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Abstract: The conventional volt-VAR control (VVC) in distribution systems has limitations in solving
the overvoltage problem caused by massive solar photovoltaic (PV) deployment. As an alternative
method, VVC using solar PV smart inverters (PVSIs) has come into the limelight, which can respond
quickly and effectively to solve the overvoltage problem by absorbing reactive power. However, the
network power loss, that is, the sum of line losses in the distribution network, increases with reactive
power. Dynamic distribution network reconfiguration (DNR), which hourly controls the network
topology by controlling sectionalizing and tie switches, can also solve the overvoltage problem and
reduce network loss by changing the power flow in the network. In this study, to improve the
voltage profile and minimize the network power loss, we propose a control scheme that integrates
the dynamic DNR with volt-VAR control of PVSIs. The proposed control scheme is practically usable
for three reasons: Primarily, the proposed scheme is based on a deep reinforcement learning (DRL)
algorithm, which does not require accurate distribution system parameters. Furthermore, we propose
the use of a heterogeneous multiagent DRL algorithm to control the switches centrally and PVSIs
locally. Finally, a practical communication network in the distribution system is assumed. PVSIs
only send their status to the central control center, and there is no communication between the PVSIs.
A modified 33-bus distribution test feeder reflecting the system conditions of South Korea is used
for the case study. The results of this case study demonstrates that the proposed control scheme
effectively improves the voltage profile of the distribution system. In addition, the proposed scheme
reduces the total power loss in the distribution system, which is the sum of the network power loss
and curtailed energy, owing to the voltage violation of the solar PV output.

Keywords: distribution system operator; solar photovoltaic (PV); heterogeneous multi-agent; deep
reinforcement learning; curtailment of renewable energy; active distribution network; volt-VAR
optimization; dynamic distribution network reconfiguration; smart inverter

1. Introduction

Conventional control devices for volt/VAR control (VVC) in distribution systems are
on-load tap changers (OLTC) and capacitor banks (CB) [1]. Currently, distribution systems
have more control functions to support the rapidly increasing penetration of renewable
energy. For example, dynamic distribution network reconfiguration (DNR) that controls
sectionalizing and tie switches reduces network power loss by changing power flow [2–4].
It is a cost-effective method to increase the hosting capacity of solar photovoltaics (PV) [5,6].
The distribution system operator (DSO) controls these devices to maintain the voltage
level in the normal operating range and operate the distribution system economically.
Another important control entity is the smart inverter installed in the solar PV generator.
The PV smart inverter (PVSI) is installed at the bus that suffers from the overvoltage
problem, and it can absorb and provide reactive power. Therefore, VVC using PVSI shows
a better performance than traditional VVC methods using OLTC or CB. Cooperative control
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schemes using both PVSI and dynamic DNR further improve the performance of voltage
regulation and network power loss [7].

Previous studies on VVC and dynamic DNR can be categorized into model-based and
model-free algorithms. The optimization framework of model-based approaches is gener-
ally non-convex because of the non-linearity of the power system. Therefore, these non-
convex optimization problems have been converted to those of convex optimization [4,8],
mixed-integer linear programming (MILP) [3,9], mixed-integer quadratic programming
(MIQP) [10], and mixed-integer second-order cone programming (MISOCP) [11,12]. Be-
cause model-based approaches are based on an optimization framework, they have shown
good performance. However, these approaches are difficult to apply to real distribution
systems. This is because model-based approaches heavily depend on a specific model,
which requires accurate distribution system parameters such as load, solar PV output, and
impedance of power lines.

To overcome the limitations of model-based approaches, model-free algorithms, that
is data-driven approaches, have been investigated [13–17]. In [13], the authors formulated
dynamic DNR as a Markov decision process (MDP) and trained a deep Q-network (DQN)
based on historical operational datasets. They also proposed a data-augmentation method
to generate synthetic training data using a Gaussian process. A two-stage deep reinforce-
ment learning (DRL) method consisting of offline and online stages was proposed to
improve the voltage profile using PVSIs [16]. In our previous work [18], we developed a
DQN-based dynamic DNR algorithm for energy loss minimization.

Furthermore, model-free algorithms can control different devices in a coordinated
manner using multi-agent reinforcement learning. In [19], a multi-agent deep Q-network
based algorithm that controls CB, voltage regulators, and PVSIs by interacting with the
distribution system was proposed. Different types of devices were modeled as independent
agents. Through this mechanism, independent agents share the same state and reward.
However, they also adopt a centralized control scheme that requires heavy communication
to obtain global information between agents. In [20], a centralized off-policy maximum
entropy reinforcement learning algorithm was proposed using a voltage regulator, CB, and
OLTC. Their proposed algorithm showed good voltage violation and power loss perfor-
mance with limited communication among agents. However, communication between
agents is still required, despite the reduced amount of communication.

Hybrid approaches that combine model-based and model-free methods have also
been investigated [12,21]. In [21], a two-timescale control algorithm was proposed. On a
slow timescale, the operations of OLTC and CBs are determined using the MISOCP-based
optimal power flow method. In contrast, a DRL algorithm is applied to control the reactive
power of PVSIs locally on a fast timescale. Similarly, a two-timescale and a hybrid of model-
based and model-free methods for VVC were proposed in [12]. Their proposed algorithm
controls shunt capacitors hourly using the DRL algorithm and PVSIs in seconds, using an
optimization framework to improve the voltage profile. However, these approaches have
the same limitations as model-based algorithms that involve optimization problems.

