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Abstract: Demand response (DR) has a great potential for stabilizing the frequency of power systems.
However, the performance is limited by the accuracy of the frequency detection, which is affected by
measurement disturbances. To overcome this problem, this paper proposes a disturbance estimation-
based Kalman filtering method, which is utilized for the frequency control. By using the rate of
change of frequency (RoCoF), the Kalman filtering method can estimate the state of the ON/OFF
loads well. In this way, the influence of detection error can be reduced, and the DR performance can
be improved. Test results show that the proposed disturbance estimation-based Kalman filtering
method has a higher accuracy of frequency detection than existing methods (such as the low-pass
filter method) and therefore improves the frequency control performance of DR.

Keywords: demand response; disturbance estimation; Kalman filtering; frequency control

1. Introduction

The penetration of renewable energy sources is increasing nowadays, and the stability
of the power system is therefore threatened [1,2]. One of the stability problems is the
frequency stability, which is affected by the imbalance of active power. With the help of
advanced measurement and communication technology, the demand-side appliances, e.g.,
air conditioners, water heaters, household refrigerators, etc., can be controlled to support
not only load profiling [3], but also frequency control [4].

DR approaches are widely reported in existing research works. In Reference [4], the
DR approach was considered to modify the conventional frequency response model. In
Reference [5], priority management of demand-side resources was utilized to minimize the
inequality between generation and demand. It is shown that DR can make a significant
and reliable contribution to the primary frequency response in a manner similar to the
generators [6]. Household refrigerators, air conditioners, and water heaters are familiar
demand-side resources. In Reference [7], household refrigerators were combined with the
flywheel energy storage system (FESS) to participate in frequency control with low con-
sumption. In Reference [8], the characteristic of the power consumption of air conditioners
was analyzed in the perspective of the DR. In Reference [9], the hybrid hierarchical control
framework was proposed for ON/OFF appliances. In Reference [10], a DR operation
framework was proposed for the local management of customers to participate in the
electricity market. In Reference [11], dynamic interactions between local energy systems in
terms of the electricity and gas networks were investigated, and a novel MT model was
proposed to capture the nonlinear interactions. In Reference [12], a demand-side response
method based on binomial distribution was proposed, and the individual differences in the
demand-side responses were solved to improve consumer satisfaction.

Considering the influence of measurement noise in DR, the Kalman filtering method
was adopted to improve the performance in the detection of the system frequency. Com-
pared with traditional low-pass filtering methods, the Kalman filtering method is good at

Energies 2022, 15, 9377. https://doi.org/10.3390/en15249377 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15249377
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-6076-4892
https://doi.org/10.3390/en15249377
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15249377?type=check_update&version=1


Energies 2022, 15, 9377 2 of 14

dealing with process and measurement noise. The extended complex Kalman filter was
proposed to estimate the frequency of the power system [13,14]. The distributed Kalman
filtering scheme was proposed in the frequency estimation of the power system [15]. In
Reference [16], the Kalman filtering method was adopted to estimate the state of thermo-
statically controlled loads, including air conditioners and refrigerators. In Reference [17],
the Kalman filtering method was utilized in the frequency control based on the frequency
response model, where the accuracy of the frequency estimation is improved.

Notwithstanding the contributions of the existing work, the accurate measurement of
the system frequency is still challenging, which is reflected by the following two aspects:

• Although the Kalman filtering method [10–14] is good at dealing with process noise
and measurement noise, it cannot cope with large disturbances, e.g., generation
unit outages.

• The information of large disturbances cannot be taken as the input of the Kalman filter
as such information is accidental and is not directly available.

Estimating the disturbance mixed in the noise can improve the performance of Kalman
filtering-based frequency estimation and therefore contribute to the frequency control. In
this paper, DR using disturbance estimation-based Kalman filtering is proposed in the
frequency control. The contributions of this paper are as follows:

• The frequency response model is used to develop the Kalman filter.
• The disturbance estimation-based Kalman filtering approach is adopted in the fre-

quency detection. The disturbance is estimated through the RoCoF.
• The hybrid hierarchical DR control strategy is adapted to the disturbance estimation-

based Kalman filtering.

The remainder of this paper is organized as follows. The frequency response model
and the hybrid hierarchical DR control strategy are introduced in Section 2. Section 3
presents the algorithm to estimate the system disturbance and applies the disturbance
estimation-based Kalman filtering to the frequency control. Section 4 demonstrates the test
results for the proposed method validation. Section 5 provides the conclusion of this paper.

