Innovation and Climate Change Mitigation Technology in the Asian and African Mining Sector: Empirical Analysis Using the LMDI Method
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
4. Results and Discussion
Description of the Six Countries and Patent Family Filings at WIPO
5. Conclusions and Policy Recommendation
5.1. Policy Recommendations
5.2. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Diagne, O. La Contribution Directe Du Secteur Minier à La Croissance Économique Du Sénégal: Cas de La Filière Des Phosphates. 2022. Available online: https://scholar.google.com.hk/scholar?hl=zh-CN&as_sdt=0%2C5&q=1.%09Diagne%2C+O.+La+Contribution+Directe+Du+Secteur+Minier+%C3%A0+La+Croissance+%C3%89conomique+Du+S%C3%A9n%C3%A9gal%3A+Cas+de+La+Fili%C3%A8re+Des+Phosphates.+2022.&btnG=#d=gs_cit&t=1670554997866&u=%2Fscholar%3Fq%3Dinfo%3Amq08WcEGFb8J%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D0%26hl%3Dzh-CN (accessed on 13 November 2022).
- Policy, L.S.-R. Innovation, Learning and Competence Building in the Mining Industry. The Case of Knowledge Intensive Mining Suppliers (KIMS) in Chile. In Resources Policy; Elsevier: Amsterdam, The Netherlands, 2017; Volume 54, pp. 167–175. [Google Scholar]
- Daly, A.; Humphreys, D.; Raffo, J.D.; Valacchi, G. (Eds.) Global Challenges for Innovation in the Mining Industries; Cambridge University Press: Cambridge, UK, 2022; pp. 1–24. [Google Scholar] [CrossRef]
- Chaire en Éco-conseils. L’industrie Minière et Le Développement Durable; Université du Québec à Chicoutimi: Chicoutimi, Canada, 2012; ISBN 9782894812419. [Google Scholar]
- Rouleau, A.; Gasquet, D. L’industrie Miniere et Le Developpement Durable: Une Perspective Internationale Francophone. 2017. Available online: https://constellation.uqac.ca/id/eprint/4165/1/L_ (accessed on 14 August 2022).
- Dewavrin, M. L’industrie Minière et Métallurgique Au Canada. J. Société Française Stat. 1920, 61, 109–114. [Google Scholar]
- Figueiredo, P.N.; Piana, J. Technological learning strategies and technology upgrading intensity in the mining industry: Evidence from Brazil. J. Technol. Transf. 2020, 46, 629–659. [Google Scholar] [CrossRef]
- Descroix, L. L’Industrie de l’aluminium En France Pendant et Après La Guerre-Essai d’étude Économique d’après Des Documents Allemands. Rev. Métallurgie 1920, 17, 275–285. [Google Scholar] [CrossRef]
- Revue d’études comparatives Est-Ouest. L’industrie de l’aluminium En Hongrie: Coopération Ou Autonomie? JSTOR 1983, 14, 135–161. [Google Scholar]
- Kounelis, C. Charles COMBES (1854–1907) et Les Débuts de l’industrie de l’aluminium ÉlectrolyFranceEn France. L’Actualité Chim. 2010, 345, 38–42. [Google Scholar]
- Mioche, P. L’Afrique, Terre Promise de l’aluminium? Cah. D’histoire L’aluminium 2019, 62, 12–37. [Google Scholar] [CrossRef]
- Arundel, A.; Kabla, I. What percentage of innovations are patented? Empirical estimates for European firms. Res. Policy 1998, 27, 127–141. [Google Scholar] [CrossRef]
- Nylund, P.A.; Brem, A.; Agarwal, N. Enabling technologies mitigating climate change: The role of dominant designs in environmental innovation ecosystems. Technovation 2021, 117, 102271. [Google Scholar] [CrossRef]
- Pachauri, R.; Reisinger, A. Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2008. [Google Scholar]
- Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.B.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 2009, 458, 1158–1162. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.I.; Doran, W.J.; Rooney, D.W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069–2094. [Google Scholar] [CrossRef]
- Butler, L.; Neuhoff, K. Comparison of Feed-in Tariff, Quota and Auction Mechanisms to Support Wind Power Development; Elsevier: Amsterdam, The Netherlands, 2008; Volume 33, pp. 1854–1867. [Google Scholar]
- García, L.B.; Villar, S.D.R. The ECI as a Democratic Innovation: Analysing its Ability to Promote Inclusion, Empowerment and Responsiveness in European Civil Society. Perspect. Eur. Politics Soc. 2012, 13, 312–324. [Google Scholar] [CrossRef]