Most VVC control schemes operate in a centralized manner, even with a data-driven
approach. Centralized control schemes require communication between the central control
center and field devices, such as PVSIs, resulting in an increase in the amount of communi-
cation and computational complexity. In addition, DSO cannot fully control PVSIs when
solar PVs are owned by PV generation companies. Therefore, centralized control schemes
are not practical for the real operation of distribution systems.

In this paper, we propose a heterogeneous multiagent DRL (HMA-DRL) algorithm
for voltage regulation and network loss minimization in distribution systems, which
combines the central control of dynamic DNR and local control of PVSIs (Centralized VVC
normally controls OLTC and CBs. However, recent research shows that dynamic DNR
further improves the performance in terms of energy savings [7]. Therefore, in this study,
we chose dynamic DNR as the main control method for the DSO using a switch entity
because dynamic DNR can be used on top of a traditional VVC using OLTC and CBs). We
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use DRL algorithms for central and local controls, but they have different states, actions,
and rewards, that is, heterogeneous DRL, because their ownership types are different.
Through a case study using a modified 33-bus distribution test feeder, the proposed HMA-
DRL algorithm shows the best performance in terms of total power loss with no voltage
violation among model-free methods. The total power loss is the sum of the curtailed
energy, owing to voltage violations and network power loss. The main contribution of this
work is the practical applicability of the proposed HMA-DRL algorithm. These are listed
as follows:

1. Control authority: The two main control entities (switches and PVSIs) are owned
by different parties in general. Typically, DSO and PV generation companies have
switches and PVSIs, respectively. Therefore, in this study, we give their control
authority to the owners. The agent located at the central control center (CCC) operates
switches by the DSO, i.e., dynamic DNR, to mainly minimize network power loss. On
the other hand, the agents located at PVSIs control the reactive power of the PVSIs to
maintain the voltage level in the normal range by the PV generation companies.

2. Practical communication requirement: Each agent has different levels of information
because of the different control authorities. The DSO can monitor PVSI’s active and
reactive power output of solar PV as well as the overall status of the distribution
system. Therefore, the agent at CCC can use this information. In contrast, agents
at PVSIs can only observe their own buses. Therefore, the proposed HMA-DRL
algorithm does not require a communication link for the control signal from CCC to
PVSIs. Instead, it only requires a feedback link from PVSIs to CCC (a feedback link for
reporting a simple measurement reading can use a public communication link with
encryption; however, the communication link for the control signal requires a high
level of security, such as private communication, owing to its importance) and the
control signal from CCC to switches (We assume that a communication link between
the CCC and switches already exists because the DSO owns switches and takes charge
of its operation). Because the control signal to each PVSI requires a higher security
level than simple status feedback, we believe that this assumption on communication
requirements is practical for distribution systems.

3. Heterogeneous multi-agent DRL: A heterogeneous multi-agent DRL algorithm is
applied for voltage regulation and dynamic DNR to remove the dependency of
the distribution system parameters. We modeled the state, action, and reward of
the MDP for each agent, the MDP of the dynamic DNR with the overall status of
the distribution system, while the MDP of the voltage regulation at PVSI utilizes
local measurements. In this manner, the agent at CCC and agents at PVSIs learn an
optimal policy that complements each other because each reward results from their
simultaneous combined action.

The remainder of this paper is organized as follows. In Section 2, we first describe
the system model and formulate the optimization problem. In Section 3, the proposed
HMA-DRL algorithm is described. After demonstrating the performance of the proposed
algorithm in Section 4, we conclude this paper in Section 5.

2. System Model and Problem Formulation
2.1. System Model

We consider a radial distribution system as shown in Figure 1. The distribution system
has several control units, such as sectionalizing and tie switches, OLTC, CBs, and solar PVs.
Smart inverters operate all the solar PVs in this system. The control entities in this study are
switches and PVSIs. The sets of buses and power lines are denoted as N and E, respectively.
We assume that bus 1 is at the substation. We denote the set of buses with installed solar
PV generators as K. Each day is divided by the control period and is denoted by a period
set as T = {1, 2, . . . , T} and the time index as t. The phasor voltage and current in bus n at
time t are Vn

t and In
t , respectively. Their magnitudes and phases angle are represented by
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|Vn
t |, |In

t | and δn
t , respectively. The net active power and reactive power in bus n at time t

are represented by Pn
t and Qn

t , respectively.

Figure 1. System model.

The voltage and current can be obtained by solving the power flow equations. At
bus n, Pn and Qn are computed as

Pn = Vn
N

∑
m=1

Vm[Gmn cos(δn − δm) + Bmn sin(δn − δm)], (1)

Qn = Vn
N

∑
k=1

Vm[Gmn sin(δn − δm)− Bmn cos(δn − δm)]. (2)

The DSO accounts for the stable and reliable operation of the distribution system. In
this study, the main control entity of the DSO is switches to operate the distribution system
reliably. When a switch takes action, i.e., opens or closes, the topology of the distribution
system changes, i.e., dynamic DNR. Therefore, we assume that the DSO centrally controls
every switch, and the status information of the system is delivered to the control center. The
DSO controls switches as long as the distribution system forms a radial network topology.