2. Model Development
2.1. Frequency Response Model

The frequency response model of the power system with DR is shown in Figure 1. The
definitions of the parameters are as follows:

Psp is the incremental power setpoint calculated by the secondary frequency control.
∆Y is the gate position deviation.
∆Pr and ∆Pm are the thermal power deviation of the reheated turbines and the turbine

mechanical power deviation, respectively.
PDR is the amount of change in the loads based on the frequency deviation.
∆Pd is the power of disturbance (for a sudden increase in load ∆Pd > 0, for a sudden

increase in generation ∆Pd < 0).
Ki is the integral gain of the secondary frequency control.
R is the speed droop parameter.
Tg and Tr are the speed governor time constant and the reheat time constant,

respectively.
FHP is the fraction of total power generated by the high-pressure turbine.
Tt is the turbine time constant.
H and D are the inertia constant and the system load damping factor, respectively.
s is the Laplace operator.
∆f is the frequency deviation.
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Figure 1. Frequency response model with DR.

The model of the system can be expressed by the state-space equations as follows:{ .
X = AX + BPDR + D∆Pd
Y = CX + v

(1)

where v is the measurement noise. The matrixes X and Y are the state vector and mea-
surement vector, respectively. A, B, C, D are the coefficient matrixes, which are defined
as follows:

X =
[

Psp ∆Y ∆Pr ∆Pm ∆ f
]T

A =


0 0 0 0 −Ki
1

Tg
− 1

Tg
0 0 − 1

TgR
FHP
Tg

1
Tr
− FHP

Tg
− 1

Tr
0 − FHP

TgR

0 0 1
Tt

− 1
Tt

0
0 0 0 1

2H − D
2H


B =

[
0 0 0 0 1

2H
]T

C =
[

0 0 0 0 1
]

D =
[

0 0 0 0 − 1
2H

]T

(2)

The discrete form of the state-space equations can be derived as the following:{
X(k) = AKX(k− 1) + BKPDR(k− 1) + DK∆Pd(k− 1)
Y(k) = CKX(k) + v(k)

(3)

where k represents the time step and AK, BK, CK, DK are the coefficient matrix of the
discretized state-space equations. Given the time step size Tstep, the matrixes can be
calculated as follows: 

AK = I + A · Tstep
BK = B · Tstep
CK = C
DK = D · Tstep

(4)

2.2. Hybrid Hierarchical DR Control Strategy

The structure of hybrid hierarchical DR control is shown in Figure 2, which includes
the control center, individual controllers, and ON/OFF appliances. The appliances that
are mainly the ON/OFF switching loads include air conditioners, water heaters, and
refrigerators. The control commands are calculated in the control center and broadcast
to each individual controller. The individual controller measures the frequency of the
power system and calculates the specified command to control the ON/OFF status of
each appliance.
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Figure 2. The structure of the hybrid hierarchical DR control.

The appliances can be simplified into ON-appliance and OFF-appliance states accord-
ing to the switch status. The ON/OFF states of ON- and OFF-appliances should be changed
if the frequency deviation occurs. If there is a negative deviation in the system frequency,
the ON-appliances should be gradually switched OFF to help raise the system frequency.
On the contrary, if there is a positive deviation in the system frequency, the OFF-appliances
should be gradually switched ON to help decrease the system frequency. To ensure a
smooth adjustment, the power consumption of the ON- and OFF-appliances should be
adjusted according to the magnitude of the frequency deviation. The relationship can be
expressed as follows:

PDRoff =


0 if 0 >∆ f ≥ −∆ fdb
−KDRoff(∆ f + ∆ fdb) if ∆ fprmoff ≤ ∆ f ≤ −∆ fdb
PDRmoff if ∆ f ≤ ∆ fprmoff

(5)

PDRon =


0 if 0 <∆ f ≤ ∆ fdb
KDRon(∆ f − ∆ fdb) if ∆ fdb ≤ ∆ f ≤ ∆ fprmon
PDRmon if ∆ f ≥ ∆ fprmon

(6)

where PDRoff is the power consumption of the ON-appliances that should be switched off,
PDRon is the power consumption of the OFF-appliances that should be switched on, PDRmoff
is the capacity (maximum available kW power) of the ON-appliances that can be switched
off, PDRmon is the capacity of the OFF-appliances that can be switched on, ∆ fdb is the dead
band of the frequency deviation, and ∆ fprmoff and ∆ fprmon are the minimum frequency
deviation and maximum frequency deviation, respectively. The coefficients KDRoff and
KDRon are calculated as follows: KDRoff =

PDRmoff
(∆ fdb−∆ fprmoff)

KDRon = PDRmon
(∆ fprmon−∆ fdb)

(7)