- Suominen, A.; Seppänen, M.; Dedehayir, O. A bibliometric review on innovation systems and ecosystems: A research agenda. Eur. J. Innov. Manag. 2019, 22, 335–360. [Google Scholar] [CrossRef]
- del Río, P.; Bleda, M. Comparing the Innovation Effects of Support Schemes for Renewable Electricity Technologies: A Function of Innovation Approach; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Dinica, V. Support Systems for the Diffusion of Renewable Energy Technologies—An Investor Perspective; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Dinica, V. International Sustainability Agreements: Are They Politically Influential for Tourism Governance Innovations? Tour. Anal. 2013, 18, 663–676. [Google Scholar] [CrossRef]
- Otojanov, R.; Fouquet, R.; Granville, B. Factor prices and induced technical change in the industrial revolution. Econ. Hist. Rev. 2018. [Google Scholar] [CrossRef]
- Fouquet, W.; Owald, D.; Wichmann, C.; Mertel, S.; Depner, H.; Dyba, M.; Hallermann, S.; Kittel, R.J.; Eimer, S.; Sigrist, S.J. Maturation of Active Zone Assembly by Drosophila Bruchpilot. J. Cell Biol. 2009, 186, 129–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Söderholm, P.; Klaassen, G. Wind Power in Europe: A Simultaneous Innovation–Diffusion Model. Environ. Resour. Econ. 2006, 36, 163–190. [Google Scholar] [CrossRef]
- Weigelt, C.; Sarkar, M.B. Learning from Supply-Side Agents: The Impact of Technology Solution Providers’ Experiential Diversity on Clients’ Innovation Adoption. Acad. Manag. J. 2009, 52, 37–60. [Google Scholar] [CrossRef]
- Bolívar-Ramos, M.; Garcia-Morales, V.J.; García-Sánchez, E. Technological Distinctive Competencies and Organizational Learning: Effects on Organizational Innovation to Improve Firm Performance; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Colombo, M.; Mosconi, R. Complementarity and Cumulative Learning Effects in the Early Diffusion of Multiple Technologies. J. Ind. Econ. 1995, 43, 13–48. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y. Climate stability is more important than water–energy variables in shaping the elevational variation in species richness. Ecol. Evol. 2018, 8, 6872–6879. [Google Scholar] [CrossRef]
- Hoffert, M.; Caldeira, K.; Benford, G.; Criswell, D.; Green, C.; Herzog, H.; Jain, A.K.; Kheshgi, H.S.; Lackner, K.S.; Lewis, J.S.; et al. Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet. Science 2002, 298, 981–987. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Allison, J.; Auffhammer, M.; Auston, D.; Barnosky, A.D.; Chiang, L.; Collins, W.D.; Davis, S.J.; Forman, F.; Hecht, S.B.; et al. Chapter 1. Bending the Curve: Ten Scalable Solutions for Carbon Neutrality and Climate Stability. Collabra 2016, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Dechezleprêtre, A.; Martin, R.; Growth, S.B.-H. Climate Change Policy, Innovation and Growth. In Handbook on Green Growth; Edward Elgar Publishing: Cheltenham, UK, 2019. [Google Scholar]
- Dechezleprêtre, A.; Einiö, E.; Martin, R.; Nguyen, K.-T.; Van Reenen, J. Do Tax Incentives for Research Increase Firm Innovation? An RD Design for R&D; National Bureau of Economic Research: Cambridge, MA, USA, 2016. [Google Scholar] [CrossRef]
- Durán-Romero, G.; Innovation, A.U.-R. Climate Change and Eco-Innovation. A Patent Data Assessment of Environmentally Sound Technologies. Innovation 2015, 17, 115–138. [Google Scholar] [CrossRef]
- Carrillo-Hermosilla, J.; Del Río, P.; Könnölä, T. Diversity of Eco-Innovations: Reflections from Selected Case Studies; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- del Río González, P. The Interaction between Emissions Trading and Renewable Electricity Support Schemes. An Overview of the Literature; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- de Lucena, A.F.P.; Szklo, A.S.; Schaeffer, R.; Dutra, R.M. The Vulnerability of Wind Power to Climate Change in Brazil; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Malagueta, D.; Szklo, A.; Borba, B.; Soria, R.; Policy, R.A.-E. Assessing Incentive Policies for Integrating Centralized Solar Power Generation in the Brazilian Electric Power System; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Lipp, J. Lessons for Effective Renewable Electricity Policy from Denmark, Germany and the United Kingdom; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Bürer, M.J.; Wüstenhagen, R. Which renewable energy policy is a venture capitalist’s best friend? Empirical evidence from a survey of international cleantech investors. Energy Policy 2009, 37, 4997–5006. [Google Scholar] [CrossRef] [Green Version]