Another control entity is PVSIs, which have two control options: centralized and local.
In centralized control of PVSIs, the DSO obtains information on the solar PV output and
sends a control signal to the PVSI. This approach can achieve an optimal operation from a
global perspective. However, this is not practical because solar PV owners should provide
complete control to the DSO, and a reliable and secure communication channel is required
between them. Therefore, in this study, we focus on the local control of PVSIs. We assume
that a PVSI installed on bus k can only observe local information, i.e., Vk

t , Pk
t and Qk

t , and
take action by itself, which is a more practical assumption.

Note that a feedback link exists between the solar PV generators, and the CCC from
solar PV generators to CCC exists. This link requires a low level of security because it
only delivers the status of the PVSIs to the CCC. This link can be a public link, i.e., the
Internet, with encryption, rather than a private link. This is a realistic assumption for a
communication network in the distribution systems.

2.2. Centralized Optimization

In this section, we describe the role of the DSO as an optimization framework. Stable
and reliable operation of the distribution system is the first requirement of a DSO. As long as
this requirement is fulfilled, the DSO wants to operate the distribution system economically.
The two control variables in this optimization framework are the switch status and the
reactive power outputs of the PVSIs. Let jo

t denote a binary variable representing the status
of switch located in line o at time t. If the switch is closed, its value is one. Otherwise, it is 0.
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The reactive power output of the PVSI installed on bus k at time t is QPV,k
t . We formulate

the optimization framework of the DSO as follows:

(C) min
{jot }t ,{QPV,k

t }t
∑
t∈T

∑
e∈E
|Ie

t |
2Re (3)

subject to (1), (2),

V ≤ |Vn
t | ≤ V, ∀n ∈ N, ∀t ∈ T (4a)

|Ie
t | ≤ Ie, ∀e ∈ E, ∀t ∈ T (4b)

jt ∈ A, ∀t ∈ T (4c)

∑
t∈T

∑
o∈O

∣∣jo
t − jo

t−1
∣∣ ≤ NSW (4d)

∣∣∣QPV,k
t

∣∣∣ ≤ √(SPV,k)2 − (PPV,k
t )2, ∀n ∈ K, ∀t ∈ T (4e)

The objective function of the problem (C) is to minimize the network loss in the
distribution system while maintaining the distribution system constraints.

The distribution system constraints are given by Equations (4a) and (4b), respectively.
In other words, the DSO should maintain all voltages and currents in the system within
the regulation range (Power lines near the substation have more capacity than those at
the end of feeders in the distribution system. Therefore, power lines located near the
substation have a higher current flow limit. A detailed specification of power lines is given
in Section 4.1). One of the major constraints of dynamic DNR is that the distribution system
remains to operate in a radial topology despite switching actions. Let jt and A denote a
vector of the switch status and a feasible set of switching actions that guarantees the radial
topology of the distribution system, respectively. Therefore, Equation (4c) describes the
radial constraint of the distribution system. A feasible set for the radial constraint can be
made using the spanning tree characteristics [9]. When the topology created by jt satisfies
the following conditions, jt is a member of A. That is jt = [j1t , j2t , . . . , jo

t , . . . , j|O|t ] ∈ A:

jot = bmn
t + bnm

t (5a)

∑
m∈N(n)

bnm
t = 1, n ≥ 2 (5b)

where N(n) and bnm
t are the set of all buses directly connected to bus n and a binary variable

whose value is 1 if bus m is the parent of bus n and 0, otherwise, respectively.
Because switching actions reduce the lifespan of switches, we add a constraint of

maximum switching numbers per day, as shown in Equation (4d). The final constraint, that
is, Equation (4e), describes the reactive power output of a PVSI. Its maximum output is
bounded by the capacity of the PVSI SPV,k and the current real power output of the PV
PPV,k

t [22].
The problem (C) is not a convex optimization problem because of the non-linearity

of the power flow equations and integer control variables. In addition, it requires a high
level of security communication because the DSO sends control signals (reactive power
output) to the PVSIs. Finally, the DSO can solve this problem by knowing the distribution
system parameters, such as power line impedance, load, and solar PV output. Therefore,
we propose using a model-free algorithm to overcome these limitations.

3. Heterogeneous Multi-Agent DRL Algorithm

We propose a HMA-DRL algorithm for voltage regulation and network loss minimiza-
tion in distribution systems that combines the central control of dynamic DNR and local
control of PVSI. Figure 2 shows the framework of the proposed HMA-DRL algorithm. The
proposed HMA-DRL algorithm divides the control entities into two main parts: an agent
at CCC (SW agent) and agents at PVSIs (PVSI agent). The two different agents operate
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independently. In central control, the DSO controls the switches to minimize network loss
while maintaining the radial constraint. To this end, the DSO monitors the real power
and reactive power of buses and obtains voltage and current through power flow calcula-
tions (Recent research has shown that machine learning-based models can approximate
the power flow without distribution network parameters [23,24]). In local control, PVSIs
control their reactive power output to avoid an overvoltage problem at the bus. The agents
at PVSIs only know their own active power output and voltage level at the bus.

Figure 2. A framework of the proposed HMA-DRL algorithm.