The responsive appliances in the demand side are ON/OFF loads, which can only be
discretely controlled. As shown in Figure 3, the total power consumption of responsive
appliances is calculated as follows:

PDR = PDRoff − PDRon (8)
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In addition, the total power consumption is the accumulative sum of the power
consumption of each appliance, which can be expressed as the following:

PDRoff =
n1
∑

i=1
PDRoff,iSoff,i

PDRon =
n2
∑

i=1
PDRon,iSon,i

(9)

where n1 is the total number of ON-appliances and n2 is the total number of OFF-appliances;
Soff,i and Son,i represent the ON/OFF status of ON- and OFF-appliances, respectively. The
ON/OFF status can be denoted as a zero–one value, where zero represents the original
state and one represents the changed state. For the ON-appliances, Soff,i = 0 represents the
ON state and Soff,i = 1 represents the OFF state, whereas for the OFF-appliances, Son,i = 0
represents the OFF state and Son,i = 1 represents the ON state.

Energies 2022, 15, x FOR PEER REVIEW 6 of 16 
 

 

Σ 

On-appliance,1

On-appliance,2

On-appliance,n

Off-appliance,1

Off-appliance,2

Off-appliance,n

 
 

+

+

+

-

-

-

PDRoff,1

PDRoff,2

PDRoff,n1

PDRon,1

PDRon,2

PDRon,n2

PDR

 

Figure 3. The model of DR resources. 

The appliances are sorted with priority. The appliance with the lowest priority 

responds first. The threshold of the i-th appliance is calculated as follows: 

DRoff ,

1

thoff db

DRoff

DRon ,

1

thon db

DRon

     

      

         

i

k

k

i

k

k

P

f i f
K

P

f i f
K

=

=

 = − −

 =  +















（）

（）

, (10) 

To avoid frequent switching, a delay is set for each appliance. The delay of the i-th 

appliance is calculated as follows: 

DRoff ,

1

off off0

re off

DRon ,

1

on on0

re on

     

      

       

i

k

k

i

k

k

P

T i T
K

P

T i T
K

=

=

= +

= +















（）

（）

, (11) 

where off0T
 and on0T

 are the minimum delays of the firstly switched OFF/ON-

responsive appliances and reoffK
 and reonK

 are the recovery coefficients. 

The control logic of the individual controller is shown in Figure 4. The operation of 

the individual controller is separated into two branches depending on the value of the 

frequency deviation. The switching signal to turn on the appliance is generated if the 

detected frequency deviation is larger than the upper threshold thonf
(calculated based 

on (10)). The switching signal to turn off the appliance is generated if the detected 

frequency deviation is smaller than the lower threshold thofff
(calculated based on (10)). 

The appliance is switched on/off to minimize the frequency deviation. Subsequently, the 

delay is initialized when the worst frequency deviation is detected. The delay onT
 is set 

when the maximum frequency deviation maxf
 is detected. The delay offT

 is set when 

the minimal frequency deviation minf
 is detected. The appliances return to their initial 

status when the delay expires and the frequency deviation is within the allowable range. 

Figure 3. The model of DR resources.

The appliances are sorted with priority. The appliance with the lowest priority re-
sponds first. The threshold of the i-th appliance is calculated as follows:

∆ fthoff(i) = −∆ fdb −

i
∑

k=1
PDRoff,k

KDRoff

∆ fthon(i) = ∆ fdb +

i
∑

k=1
PDRon,k

KDRon

(10)

To avoid frequent switching, a delay is set for each appliance. The delay of the i-th
appliance is calculated as follows:

Toff(i) = Toff0 +

i
∑

k=1
PDRoff,k

Kreoff

Ton(i) = Ton0 +

i
∑

k=1
PDRon,k

Kreon

(11)

where Toff0 and Ton0 are the minimum delays of the firstly switched OFF/ON-responsive
appliances and Kreoff and Kreon are the recovery coefficients.

The control logic of the individual controller is shown in Figure 4. The operation
of the individual controller is separated into two branches depending on the value of
the frequency deviation. The switching signal to turn on the appliance is generated if
the detected frequency deviation is larger than the upper threshold ∆ fthon (calculated
based on (10)). The switching signal to turn off the appliance is generated if the detected
frequency deviation is smaller than the lower threshold ∆ fthoff (calculated based on (10)).
The appliance is switched on/off to minimize the frequency deviation. Subsequently, the
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delay is initialized when the worst frequency deviation is detected. The delay Ton is set
when the maximum frequency deviation ∆ fmax is detected. The delay Toff is set when the
minimal frequency deviation ∆ fmin is detected. The appliances return to their initial status
when the delay expires and the frequency deviation is within the allowable range.
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3. The Proposed Method

The system model and DR control strategy have been introduced in the previous
section. However, there will always be noise in the frequency detection process, which
causes frequency measurement errors and deteriorated frequency control performance.
This subsection presents a disturbance estimation-based Kalman filtering method to solve
the problem.

