao, Zhang | 28.8% | Liquid properties are evaluated by average surface and liquid temperature. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Mo, Z.; Xu, X.; Liu, X.; Chen, H.; Han, Z.; Yan, Y.; Jin, Y. Advanced Study of Spray Cooling: From Theories to Applications. Energies 2022, 15, 9219. https://doi.org/10.3390/en15239219
Zhang T, Mo Z, Xu X, Liu X, Chen H, Han Z, Yan Y, Jin Y. Advanced Study of Spray Cooling: From Theories to Applications. Energies. 2022; 15(23):9219. https://doi.org/10.3390/en15239219
Chicago/Turabian StyleZhang, Tianshi, Ziming Mo, Xiaoyu Xu, Xiaoyan Liu, Haopeng Chen, Zhiwu Han, Yuying Yan, and Yingai Jin. 2022. "Advanced Study of Spray Cooling: From Theories to Applications" Energies 15, no. 23: 9219. https://doi.org/10.3390/en15239219
APA StyleZhang, T., Mo, Z., Xu, X., Liu, X., Chen, H., Han, Z., Yan, Y., & Jin, Y. (2022). Advanced Study of Spray Cooling: From Theories to Applications. Energies, 15(23), 9219. https://doi.org/10.3390/en15239219