3.1. Multi-Agent Markov Decision Process

To train agents in a cooperative manner, we define a multi-task decision-making
problem as a multi-agent MDP. The multi-agent system in this work is a heterogeneous
multi-agent system that has different MDPs for different types of agents [25]. The agent
at CCC and agents at PVSIs have different types of agents because their ability to obtain
information and control entities are different. Therefore, the agent at CCC and agents at
PVSIs independently learn their policies, while other agents are regarded as part of the
environment [26]. The multi-agent MDP is composed of (X,S ,A, {Rx}x, P, γ), where (i) X
and x denote a set of agents and their indices, respectively. (ii) S = {Sx}x is the joint space
of state. (iii) A = {Ax}x denotes the joint action space of the agents. (iv) Rx(sx, ax) =
E[Rt+1|St = sx, At = ax] denotes the expected local reward of agent x received after the
state transition. (v) P : S × A × S −→ [0, 1] is the state transition probability, and (vi)
γ ∈ [0, 1] is a discount factor.

Each agent takes an action moving to a new state and receives a reward. The process
ends when the terminal state is reached. Through these processes, the sum of the discounted
local reward Gx

t of agent x at t is calculated as follows:

Gx
t =

∞

∑
k=0

γkRx
t+k+1. (6)

The goal of MDP is to find a policy π that maximizes Gx
t . A policy πx(ax|sx) = P[At =

ax|St = sx] is the probability of choosing an action ax in a given state sx. If the agents are
the agent at CCC and agents at PVSIs, x is set as SW and PV, respectively.
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3.2. MDP for Agent at CCC

The agent located at the CCC controls the open and close actions of switches, that
is, dynamic DNR, because this action requires global information to maintain the radial
topology of the distribution system. We define the state, action, and reward of this agent to
minimize the sum of the network power losses in the distribution system while maintaining
the voltage and current in the normal range.

3.2.1. State

We assume that the agent at the CCC can efficiently estimate the state of the distribution
system, that is, the voltage of each bus, and obtain the output of PVSIs, including active and
reactive power, through a feedback link (Each agent at PVSI sends its active and reactive
power to the DSO every hour because the agent at DSO control switches status hourly.
The latency requirement of this data is less than five seconds [27]). The state of MDP at t
is defined as the time, voltages of all buses, real power outputs of PVSIs, reactive power
outputs of PVSIs at t− 1, which are previous actions of PVSIs, and switching status at t− 1,
that is, the previous action of the agent at the CCC. It is defined as

sSW
t = (t, Vt, PPV

t , QPV
t−1, aSW

t−1). (7)

We put previous actions into the current state because the agent at CCC understands
the other agents’ actions, resulting in a better choice of action at the current time.

3.2.2. Action

For the agent at CCC, an action at t is the opening and closing of each switch, that is,
aSW

t = jt. After taking action, the topology of the distribution system changes. As the set of
feasible actions A is already defined, the agent takes action in the set. In this manner, the
radial constraint of the optimization problem, that is, Equation (4c), is fulfilled by setting
aSW

t ∈ A.

3.2.3. Reward

Because the MDP does not easily have constraints, we model the reward as a combi-
nation of the objective function and constraints of problem (C). The reward consists of
three parts: voltage violation and power loss vpSW

t , current violation cvSW
t , and penalty for

frequent switching actions. That is

rSW
t+1 = vpSW

t+1 + cvSW
t+1 − wsw · ∑

o∈O

∣∣jo
t − jo

t−1
∣∣. (8)

We select the first two reward terms, vpSW
t and cvSW

t as step functions to effectively
train the agent. From the point of problem (C) view, we model vpSW

t for the network loss
minimization and voltage violation, that is, Equations (3) and (4a), and is given as

vpSW
t+1 =


100, if V ≤ |Vn

t | ≤ V, ∀ n ∈ N and lDNR
t < lt

0, if V ≤ |Vn
t | ≤ V, ∀ n ∈ N and lDNR

t ≥ lt
−100, otherwise.

(9)

The agent at CCC obtains a positive reward when the network loss of the new topology
is less than that of the initial topology without any voltage violation. The agent receives a
negative reward for the voltage violation. Therefore, the agent preferentially avoids any
voltage violation.

Next, cvSW
t is modeled to imply a current violation, as shown in Equation (4b). It is

cvSW
t+1 =

{
0, if |Ie

t | ≤ Ie, ∀ e ∈ E
−500, otherwise.

(10)



Energies 2022, 15, 9220 8 of 18

When a current violation occurs in the distribution system, the agent at CCC receives
a highly negative reward. Note that the reason for the time index t + 1 is that the agent
receives a reward based on the outcome of its action at t. The last term corresponds directly
to Equation (4d). Frequent switching action are not preferred. We put a negative reward
per switching action and weight w on the hyperparameter adjusted by the DSO.

Note that the objective function and all the constraints in the problem (C) are included
in this MDP formulation except the reactive power constraint, that is, Equation (4e). This
is because the DSO cannot control the reactive power of PVSIs. Therefore, the MDP
formulation for PVSIs includes this constraint.

3.3. MDP for Agents at PVSIs

Agents located at PVSIs operate in a distributed manner because they have no global
information. They control their reactive power using only the local information. The
objective of these agents is to keep their bus voltage stable rather than minimizing the sum
of network power losses. This is because obtaining the sum of network power losses is not
possible without global information.