3.1. Framework of the Disturbance Estimation-Based Kalman Filtering

The framework of the disturbance estimation-based Kalman filtering is shown in
Figure 5.

Energies 2022, 15, x FOR PEER REVIEW 8 of 16 
 

 

Components of the measured Δf 

Kalman filtering 

model

Disturbance estimation

 model

Δ
f

est

( ) ( 1)
2( )

step

k k
P H

T
k

− −
 =− 

Y Y

Δ
P

es
t

Measured  f  

with noise

RoCoF

Δ
f d

Δ
f n

o
i

Frequency response model

De-noised 

Δf

Measurement noise Power disturbance

Noise caused by 

power fluctuation

The proposed disturbance estimation-based 
Kalman-filtering method

Discrete state-

space model

 

Figure 5. Framework of disturbance estimation-based Kalman filtering. 

It can be seen from Figure 5 that the measured frequency Δf includes two 

components: one is caused by the power disturbance (denoted by Δfd), and the other is 

caused by the measurement noise (denoted by Δfnoi). By using the RoCoF derived from 

the frequency response model, the frequency disturbance Δfd caused by the power 

fluctuation can be separated from the noise. The estimated power ΔPest is taken as the 

input of the Kalman filter, and the accuracy of the frequency detection can be improved. 

The de-noised frequency Δf is delivered to the DR controller to improve the frequency 

control performance. 

3.2. Disturbance Estimation 

In order to improve the accuracy of frequency detection and enable demand response 

resources to more accurately participate in system frequency control, it is necessary to 

estimate the system disturbance based on the RoCoF, which is derived from the system 

frequency response (SFR) model by which the frequency response can be calculated in 

closed form. The RoCoF derived from SFR provides a simple but fairly accurate method 

to estimate the system disturbance [18,19]. The simplified frequency response model is 

shown in Figure 6. 

Figure 5. Framework of disturbance estimation-based Kalman filtering.



Energies 2022, 15, 9377 7 of 14

It can be seen from Figure 5 that the measured frequency ∆f includes two components:
one is caused by the power disturbance (denoted by ∆f d), and the other is caused by the
measurement noise (denoted by ∆f noi). By using the RoCoF derived from the frequency
response model, the frequency disturbance ∆f d caused by the power fluctuation can be
separated from the noise. The estimated power ∆Pest is taken as the input of the Kalman
filter, and the accuracy of the frequency detection can be improved. The de-noised frequency
∆f is delivered to the DR controller to improve the frequency control performance.

3.2. Disturbance Estimation

In order to improve the accuracy of frequency detection and enable demand response
resources to more accurately participate in system frequency control, it is necessary to
estimate the system disturbance based on the RoCoF, which is derived from the system
frequency response (SFR) model by which the frequency response can be calculated in
closed form. The RoCoF derived from SFR provides a simple but fairly accurate method
to estimate the system disturbance [18,19]. The simplified frequency response model is
shown in Figure 6.
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By analyzing the block diagram of Figure 6, the frequency deviation ∆ f can be ex-
pressed as follows:

∆ f =

(
R f 2

n
DR + Km

)(
Km(1 + FHPTrs)Psp − (1+Trs)∆Pd + (1+Trs)PDR

s2 + 2ζ fns + f 2
n

)
(12)

where
fn = DR+Km

2HRTr

ζ =
(

2HR+(DR+KmFHP)Tr
2(DR+Km)

)
fn

(13)

and Km is the generating gain.
In order to investigate the influence of ∆Pd on the system, it is assumed that Psp = 0

and PDR = 0, then the system is further simplified. Meanwhile, assuming that the system is

subjected to a step disturbance denoted as ∆Pd(s) =
Pest
′

s (with Pest
′

denoting the magnitude
of the disturbance); when substituting this expression into (12), ∆ f can be calculated
as follows:

∆ f =

(
R f 2

n
DR + Km

)(
(1 + Trs)Pest

′

s(s2 + 2ζ fns + f 2
n)

)
(14)

Then, the time domain equation can be expressed as the following:

∆ f (t) =

(
RPest

′

DR + Km

)(
1 + ae−ζ fnt sin( frt + ϕ)