- Wüstenhagen, R.; Menichetti, E. Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research. Energy Policy 2012, 40, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lüthi, S.; Economics, R.W.-E. The Price of Policy Risk—Empirical Insights from Choice Experiments with European Photovoltaic Project Developers; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Masini, A.; Menichetti, E. The Impact of Behavioural Factors in the Renewable Energy Investment Decision Making Process: Conceptual Framework and Empirical Findings; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Kahouli-Brahmi, S. Technological Learning in Energy–Environment–Economy Modelling: A Survey; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Klaassen, G.; Miketa, A.; Larsen, K.; Sundqvist, T. The Impact of R&D on Innovation for Wind Energy in Denmark, Germany and the United Kingdom; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Barreto, L.; Technovation, S.K. Endogenizing R&D and Market Experience in the “Bottom-Up” Energy-Systems ERIS Model; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Jamasb, T. Technical Change Theory and Learning Curves: Patterns of Progress in Electricity Generation Technologies. Energy J. 2007, 28. [Google Scholar] [CrossRef] [Green Version]
- Jamasb, T.; Kohler, J. Learning Curves For Energy Technology: A Critical Assessment. 2007. Available online: https://www.repository.cam.ac.uk/handle/1810/194736 (accessed on 13 November 2022). [CrossRef]
- Odam, N.; de Vries, F.P. Innovation modelling and multi-factor learning in wind energy technology. Energy Econ. 2019, 85, 104594. [Google Scholar] [CrossRef]
- Grübler, A.; Nakićenović, N.; Victor, D.G. Dynamics of Energy Technologies and Global Change; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Johnson, D.; Lybecker, K.M. Eco-Innovation: A Literature Review of the Challenges Facing the Development of Green Technologies. In Technology, Innovations and Economic Development: Essays in Honour of Robert E. Evenson; SAGE Publications India: Delhi, India, 2015. [Google Scholar]
- Lybecker, K.; Lohse, S. Global Challenges Report. Available online: https://www.ifia.com/ (accessed on 5 October 2022).
- Tol, R.S.J. The Economic Effects of Climate Change. J. Econ. Perspect. 2009, 23, 29–51. [Google Scholar] [CrossRef] [Green Version]
- McGagh, J. Vignette: The Need for Innovation in Mining and Potential Areas for Adopting New Technologies. In Extracting Innovations; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Llancan, F. Innovation in the Mining Industry: A Review of Recent Technological Developments and Current Trends. Master’s Thesis, University of Leoben, Leoben, Austria, 2019. [Google Scholar]
- Kogel, J.E. Sustainable Development Practices and the Minerals Industry. Available online: https://www.wfeo.org (accessed on 5 October 2022).
- Sánchez, F.; Hartlieb, P. Innovation in the Mining Industry: Technological Trends and a Case Study of the Challenges of Disruptive Innovation. Mining Met. Explor. 2020, 37, 1385–1399. [Google Scholar] [CrossRef]
- Diakhaté, F. Ressources Minières et Développement Local: Cas de La Commune de Chérif Lô (Région de Thiès). 2022. Available online: https://scholar.google.com.hk/scholar?hl=zh-CN&as_sdt=0%2C5&q=58.%09Diakhat%C3%A9%2C+F.+Ressources+Mini%C3%A8res+et+D%C3%A9veloppement+Local%3A+Cas+de+La+Commune+de+Ch%C3%A9rif+L%C3%B4+%28R%C3%A9gion+de+Thi%C3%A8s%29.+2022.+&btnG= (accessed on 13 November 2022).