3.3.1. State

Considering the condition that PVSIs can observe only their generation profile, we
define the state of agent k as current time t, voltage magnitude of the bus that PVSI installed
as |Vk

t |, real power output of PVSI as PPV,k
t at the current time, and reactive power output

of PVSI at the previous time as QPV,k
t−1 . That is,

sPV,k
t = (t, |Vk

t |, PPV,k
t , QPV,k

t−1 ). (11)

3.3.2. Action

The possible actions of the PVSI are its reactive power output. By controlling the
reactive power, the curtailed energy of the active power output can be avoided, that is,
by maintaining its voltage level in a stable range. The maximum reactive power output
is bounded by the active power output and capacity of the inverter, as expressed in
Equation (4e). For example, when the output of a PVSI is 0.9 p.u., the maximum reactive
power output of the smart inverter is

√
1− 0.92 = 0.4359 p.u. Therefore, we set the control

range of reactive power in this case study as −0.4 ≤ QPV,k
t ≤ 0.4 (In the case study, we use

real solar PV output data from Yeongam, South Korea [28]. These data show that the PV
output peak of 0.93 p.u. occurred in March, so the PVSI can absorb reactive power up to√

1− 0.932 = 0.37 p.u. without over-sizing the PVSI. Therefore, the proposed HMA-DRL
algorithm has almost no issue with this reactive power margin. However, in case of the PV
output peak is 1 p.u., it is recommended to install a power conditioning system (PCS) with
a 10% margin, i.e., 1.1 p.u., to use voltage regulation algorithms [29]). We define action as
the difference in reactive power outputs between t− 1 and t in a discrete manner. That is,

aPV,k
t = QPV,k

t −QPV,k
t−1 = ∆QPV,k

t . (12)

Note that each action is constrained by reactive power limit as shown in Equation (4e).

3.3.3. Reward

Because the agents at PVSIs try to minimize the curtailed energy of their active power,
the objective of agents at PVSIs is to maintain their bus voltage stable. In addition, when
there is no voltage violation, PVSIs help reduce the network power loss. We define the
reward as a penalty for the severity of voltage violation, in case of voltage violation. The
reward in the no voltage violation condition is set as the negative of the square of the
apparent power. Because the apparent power and current injection, i.e., (Ik

t = (Sk
t /Vk

t )
∗),

are directly proportional, this reward represents power loss near the bus. The reward
function for the agent at the PVSIs is defined as
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rPV,k
t+1 =



−200, if |Vk
t | < V − β

−100, if V − β ≤ |Vk
t | < V

−wpv ·
∣∣∣Pk

t + jQk
t

∣∣∣2, if V ≤ |Vk
t | < V

−100, if V ≤ |Vk
t | < V + β

−200, if |Vk
t | ≥ V + β

(13)

where β is a constant variable that adds an additional stage to the voltage violation. Because
the reactive power control of PVSIs effectively mitigates the voltage violation problem
more than dynamic DNR, we model the penalty for the voltage violation as more severe
than that of the agent at CCC.

Although PV generation companies have no gain from reducing network power loss,
they can help reduce network power loss. This is because the control of the extra reactive
power of PVSIs does not negatively affect the PV generation companies. Other voltage
regulation research using PVSIs also assumes that PV generation companies cooperate to
improve the distribution system efficiency.

3.4. Multi-agent DRL Training Process

As an individual action–value function for the proposed multi-agent MDP, we adopted
a DQN [30], a representative value-based and off-policy DRL algorithm. It is because multi-
agent DRL algorithms are generally difficult to train and achieve stable performance.
Therefore, we limit the action space to a discrete set and then apply a value-based DRL
algorithm. Each agent updates its action–value function Q(st, at) at t via following the
Bellman equation:

Q(st, at)← Q(st, at) + α

(
rt+1 + γ max

a∈A
Q(st+1, a)−Q(st, at)

)
, (14)

where α and γ denote the learning rate and the discount factor, respectively. (In this paper,
there are two meanings of notation Q, i.e., action–value function and reactive power. The
Q variable without any sub- and super-script represents the action-value function, and all
the other cases represent reactive power.) We use ε-greedy policy to train the DQN. An
agent performs action a∗ with probability 1− ε, which is the best action thus far. On the
other hand, it selects a random action with probability ε to explore a better action than the
current best action. For stable and efficient training, we set ε as a function of time, which
decreases over time.

After performing an action, the agent stores the experience tuple (st, at, rt+1, st+1) in
replay buffer D, which is used to update the weights of the DQN. The target Q function
is defined as yt = rt + γ maxa∈A Q(st+1, a). Then, the loss function of the DQN is the
difference between the target and current Q values as

L(θ) = E[yt −Q(st, at))
2], (15)

where θ is the parameter of DQN.
The training process of the proposed HMA-DRL algorithm is summarized in

Algorithm 1. Note that we used a simulation environment with historical PV and load
data, that is, offline training, to efficiently and safely train the heterogeneous DRL. In a
simulation environment, agents are free to explore actions and states without considering
any damage to the distribution system.
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Algorithm 1: Multi-agent DRL training process.
1: Initialize replay buffer DSW , DPV,k, ∀k ∈ K
2: Initialize DQN parameter θQ

SW , θQ
PV,k

3: for i = 1 to Nep do
4: Initialize state of all agents
5: for t = 1 to T do
6: σ = random();
7: if σ < ε then
8: Choose random actions
9: else

10: Obtain actions aSW
t and aPV,k

t , ∀k
11: end if
12: Change topology according to aSW

t
13: QPV,k

t ← QPV,k
t−1 + aPV,k

t , ∀k
14: Power flow calculation : observe rt+1
15: Power flow calculation at t + 1 : observe Vt+1