)
(15)
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where
fr = fn

√
1−ζ2

a =

√
1−2Trζ fn+T2

r f 2
n

1−ζ2

ϕ = ϕ1 − ϕ2 = tan−1
(

frTr
1−ζ fnTr

)
− tan−1

(√
1−ζ2

−ζ

) (16)

The derivative of frequency deviation can be derived by:

d∆ f (t)
dt

=
a fn × R× Pest

′

D× R× Km

(
e−ς fnt sin( frt + ϕ)

)
(17)

At t = 0, the maximum rate of frequency deviation ∆ f can be obtained:

d∆ f (t)
dt

∣∣∣∣
t=0

=
a fn × R× Pest

′

D× R× Km
sin ϕ =

Pest
′

2H
(18)

The initial slope of frequency deviation can be calculated as follows:

m =
d∆ f (t)

dt

∣∣∣∣
t=0

=
Pest

′

2H
(19)

Then,
Pest

′
= 2H ×m (20)

Consequently, the system disturbance estimation can be calculated using the observa-
tion vectors Y(k) and Y(k − 1).

∆Pest(k) = −2H × Y(k)− Y(k− 1)
Tstep

(21)

3.3. Disturbance Estimation-Based Kalman Filtering

The disturbance estimation-based Kalman filtering can be used to improve the mea-
surement accuracy when the discretized state-space equation of the system is known.

The proposed method can be divided into the time updating equation and measure-
ment updating equation. The time updating equation (i.e., the prediction stage) calculates
the prior estimation of the state variables and the prior estimation of the error covariance
at the current time according to the state estimation at the previous time; the state of the
current time is estimated according to the posterior estimation of the previous time, and
the prior estimation of the current time is obtained; the measurement updating equation
(i.e., the updating stage) is responsible for combining the prior estimation with the new
measurement variables to construct the improved posterior estimation. The time renewal
equation and measurement renewal equation are also referred to as the prediction equation
and correction equation. The algorithm of disturbance estimation-based Kalman filtering,
when applied to frequency detection, is a recursive prediction correction method, including
a total of five equations. The process is generally summarized as follows:

X̂1(k) =AKX̂(k− 1)+BKPDR(k− 1)+DK∆Pest(k− 1) (22)

P̂1(k) =AKP̂(k− 1)AK
T + QK (23)

H(k) =P̂1(k)CK
T
(

CKP̂1(k)CK
T + RK

)−1
(24)

X̂(k) =X̂1(k)+H(k) (Y(k)− CKX̂1(k)) (25)

P̂(k) = (I−H(k)CK)P̂1(k) (26)
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where AK, BK, CK, DK, Y, and PDR are defined in Section 2. X̂ represents the posterior
state estimate, which represents the optimal estimate; X̂1 is the a priori state estimate,
which is the result predicted according to the optimal estimation at the previous time;
P̂ represents the posterior estimate covariance (The covariance of X̂); P̂1 is the a priori
estimated covariance (The covariance of X̂1); H is the Kalman gain; QK is the covariance
matrix of the process noise; and RK is the covariance matrix of the measurement noise.

4. Results and Discussion
4.1. Performance of Disturbance Estimation

In order to further verify the accuracy of the model for the estimation of the magnitude
of system disturbance, the corresponding relative errors were analyzed by considering the
estimation of system disturbance at different ∆Pd values, respectively.

As shown in Figure 7, when the system is subjected to different disturbances (∆Pd), the
disturbances can be estimated by using the disturbance estimation model. The statistics are
summarized in Table 1. The minimal value of relative error is about 1.8%, and the maximal
value of relative error is about 13%. The values of relative error are within 15%. Therefore,
the influence of the disturbance can be decreased. The results can be more accurate with
the disturbance estimation model.
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Figure 7. ∆Pest values estimated at different ∆Pd values.

Table 1. Disturbance estimation and relative error.

∆Pd (p.u.) ∆Pest max (p.u.) Relative Error (%)

−0.1 −0.089 10.266

−0.08 −0.0728 9.0471

−0.06 −0.0551 8.1528

−0.04 −0.0388 2.8796

−0.02 −0.0206 3.0982

0.02 0.0226 13.0230

0.04 0.0415 3.8258

0.06 0.0589 1.7988

0.08 0.0765 4.4022

0.1 0.0932 6.7842

4.2. Performance of Disturbance Estimation-based Kalman Filtering

To verify the effectiveness of the proposed method of disturbance estimation-based
Kalman filtering validation in frequency estimation, the performance of the frequency
detection is examined without considering the role of DR in the frequency control. The
following frequency detection methods are compared:
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(1) Without filter: the frequency is detected without filtering.
(2) Low-pass filter (LPF): the detected frequency is filtered by an LPF, which is a tradi-

tional method of frequency measurement de-noising [20,21].
(3) Kalman filtering without disturbance estimation: the detected frequency is filtered by

Kalman filtering, which follows the idea of [17].
(4) The proposed disturbance estimation-based Kalman filtering method.