- Jowitt, S.; Mudd, G.; Thompson, J.F. Future Availability of Non-Renewable Metal Resources and the Influence of Environmental, Social, and Governance Conflicts on Metal Production. Commun. Earth Environ. 2020, 1, 1–8. [Google Scholar] [CrossRef]
- Isidore, M.; Clémence, K.M.; Gody, N.B. La Contribution Des Institutions Publiques Au Développement Économique de La Province Du Haut-Katanga: Cadre Juridique, Enjeux et Perspectives. KAS Afr. Law Study Libr. 2022, 9, 99–131. [Google Scholar] [CrossRef]
- Minza, M.M. Facteurs Explicatifs de La Faible Mobilisation Des Recettes Du Secteur Minier Dans La Province Du Haut-Katanga. KAS Afr. Law Study Libr. 2020, 7, 154–171. [Google Scholar] [CrossRef]
- Katz, J.; Pietrobelli, C. Natural Resource Based Growth, Global Value Chains and Domestic Capabilities in the Mining Industry; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Gruenhagen, J.; Parker, R. Factors Driving or Impeding the Diffusion and Adoption of Innovation in Mining: A Systematic Review of the Literature; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Dayo-Olupona, O.; Genc, B.; Onifade, M. Technology Adoption in Mining: A Multi-Criteria Method to Select Emerging Technology in Surface Mines; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Yamashita, A.; Fujii, H. Trend and Priority Change of Climate Change Mitigation Technology in the Global Mining Sector; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Marimuthu, R.; Sankaranarayanan, B.; Ali, S.M.; de Sousa Jabbour, A.B.L.; Karuppiah, K. Assessment of key socio-economic and environmental challenges in the mining industry: Implications for resource policies in emerging economies. Sustain. Prod. Consum. 2021, 27, 814–830. [Google Scholar] [CrossRef]
- Ediriweera, A.; Wiewiora, A. Barriers and Enablers of Technology Adoption in the Mining Industry; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Khan, M.K.; Trinh, H.H.; Khan, I.U.; Ullah, S. Sustainable economic activities, climate change, and carbon risk: An international evidence. Environ. Dev. Sustain. 2021, 24, 9642–9664. [Google Scholar] [CrossRef] [PubMed]
- Xin, D.; Ahmad, M.; Khattak, S.I. Impact of innovation in climate change mitigation technologies related to chemical industry on carbon dioxide emissions in the United States. J. Clean. Prod. 2022, 379. [Google Scholar] [CrossRef]
- Dechezleprêtre, A.; Glachant, M.; Haščič, I.; Johnstone, N.; Ménière, Y. Invention and Transfer of Climate Change–Mitigation Technologies: A Global Analysis. Rev. Environ. Econ. Policy 2011, 5, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Probst, B.; Touboul, S.; Glachant, M.; Dechezleprêtre, A. Global Trends in the Innovation and Diffusion of Climate Change Mitigation Technologies. Res. Sq. 2021, 18, 2058–7546. [Google Scholar] [CrossRef]
- Fujii, H.; Managi, S. Decomposition Analysis of Water Treatment Technology Patents. Water 2017, 9, 860. [Google Scholar] [CrossRef] [Green Version]
- Fujii, H.; Managi, S. Trends and Priority Shifts in Artificial Intelligence Technology Invention: A Global Patent Analysis; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Olvera, B.C. Innovation in mining: What are the challenges and opportunities along the value chain for Latin American suppliers? Miner. Econ. 2021, 35, 35–51. [Google Scholar] [CrossRef]
- Braun, F.G.; Schmidt-Ehmcke, J.; Zloczysti, P. Innovative Activity in Wind and Solar Technology: Empirical Evidence on Knowledge Spillovers Using Patent Data; Deutsches Institut für Wirtschaftsforschung (DIW): Berlin, Germany, 2010. [Google Scholar] [CrossRef] [Green Version]
- Fornell, C.; Larcker, D.F. Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Anadon, D.; Matus, K.; Moon, S.; Chan, G.; Harley, A.; Murthy, S.; Timmer, V.; Abdel Latif, A.; Araujo, K.; Booker, K.; et al. Innovation and Access to Technologies for Sustainable Development: Diagnosing Weaknesses and Identifying Interventions in the Transnational Arena; Harvard Kennedy School: Cambridge, MA, USA, 2014. [Google Scholar]