16: sPV,k
t+1 = (t + 1,

∣∣∣Vk
t+1

∣∣∣, PPV,k
t+1 , QPV,k

t ), ∀k

sSW
t+1 = (t + 1, Vt+1, PPV

t+1, QPV
t , aSW

t )
17: Store transition (st, at, rt+1, st+1) in DSW , DPV,k

18: Update θQ
SW and θQ

PV,k, ∀k by Equation (15)
19: st ← st+1 for all agents
20: end for
21: end for
22: return θQ

SW , θQ
PV,k

4. Case Study

This section evaluates the proposed HMA-DRL algorithm in terms of the number of
voltage violations and power loss. The proposed scheme was compared with a conventional
reactive power control method using droop control and an optimization framework that
requires perfect model information and heavy communication.

4.1. Simulation Settings

We used a modified 33-bus distribution test feeder [31] as shown in Figure 3. The
distribution system parameters were obtained from the South Korean standards [32]. One
substation (154 kV/22.9 kV) supplies power to 33 buses, and the power base and nominal
voltages are 15 MVA and 22.9 kV, respectively. The standard voltage range was set as
[0.91, 1.04] p.u., according to the Korean standard [32]. This distribution system has five
sectionalizing switches (solid lines) and five tie switches (dotted lines) as the remote-
controlled switches. Power lines have different current flow limits. Power lines closer
to the substation had a higher current flow limit. Table 1 lists the details of the power
line specifications. Four PV generators of 4 MW with a power conditioning system (PCS)
capacity of 4 MVA were located at buses 11, 18, 28, and 33. We placed two PV generators
at the end of the feeder, bus 18 and bus 33. The worst-case scenario for the overvoltage
problems is to compare the performance of voltage regulation algorithms.

Table 1. Line parameters of the distribution system.

CNCV-W325 ACSR/AWOC-160 ACSR/AWOC-095

R (Ω/km) 0.075 0.182 0.304
X (Ω/km) 0.125 0.391 0.441
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Figure 3. Modified 33-bus distribution test feeder. There are two solar PV generators at buses 18 and
33; five sectionalizing switches (7), (14), (17), (24), and (28); and five tie switches (33), (34), (35), (36),
and (37).

Seasonal data (January, April, July, and October 2019) of the Yeongam solar PV output
data [28] and the 2017 US Midwest [33] data were used for PV generation and load data,
respectively. In each month, we used 25 days and the other days to train and test the
HMA-DRL algorithm, respectively. The maximum number of switching per day per switch
was set as three [34]. In this case study, we used pandapower, a Python-based power
system analysis tool, to calculate power flows [35].

Table 2 shows DQN parameters for the proposed scheme (We found appropriate
DQN parameters for the proposed HMA-DRL algorithm using reference work [13,18] and
modified them via trial and error.). The discount factor determines the importance of future
rewards, so γ = 0 means that the agents at PVSIs execute action considering only the
current reward. It is because reactive power control at the current time does not affect
future voltage levels. The number of output neurons is the size of the action set. The size
of the action set in switching is 63 as the number of feasible actions is 63 because of the
radial constraint. We set the reactive power control unit of ∆QPV,k is 0.04, and the number
of possible actions for the agents at the smart inverter as 41, that is, −0.8 ≤ ∆QPV,k

t ≤ 0.8.

Table 2. DQN hyperparameters.

Agent at PVSI Agent at CCC

Nep 1600
T 600 h (25 days)

Batch size for updating DQN 128
Replay buffer size 50,000

γ 0 0.85
β 0.01 -

wsw - 3
wpv 0.5 -

Size of neural network {4, 300, 300, 41} {46, 700, 700, 63}

4.2. Learning Curve

We independently trained each DRL-based algorithm using a seasonal data set (Jan-
uary, April, July, and October) for 1600 episodes to learn its control policy. Figure 4 shows
an example of the learning curve for the proposed HMA-DRL algorithm using January
data. The y-axis shows the cumulative reward, which is a summation of rewards dur-
ing one episode, that is, 25 days in a one-hour interval. The reward of agents at PVSIs
almost converges after 1000 episodes, but that of the agent at CCC consistently increases.
The cumulative rewards of all agents at PVSIs (buses 11, 18, 28, and 33) and the agent
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at CCC are an average of −250 and around 50,000, respectively. The agent at the CCC
receives a positive cumulative reward, as it improves the network power loss without
voltage violations.

Figure 4. Cumulative reward during the training procedure of HMA-DRL in January.

4.3. Performance Evaluation

Table 3 shows the performance of the control algorithms for the distribution system in
terms of the amount of curtailed energy, network loss, total loss, and number of switching
actions. All the results were averaged over the test period. The curtailed energy denotes
the sum of the curtailed active power outputs until the peak voltage is below the upper
limit of the standard range (To obtain the amount of curtailed energy, we used a simple
active power curtailing algorithm with a step size. The active power output of each PV
generator repeatedly decreases with the step size until the overvoltage problem is resolved).
Actually, all the methods in Table 3 except “Curtailment” do not curtail the active power
output. We use the curtailed energy as an indirect index for the severity of the overvoltage
problem. In addition, curtailed energy is also a type of power loss. Therefore, the total loss
is a summation of the curtailed energy and network loss. Note that because no voltage level
falls below the minimum voltage bound (i.e., 0.91 p.u.), during the entire test period, only
the curtailed energy due to the overvoltage problem is covered in the case study. Network
loss is the sum of the line losses in the distribution system.