The simulation assumes that the disturbances (∆Pd1 = 0.1 p.u., ∆Pd2 = −0.04 p.u.,
∆Pd3 = −0.12 p.u.) occur at 10 s, 30 s, and 60 s, respectively, considers a nominal frequency
of 50 Hz, and considers that ∆ fdb is set to 0.05 Hz. The parameters for the frequency
response model are summarized in Table 2.

Table 2. Parameters for the frequency response model.

Parameter Value

R 0.05

Tg 0.2 s

Tr 7 s

H 5 s

Tt 0.3 s

FHP 0.3

D 1

Ki 1.9

In Figure 8, it can be seen that the method of disturbance estimation-based Kalman
filtering results in a more precisely estimated ∆f. The root-mean-square deviation (RMSD)
and the integral square error (ISE) between the actual frequency deviation ∆f and the
estimated frequency deviation ∆f by the four methods are shown in Figure 8c. The results
show that the RMSD and the ISE of disturbance estimation-based Kalman filtering is smaller
than the other methods, meaning that the proposed method in this paper can greatly reduce
the measurement error and make the detection result more accurate.

Energies 2022, 15, x FOR PEER REVIEW 13 of 16 
 

 

0 10 20 30 40 50 60 70 80
Time(s)

-0.5

0

0.5

0 10 20 30 40 50 60 70 80
Time(s)

-0.5

0

0.5

1

Δ
f 

(H
z)

Δ
f 

(H
z)

30 40 50 60 70 80

Time(s)
Actual Δf  Δf estimated by LPF

Δf  estimated by the  Kalman filtering without disturbance estimation

Δf  estimated by the disturbance estimation based Kalman filtering 

(a)

(b)

Without 

filter

Kalman filter without 

disturbance estimation

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 

 

RMSD

ISE

R
M

S
D

 a
nd

 I
S

E

LPF filter
Disturbance estimation-

based Kalman filter

(c)

 

Figure 8. Δf estimated by the four methods: (a) Δf with measurement noise; (b) Δf estimated by the 

four methods; (c) RMSD and ISE of the four methods. 

4.3. Performance of DR in Frequency Control 

This subsection investigates the performance of DR in the frequency control. The 

parameters for DR are summarized in Table 3. The comparison of frequency detection by 

different methods are shown in Figure 9. As shown in Figure 9b, the proposed method 

has a good performance. The maximum value of frequency drop and the maximum value 

of frequency rise is the smallest using the proposed method. Meanwhile, it is observed 

that the demand-side appliances are dispatched to participate in the frequency control 

when the system is subjected to the disturbances, that the potential of DR will decrease, 

and that the curve of available up/down-regulated DR appliances will rapidly drop. The 

potential of DR will rise as the frequency recovers, and the method proposed in this paper 

has a great potential of available DR resources. The results also proves that this method 

has a good performance in frequency control using DR. 

Table 3. Parameters for DR. 

Parameters Value 

Kreoff 0.0012p.u./s 

Kreoon 0.002p.u./s 

Toff0 10s 

Ton0 10s 

PDRmoff 0.1p.u. 

PDRmon 0.1p.u. 

Figure 8. ∆f estimated by the four methods: (a) ∆f with measurement noise; (b) ∆f estimated by the
four methods; (c) RMSD and ISE of the four methods.

4.3. Performance of DR in Frequency Control

This subsection investigates the performance of DR in the frequency control. The
parameters for DR are summarized in Table 3. The comparison of frequency detection by
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different methods are shown in Figure 9. As shown in Figure 9b, the proposed method has
a good performance. The maximum value of frequency drop and the maximum value of
frequency rise is the smallest using the proposed method. Meanwhile, it is observed that
the demand-side appliances are dispatched to participate in the frequency control when
the system is subjected to the disturbances, that the potential of DR will decrease, and that
the curve of available up/down-regulated DR appliances will rapidly drop. The potential
of DR will rise as the frequency recovers, and the method proposed in this paper has a
great potential of available DR resources. The results also proves that this method has a
good performance in frequency control using DR.
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Table 3. Parameters for DR.

Parameters Value

Kreoff 0.0012 p.u./s

Kreoon 0.002 p.u./s

Toff0 10 s

Ton0 10 s

PDRmoff 0.1 p.u.

PDRmon 0.1 p.u.