- Johnstone, N.; Haščič, I.; Popp, D. Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts. Environ. Resour. Econ. 2009, 45, 133–155. [Google Scholar] [CrossRef] [Green Version]
- Nicolli, F.; Vona, F. Heterogeneous policies, heterogeneous technologies: The case of renewable energy. Energy Econ. 2016, 56, 190–204. [Google Scholar] [CrossRef]
- Vincenzi, M.; Ozabaci, D. The Effect of Public Policies on Inducing Technological Change in Solar Energy. Agric. Resour. Econ. Rev. 2017, 46, 44–72. [Google Scholar] [CrossRef] [Green Version]
- Grubb, M.; Wieners, C.; Yang, P. Modeling myths: On DICE and dynamic realism in integrated assessment models of climate change mitigation. WIREs Clim. Chang. 2021, 12, e698. [Google Scholar] [CrossRef]
- Böhringer, C.; Cuntz, A.; Harhoff, D.; Asane-Otoo, E. The Impact of the German Feed-in Tariff Scheme on Innovation: Evidence Based on Patent Filings in Renewable Energy Technologies; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Böhringer, C.; Cuntz, A.; Harhoff, D.; Asane-Otoo, E. The Impacts of Feed-in Tariffs on Innovation: Empirical Evidence from Germany; University of Oldenburg: Oldenburg, Germany, 2014. [Google Scholar]
- Dass, N.; Nanda, V.; Xiao, S.C. Truncation Bias Corrections in Patent Data: Implications for Recent Research on Innovation; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Schleich, J.; Walz, R.; Ragwitz, M. Effects of Policies on Patenting in Wind-Power Technologies; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Choudhury, P.; Haas, M.R. Scope versus speed: Team diversity, leader experience, and patenting outcomes for firms. Strat. Manag. J. 2017, 39, 977–1002. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.-Y.; Ji, H.-G.; Lü, X.-F.; Wang, T.; Zhi, S.; Pei, F.; Quan, D.-L. Mitigation of greenhouse gases released from mining activities: A review. Int. J. Miner. Met. Mater. 2021, 28, 513–521. [Google Scholar] [CrossRef]
- Li, Q. The view of technological innovation in coal industry under the vision of carbon neutralization. Int. J. Coal Sci. Technol. 2021, 8, 1197–1207. [Google Scholar] [CrossRef]
- Olvera, B.C.; Iizuka, M. How Does Innovation Take Place in the Mining Industry? Understanding the Logic Behind Innovation in a Changing Context; Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT): Maastricht, The Netherlands, 2020. [Google Scholar]
- Hilson, G. Why Is There a Large-Scale Mining “Bias” in Sub-Saharan Africa? Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Campbell, B.; Laforce, M. La Responsabilité Sociale Des Entreprises Dans Le Secteur Minier: Réponse Ou Obstacle Aux Enjeux de Légitimité et de Développement En Afrique? 2016. Available online: https://www.puq.ca/catalogue/livres/responsabilite-sociale-des-entreprises-dans-secteur-2901.html (accessed on 13 November 2022).
- Bangui, T. La Mal Gouvernance En Afrique Centrale: Malédiction Des Ressources Naturelles Ou Déficit de Leadership? L’Harmattan: Paris, France, 2015. [Google Scholar]
- Gelb, A. Diversification de L’économie Des Pays Riches en Ressources Naturelles; Fonds Monétaire International: Washington, DC, USA, 2010. [Google Scholar]
- Carbonnier, G. La Malédiction Des Ressources Naturelles et Ses Antidotes. 2013. Available online: https://www.cairn.info/ (accessed on 13 November 2022).
- Atakhanova, Z. Support services in the extractive industries and the role of innovation. Miner. Econ. 2020, 34, 141–150. [Google Scholar] [CrossRef]
- Maurice, M.; Sylvestre, J.-J.; Nohara, H.; Lanciano, C. Acteurs de l’innovation et l’entreprise: France Europe Japon; 1999; 1–272. Available online: https://www.editions-harmattan.fr/livre-acteurs_de_l_innovation_et_l_entreprise_france_europe_japon_marc_maurice_jean_jacques_sylvestre_hiroatsu_nohara_caroline_lanciano-9782738471840-1026.html (accessed on 13 November 2022).