Table 3. Daily average performance comparison in terms of voltage violation, loss, and the number
of switching. (HMA-DRL: the proposed heterogeneous multi-agent DRL; PV-DRL: DRL for PVSIs;
SW-DRL: DRL for switches; DC: droop control.

Method Curtailed
Energy (MWh)

Network Loss
(MWh)

Total Loss
(MWh)

Switching
Numbers

Baseline - 1.61 1.61 -
Curtailment 9.04 0.95 9.99 -

Myopic 0 1.22 1.22 13.91
HMA-DRL 0.04 1.27 1.31 7.48

PV-DRL 0.08 1.67 1.75 -
SW-DRL 7.67 1.43 9.09 11.30

DC 0 1.91 1.91 -
DC & SW-DRL 0 1.47 1.47 10.17

Among the methods, “Baseline” means no action of switches and PVSIs, that is, no
reactive power control under initial topology. “Curtailment” is another basic method to
solve the overvoltage problem by cutting down the active power output of PV generations.
All methods except “Baseline” cut down the active power output of PV generations when
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the voltage is violated. Therefore, “Baseline” is excluded from the performance comparison.
“Myopic” chooses an action that minimizes the current network loss given an action set
satisfying the operational constraints at every time step t, i.e., a solution of the problem
(C). Therefore, “Myopic” can be regarded as the optimal solution for voltage regulation
and loss minimization (We use a genetic algorithm to obtain a solution for the problem
(C), i.e., “Myopic”. The only difference between “Myopic” and the problem (C) is the
constraint of the number of switching actions, Equation (4d). Because “Myopic” cannot
look ahead from the current time, we restrict the maximum number of switching actions
at once to two times to satisfy the constraint of daily switching numbers, i.e., three times
in a day per switch [34]). However, this is not a practical approach because it requires
perfect model information and a large amount of communication between the DSO and the
PVSIs. PV-DRL and SW-DRL are DRL algorithms that control only PVSIs and switches,
respectively (Each DRL algorithm is separately trained to obtain its best performance).
They are included to determine how each entity alone affects the curtailed energy and
network loss. We also simulated the droop control methods, i.e., “DC” for PVSIs using the
standard volt-VAR function [29].

PV-DRL and DC are algorithms that only control the reactive power of PVSI. Almost
no voltage violations were observed during the test period. PV-DRL performs better than
DC in terms of network loss because the reward function for PVSI, that is, Equation (13),
considers both the network loss and voltage violation. In contrast, DC only focuses on
avoiding the voltage violation problem; hence, the network loss is more severe than in
PV-DRL. SW-DRL shows good performance in network loss, but the worst performance
in total loss among all algorithms except “Curtailment.” The SW-DRL approach cannot
adequately handle the overvoltage problem caused by massive solar PV installations.

Control algorithms using both PVSIs and switches, that is, Myopic, HMA-DRL, and
DC and SW-DRL, show better performance than the other algorithms using any one of
them. Among them, “Myopic” shows the best performance in terms of total loss while
satisfying the constraint on the number of switches, because it is an optimal solution to
the problem (C). The proposed HMA-DRL algorithm shows the second-best performance
with respect to the total power loss. We also simulated a hybrid scheme, that is, DC and
SW-DRL, which controls PVSIs and switches using droop control and DRL algorithms,
respectively. Note that SW-DRL and SW-DRL and DC were trained differently because
SW-DRL and DC were trained under the droop control method. Similar to the HMA-DRL
algorithm, DC and SW-DRL also match well. However, DC and SW-DRL execute more
switching actions than HMA-DRL in several test cases.

Table 4 shows the frequency and severity of the overvoltage problems without cur-
tailment during the test period, where Nover, Vavg, Vstd and Vmax denote the number of
buses suffering from overvoltage, average voltage magnitude for the overvoltage period,
their standard deviation, and maximum voltage magnitude, respectively. As Baseline and
SW-DRL frequently had overvoltage problems during the test days, they cannot be used
in real operation. However, the proposed HMA-DRL algorithm experienced it only three
times, and its value was slightly larger than the upper limit of 1.04 p.u.

Table 4. Frequency and severity of the overvoltage problems during the test period.

Method Nover Vavg (p.u.) Vstd (p.u.) Vmax (p.u.)

Baseline 698 1.0485 0.0063 1.0720
HMA-DRL 3 1.0415 0.0007 1.0425

PV-DRL 7 1.0427 0.0012 1.0449
SW-DRL 470 1.0517 0.0103 1.0906

Figure 5 shows the total loss and switching numbers among the three best methods.
For all months, Myopic, HMA-DRL, and DC and SW-DRL show good performance in that
order. However, the number of switching shows different trends from month to month.
The proposed HMA-DRL algorithm shows, on average, the lowest switching numbers with
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the most negligible variance between the seasonal results compared with the other two
algorithms. From these results, we can conclude that the HMA-DRL algorithm shows a
good balance between the switching loss and the number of switches.

(a) (b)

Figure 5. Daily average performance comparison using seasonal data. (a) Total loss for test days;
(b) Switching numbers for test days.