The maximum frequency deviation and the maximum activated DR appliances under
different ∆Pd values are shown in Figure 10. It can be seen that the absolute value of
frequency deviation under different ∆Pd values is smallest by using the proposed method;
the DR appliances more precisely respond to the frequency deviation, and the frequency
control performance is improved.
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(a) Maximum frequency deviation. (b) Maximum activated DR appliances.

4.4. Discussion

As demonstrated by the simulation results, the proposed disturbance estimation-based
Kalman filtering method can help improve the accuracy of the frequency detection and
therefore improve the frequency control performance. The results are from three aspects:

(1) Disturbance estimation: the disturbance estimation model can accurately estimate the
step disturbance with a low relative error.

(2) Frequency detection: the Kalman filtering with the above-mentioned disturbance
estimation model can more accurately measure the system frequency than traditional
methods.

(3) Frequency control: the DR control strategy with the above-mentioned frequency
detection method results in a better frequency control performance.

5. Conclusions

In this paper, DR using a disturbance estimation-based Kalman filtering method was
proposed for frequency control. The main work of this paper included the following:

(1) The disturbance estimation-based Kalman filtering method was developed to improve
the accuracy of frequency detection.
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(2) The proposed Kalman filtering method was applied to the DR to improve the fre-
quency control performance.

We conclude that the proposed method can more accurately detect the system fre-
quency and make the demand response more accurately participate in the frequency control.
Future work may be aimed at designing hardware controllers that can put into practice the
disturbance estimation Kalman filtering in frequency control applications with DR.

Author Contributions: Conceptualization, X.W., Q.Q. and Y.B.; methodology, X.W., Q.Q. and Y.B.;
validation, X.W., Q.Q. and Y.B.; formal analysis, X.W., Q.Q. and Y.B.; investigation, Q.Q.; resources,
Y.B.; data curation, Q.Q.; writing—original draft preparation, Q.Q.; writing—review and editing,
X.W.; visualization, X.W.; supervision, Y.B.; project administration, Y.B.; funding acquisition, Y.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (51707099).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express their gratitude for the valuable recommenda-
tions made by the reviewers to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Martinez-Rico, J.; Zulueta, E.; de Argandoña, I.R.; Fernandez-Gamiz, U.; Armendia, M. Multi-objective optimization of production

scheduling using particle swarm optimization algorithm for hybrid renewable power plants with battery energy storage system.
J. Mod. Power Syst. Clean Energy 2021, 9, 285–294. [CrossRef]

2. Chen, C.; Bao, Y.Q.; Wu, X.H.; Wang, B. Incremental Cost Consensus Algorithm for On/Off Loads to Enhance the Frequency
Response of the Power System. IEEE Access 2020, 8, 67687–67697. [CrossRef]

3. He, S.; Gao, H.; Tian, H.; Wang, L.; Liu, Y.; Liu, J. A two-stage robust optimal allocation model of distributed generation
considering capacity curve and real-time price based demand response. J. Mod. Power Syst. Clean Energy 2021, 9, 114–127.
[CrossRef]

4. Zaman, M.S.U.; Bukhari, S.B.A.; Hazazi, K.M.; Haider, Z.M.; Haider, R.; Kim, C.-H. Frequency Response Analysis of a Single-Area
Power System with a Modified LFC Model Considering Demand Response and Virtual Inertia. Energies 2018, 11, 787. [CrossRef]

5. Patil, S.; Deshmukh, S.R. Development of Control Strategy to Demonstrate Load Priority System for Demand Response Program.
In Proceedings of the 2019 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE),
Bangalore, India, 15–16 November 2019. [CrossRef]

6. Molina-Garcia, A.; Bouffard, F.; Kirschen, D.S. Decentralized Demand-Side Contribution to Primary Frequency Control. IEEE
Trans. Power Syst. 2011, 26, 411–419. [CrossRef]

7. Nandkeolyar, S.; Mohanty, R.K.; Dash, V.A. Management of time-flexible demand to provide power system frequency response.
In Proceedings of the International Conference on Technologies for Smart City Energy Security and Power: Smart Solutions for
Smart Cities, Bhubaneswar, India, 28–30 March 2018; pp. 1–4.

8. Gong, F.; Han, N.; Zhang, L.; Ruan, W. Analysis of Electricity Consumption Behavior of Air Conditioning based on the Perspective
of Power Demand Response. In Proceedings of the 2020 IEEE International Conference on Advances in Electrical Engineering
and Computer Applications (AEECA). IEEE 2020, 8, 412–416.