- Ouchalal, H.; Ouamar, S. La Ressource Humaine Comme Source d’émergence de La Recherche et Développement Dans l’entreprise Publique Industrielle Algérienne. Rev. Tadamsa D’unegmu 2022, 2, 103–114. [Google Scholar]
- Boutillier, S.; Fournier, C. Connaissance, Finance, Lien Social: Artisanat et Innovation. Humanisme Entrep. 2006, 280, 1–13. [Google Scholar]
- L’innovation Des Entreprises Artisanales. Available online: https://www.archives-rfg.revuesonline.com (accessed on 26 August 2022).
- Boldrini, J.; Journé-Michel, H.; Chené, E. Innovation in Craft Industry and Proximity Effects. Rev. Fr. Gest. 2011, 213, 25–41. [Google Scholar] [CrossRef]
- Miled, H. Dynamique d’innovation Dans Les Métiers d’art de l’artisanat En Tunisie. 2017. Available online: https://hal.archives-ouvertes.fr/hal-01472545/ (accessed on 26 August 2022).
- Schmookler, J. Invention and Economic Growth; Harvard University Press: Cambridge, MA, USA, 1966. [Google Scholar] [CrossRef]
- Scherer, F.M. Corporate Inventive Output, Profits, and Growth. J. Political Econ. 1965, 73, 290–297. [Google Scholar] [CrossRef]
- Meliciani, V. The relationship between R&D, investment and patents: A panel data analysis. Appl. Econ. 2000, 32, 1429–1437. [Google Scholar] [CrossRef]
- Van Ophem, H.; Brouwer, E.; Kleinknecht, A.; Mohnen, P. The Mutual Relation between Patents and R&D. In Innovation and Firm Performance; Palgrave Macmillan: London, UK, 2002; pp. 56–70. [Google Scholar] [CrossRef]
- Acs, Z.J.; Audretsch, D.B. Innovation and Technological Change. In Handbook of Entrepreneurship Research; Springer: Boston, MA, USA, 2005; pp. 55–79. [Google Scholar] [CrossRef]
- Kortum, S. Equilibrium R&D and the Patent—R&D Ratio: Us Evidence. Am. Econ. Rev. 1993, 83, 450–457. [Google Scholar]
- Acs, Z.J.; Audretsch, D.B. Patents as a Measure of Innovative Activity. Kyklos 1989, 42, 171–180. [Google Scholar] [CrossRef]
- Bound, J.; Cummins, C.; Griliches, Z.; Hall, B.H.; Jaffe, A.B. Who Does R & D and Who Patents? National Bureau of Economic Research: Cambridge, MA, USA, 1982; ISBN 0226308847. [Google Scholar]
- Seclen-Luna, J.; Moya-Fernández, P.; Pereira, Á. Exploring the Effects of Innovation Strategies and Size on Manufacturing Firms’ Productivity and Environmental Impact. Sustainability 2021, 13, 3289. [Google Scholar] [CrossRef]
- Yurdakul, M.; Kazan, H. Effects of Eco-Innovation on Economic and Environmental Performance: Evidence from Turkey’s Manufacturing Companies. Sustainability 2020, 12, 3167. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, V. Innovation in the Global Mining Sector and the Case of Chile; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Ali, D.; Rehman, A.U. Adoption of autonomous mining system in Pakistan—Policy, skillset, awareness and preparedness of stakeholders. Resour. Policy 2020, 68, 101796. [Google Scholar] [CrossRef]
- Nesta, L.; Vona, F.; Nicolli, F. Environmental policies, competition and innovation in renewable energy. J. Environ. Econ. Manag. 2014, 67, 396–411. [Google Scholar] [CrossRef]
- Brown, C.; Daniels, A.; Boyd, D.; Sowter, A.; Foody, G.; Kara, S. Investigating the Potential of Radar Interferometry for Monitoring Rural Artisanal Cobalt Mines in the Democratic Republic of the Congo. Sustainability 2020, 12, 9834. [Google Scholar] [CrossRef]
- Grafström, J.; Lindman, Å. Invention, Innovation and Diffusion in the European Wind Power Sector; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Erbach, G. Negative Greenhouse Gas Emissions: Assessments of Feasibility, Potential Effectiveness, Costs and Risks; EPRS, European Parliamentary Research Service: Brussels, Belgium, 2015. [Google Scholar]
- Wilson, C.; Grubler, A.; Gallagher, K.S.; Nemet, G. Marginalization of end-use technologies in energy innovation for climate protection. Nat. Clim. Chang. 2012, 2, 780–788. [Google Scholar] [CrossRef] [Green Version]
- Newell, R.G.; Economics, E. Literature Review of Recent Trends and Future Prospects for Innovation in Climate Change Mitigation. 2009, pp. 1–51. Available online: https://www.oecd-ilibrary.org/environment/literature-review-of-recent-trends-and-future-prospects-for-innovation-in-climate-change-mitigation_218688342302 (accessed on 13 November 2022).