4.4. Analysis of Actions

This section examines the cooperative actions taken by the agents in the HMA-DRL
algorithm. We selected six days in January to analyze the actions of the agents. Without
any control of the switches and PVSIs, voltage violations occurred 219 times during the test
days. Figure 6 shows the bus voltage in the modified 33-bus distribution feeder for the six
days. The most severe issues occur at buses 18 and 33, where solar PVs are installed. On
the other hand, buses far from the solar PVs do not suffer from the overvoltage problem,
that is, from bus 1 to bus 3 and from bus 19 to bus 25. The voltage level at bus 18 is higher
than that at bus 33 because the power line resistance (AWOC-95) at bus 18 is higher. After
applying the proposed algorithm, no overvoltage problem occurred, as shown in Figure 6b.

(a) (b)

Figure 6. Voltage profile for six test days in January. (a) Voltage profile without control (Baseline);
(b) voltage profile with the proposed HMA-DRL algorithm.

Figure 7 shows the actions of agents at PVSIs and their results on a single test day.
PVSIs in DC and SW-DRL generally absolve more reactive power, as shown in Figure 7a
because of the droop control’s deadband. Even when the active power of the PV generator
decreases from 14 h, the voltage of bus 18 is still in the dead-band of the droop control,
and hence it keeps absolving the reactive power, resulting in voltage decrease. On the
other hand, the HMA-DRL algorithm shows a reactive power output similar to that of
Myopic, resulting in a maximum voltage as close to 1.04 p.u. as possible. Consequently,
DC and SW-DRL exhibits higher network losses than the HMA-DRL algorithm, as shown in
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Table 3. Figure 7d shows the voltage profiles of the DRL-based algorithms. The voltage level
under the SW-DRL algorithm significantly exceeds the normal voltage range. However, the
voltage level under the PV-DRL algorithm is much lower than the upper limit, resulting
in higher network power loss. Despite its conservative actions, overvoltage problems
frequently occur under the PV-DRL algorithm, as shown in Table 4.

(a) (b)

(c) (d)

Figure 7. The action of agent at PVSI and CCC on the first day. (a) Reactive power of smart inverter at
bus 18; (b) comparison of network power loss; (c) voltage profile comparison 1 at bus 18; (d) voltage
profile comparison 2 at bus 18 (DRL-based algorithms).

Figure 8a shows the topology indices of the three best methods. The number of
switches for Myopic, HMA-DRL, and DC and SW-DRL on the day were 14, 8, and 4, respec-
tively. While PVSIs change action almost every hour, the agent at CCC does not frequently
change the topology of the distribution system because of the penalty of switching actions.
From 11:00 to 17:00, all three algorithms form a distribution system with the same topology,
that is, topology 52, as shown in Figure 8b. In this topology, two critical buses (bus 18 and
bus 33) are placed on different feeders and closer to the substation.

(a)

Figure 8. Cont.
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(b)

Figure 8. Distribution system topology of the test day. (a) Topology index for three algorithms (DC
and SW-DRL, Myopic, and HMA-DRL); (b) topology 52.

5. Conclusions

In this study, we propose a heterogeneous multi-agent deep reinforcement learning
(HMA-DRL) algorithm to minimize network power loss while maintaining the voltage
levels within the specified operational range. We considered two control entities: switches
and solar PV smart inverters (PVSIs). Considering ownership of the two control entities,
they are controlled by the DSO (centralized) and PV generation companies (distributed),
respectively. In the proposed algorithm, the agent at the central control center operates
switches, that is, the dynamic DNR, with complete information on the distribution system.
It aims to minimize the power loss in the system while maintaining the voltage levels in
the normal range. On the other hand, the agents at PVSIs take the action of reactive power
output with local information. They do not require any information from neighbors or the
DSO. The agents at PVSIs only aim to maintain their local voltage levels within the normal
range. The heterogeneities of ownership, level of information acquisition, and actions
make the proposed HMA-DRL algorithm practical for a real distribution system. Through
case studies using the modified 33-bus distribution test feeder, the proposed HMA-DRL
algorithm performs the best among model-free algorithms in terms of the total power loss
in the distribution system. It shows a performance of 93.13% of Myopic, which can be
regarded as the optimal solution. In addition, the proposed HMA-DRL algorithm shows
stable and robust performance because it shows good performance throughout the year,
and the standard deviation of its performance has the smallest value among the different
schemes compared.

In future work, we plan to investigate a more robust approach using safe reinforcement
learning (RL) to protect distribution networks from unexplainable actions [36]. Additionally,
energy storage systems can be considered to further improve system performance.
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Abbreviations

N, n Set and index of buses
K, K, k Set, the number, and index of buses installed PV
E, e Set and index of lines, respectively.
O, o Set and index of lines installed remote-controlled switches
T, T, t Set, the number, and index of period
ρt Efficiency of PV output
Vn

t Phasor voltage in bus n at hour t
Ie

t Phasor current in line e at hour t
Pn

t Net real power in bus n at hour t
Qn

t Net reactive power in bus n at hour t
lt Power loss at hour t in initial topology
lDNR
t Power loss at hour t after switches control

Re Resistance of line e
Gmn Conductance between buses m and n
Bmn Susceptance between buses m and n
jot Switched status of line o
δn Phase angle in bus n
bnm

t Binary variable representing the parent–child relationship
NSW Maximum number of switching number
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