9. Bao, Y.Q.; Li, Y.; Hong, Y.Y.; Wang, B. Design of a Hybrid Hierarchical Demand Respond Control Scheme for the Frequency
Control. IET Gener. Transm. Distrib. 2015, 9, 2303–2310. [CrossRef]

10. Shen, Y.; Li, Y.; Zhang, Q.; Li, F.; Wang, Z. Consumer psychology based optimal portfolio design for demand response aggregators.
J. Mod. Power Syst. Clean Energy 2021, 9, 431–439. [CrossRef]

11. Hu, Y.; Liu, J.; Xu, X. Dynamic Interactions between Local Energy Systems Coupled by Power and Gas Distribution Networks.
Energies. 2022, 15, 8420. [CrossRef]

12. Li, M.; Ye, J. Design and Implementation of Demand Side Response Based on Binomial Distribution. Energies 2022, 15, 8431.
[CrossRef]

13. Dash, P.K.; Pradhan, A.K.; Panda, G. Frequency estimation of distorted power system signals using extended complex Kalman
filter. IEEE Trans. Power Deliv. 1999, 14, 761–766. [CrossRef]

14. Huang, C.-H.; Lee, C.-H.; Shih, K.-J.; Wang, Y.-J. Frequency Estimation of Distorted Power System Signals Using Robust Extended
Complex Kalman Filter. In Proceedings of the Intelligent Systems Applications to Power Systems, Kaohsiung, Taiwan, 5–8
November 2007.

15. Kanna, S.; Dini, D.H.; Xia, Y.; Hui, S.Y.; Mandic, D.P. Distributed Widely Linear Kalman Filtering for Frequency Estimation in
Power Networks. IEEE Trans. Signal Inf. Process. Over Netw. 2015, 1, 45–57. [CrossRef]

http://doi.org/10.35833/MPCE.2019.000021
http://doi.org/10.1109/ACCESS.2020.2985782
http://doi.org/10.35833/MPCE.2019.000174
http://doi.org/10.3390/en11040787
http://doi.org/10.1109/WIECON-ECE48653.2019.9019950
http://doi.org/10.1109/TPWRS.2010.2048223
http://doi.org/10.1049/iet-gtd.2015.0628
http://doi.org/10.35833/MPCE.2019.000572
http://doi.org/10.3390/en15228420
http://doi.org/10.3390/en15228431
http://doi.org/10.1109/61.772312
http://doi.org/10.1109/TSIPN.2015.2442834


Energies 2022, 15, 9377 14 of 14

16. Mathieu, J.L.; Koch, S.; Callaway, D.S. State Estimation and Control of Electric Loads to Manage Real-Time Energy Imbalance.
IEEE Trans. Power Syst. 2013, 28, 430–440. [CrossRef]

17. Bao, Y.-Q.; Shen, C.; Wang, Q.; Zhang, J.-L. Demand Response Based on Kalman Filtering for the Frequency Control. J. Electr. Eng.
Technol. 2019, 14, 1087–1094. [CrossRef]

18. Chang-Chien, L.-R.; An, L.N.; Lin, T.-W.; Lee, W.-J. Incorporating Demand Response with Spinning Reserve to Realize an
Adaptive Frequency Restoration Plan for System Contingencies. IEEE Trans. Smart Grid 2012, 3, 1145–1153. [CrossRef]

19. Anderson, P.M.; Mirhey, D.R.M. A low-order system frequency response model. IEEE Trans. Power Syst. 2002, 5, 720–729.
[CrossRef]

20. Zhou, W.; Mu, L.; Rui, Y. A Frequency Detection Algorithm Based on dq Coordinate Transformation. In Proceedings of the 2010
Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010; pp. 1–4.

21. Li, Q.; Wang, W.; Qin, L.; Zou, L.; Li, Q. Investigation on a methodology to detect instantaneous reactive and harmonic currents in
single-phase systems. In Proceedings of the 2008 International Conference on Electrical Machines and Systems, Wuhan, China,
17–20 October 2008; pp. 3887–3891.

http://doi.org/10.1109/TPWRS.2012.2204074
http://doi.org/10.1007/s42835-019-00139-4
http://doi.org/10.1109/TSG.2012.2192297
http://doi.org/10.1109/59.65898

	Introduction 
	Model Development 
	Frequency Response Model 
	Hybrid Hierarchical DR Control Strategy 

	The Proposed Method 
	Framework of the Disturbance Estimation-Based Kalman Filtering 
	Disturbance Estimation 
	Disturbance Estimation-Based Kalman Filtering 

	Results and Discussion 
	Performance of Disturbance Estimation 
	Performance of Disturbance Estimation-based Kalman Filtering 
	Performance of DR in Frequency Control 
	Discussion 

	Conclusions 
	References