- Xu, J.; Fleiter, T.; Eichhammer, W.; Fan, Y. Energy Consumption and CO2 Emissions in China’s Cement Industry: A Perspective from LMDI Decomposition Analysis; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Steenhof, P.A. Decomposition of Electricity Demand in China’s Industrial Sector; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Achão, C.; Schaeffer, R. Decomposition Analysis of the Variations in Residential Electricity Consumption in Brazil for the 1980–2007 Period: Measuring the Activity, Intensity and Structure Effects; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Chen, Y.; Lin, B. Decomposition Analysis of Patenting in Renewable Energy Technologies: From an Extended LMDI Approach Perspective Based on Three Five-Year Plan Periods in China; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Ouyang, X.; Lin, B. Analyzing Energy Savings Potential of the Chinese Building Materials Industry under Different Economic Growth Scenarios; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Robaina-Alves, M.; Moutinho, V. Decomposition of Energy-Related GHG Emissions in Agriculture over 1995–2008 for European Countries; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Wang, W.; Zhang, M.; Zhou, M. Using LMDI Method to Analyze Transport Sector CO2 Emissions in China; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Wang, P.; Wang, C.; Hu, Y.; Liu, Z. Analysis of Energy Consumption in Hunan Province (China) Using a LMDI Method Based LEAP Model; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Ratanavaraha, V.; Jomnonkwao, S. Trends in Thailand CO2 Emissions in the Transportation Sector and Policy Mitigation; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Danguy, J. Globalization of Innovation Production: A Patent-Based Industry Analysis. Sci. Public Policy 2017, 44, 75–94. [Google Scholar] [CrossRef] [Green Version]
- Maasoumi, E.; Heshmati, A.; Lee, I. Green innovations and patenting renewable energy technologies. Empir. Econ. 2020, 60, 513–538. [Google Scholar] [CrossRef]
- Ang, B.; Zhang, F.; Choi, K.H. Factorizing Changes in Energy and Environmental Indicators through Decomposition; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Ang, B.; Liu, F.L. A New Energy Decomposition Method: Perfect in Decomposition and Consistent in Aggregation; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Rübbelke, D.; Weiss, P. Environmental Regulations, Market Structure and Technological Progress in Renewable Energy Technology—A Panel Data Study on Wind Turbines. FEEM Work. Pap. 2011. Available online: https://agris.fao.org/agris-search/search.do?recordID=US2016216197 (accessed on 13 November 2022).
- Fernandez, V. Patenting Trends in the Mining Industry; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Khramova, E.; Meissner, D.; Sagieva, G. Statistical Patent Analysis Indicators as a Means of Determining Country Technological Specialisation. Higher School of Economics Research Paper No. WP BRP 09/STI/2013. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2247936 (accessed on 13 November 2022).
- Yuan, X.; Li, X. The Evolution of the Industrial Value Chain in China’s High-Speed Rail Driven by Innovation Policies: A Patent Analysis; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Fujii, H.; Yoshida, K.; Sugimura, K. Research and Development Strategy in Biological Technologies: A Patent Data Analysis of Japanese Manufacturing Firms. Sustainability 2016, 8, 351. [Google Scholar] [CrossRef] [Green Version]
- Daly, A.; Valacchi, G.; Raffo, J. Mining Patent Data: Measuring Innovation in the Mining Industry with Patents. World Intellect. Prop. Organ. Econ. Res. Work. Pap. 2019. Available online: https://www.wipo.int/publications/en/details.jsp?id=4420 (accessed on 13 November 2022).
- Nguyen, C.; Schinckus, C.; Su, T.D. The Drivers of Economic Complexity: International Evidence from Financial Development and Patents; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Khan, J.; Rehman Khattak, N.U. The Significance of Research and Development for Economic Growth: The Case of Pakistan; CURJ: Rajasthan, India, 2014. [Google Scholar]
- Young, A. Learning by Doing and the Dynamic Effects of International Trade. Q. J. Econ. 1991, 106, 369–405. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, X.; Wang, M. Resource Curse and Green Economic Growth; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Andersson, M.; Ejermo, O. Technology and Trade-an Analysis of Technology Specialization and Export Flows; Lund University: Lund, Sweden, 2006. [Google Scholar]
- Dang, J.; Motohashi, K. Patent Statistics: A Good Indicator for Innovation in China? Patent Subsidy Program Impacts on Patent Quality; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Hu, A.; Zhang, P.; Zhao, L. China as Number One? Evidence from China’s Most Recent Patenting Surge; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Wang, Z.; Yin, H.; Fan, F.; Fang, Y.; Zhang, H. Science and Technology Insurance and Regional Innovation: Evidence from Provincial Panel Data in China. Technol. Anal. Strateg. Manag. 2022. Available online: https://www.tandfonline.com/doi/abs/10.1080/09537325.2022.2053518 (accessed on 13 November 2022).
- Nakamura, H.; Oosawa, M. Effects of the Underground Discharge Channel/Reservoir for Small Urban Rivers in the Tokyo Area. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 17th World Conference ACUUS 2020, Helsinki, Finland, 3–4 February 2021; IOP Publishing: Bristol, UK, 2021; Volume 703. [Google Scholar]
- Shiroyama, H. The Resilience of Multilateralism as Seen in the Response to Climate Change The University of Tokyo. Available online: https://ifi.u-tokyo.ac.jp/ (accessed on 8 October 2022).
- Fofack, H. The Ruinous Price for Africa of Pernicious’ Perception Premiums’: Unless Fairer Financing Rules Are Implemented Historical Biases Will Continue to Sabotage Sustainable Development in the Region. 2021. Available online: https://www.africaportal.org/publications/ruinous-price-africa-pernicious-perception-premiums-unless-fairer-financing-rules-are-implemented-historical-biases-will-continue-sabotage-sustainable-development-region/ (accessed on 8 October 2022).
- Haščič, I.; Watson, F.; Johnstone, N.; Kaminker, C. Évolution Récente de l’innovation Dans Les Technologies d’atténuation Du Changement Climatique. In Études de l’OCDE sur L’innovation Environnementale Politique Énergétique et Climatique Infléchir la Trajectoire Technologique: Infléchir la Trajectoire Technologique; OECD Publishing: Berlin, Germany, 2013. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abraham Mahanga Tsoni, C.G.; Massonini Ngoma, R.G.T.; Meng, X. Innovation and Climate Change Mitigation Technology in the Asian and African Mining Sector: Empirical Analysis Using the LMDI Method. Energies 2022, 15, 9424. https://doi.org/10.3390/en15249424
Abraham Mahanga Tsoni CG, Massonini Ngoma RGT, Meng X. Innovation and Climate Change Mitigation Technology in the Asian and African Mining Sector: Empirical Analysis Using the LMDI Method. Energies. 2022; 15(24):9424. https://doi.org/10.3390/en15249424
Chicago/Turabian StyleAbraham Mahanga Tsoni, Cety Gessica, Railh Gugus Tresor Massonini Ngoma, and Xiangrui Meng. 2022. "Innovation and Climate Change Mitigation Technology in the Asian and African Mining Sector: Empirical Analysis Using the LMDI Method" Energies 15, no. 24: 9424. https://doi.org/10.3390/en15249424
APA StyleAbraham Mahanga Tsoni, C. G., Massonini Ngoma, R. G. T., & Meng, X. (2022). Innovation and Climate Change Mitigation Technology in the Asian and African Mining Sector: Empirical Analysis Using the LMDI Method. Energies, 15(24), 9424. https://doi.org/10.3390/en15249424