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Abstract: Solar radiation is by nature intermittent and influenced by many factors such as latitude,
season and atmospheric conditions. As a consequence, the growing penetration of Photovoltaic
(PV) systems into the electricity network implies significant problems of stability, reliability and
scheduling of power grid operation. Concerning the very short-term PV power production, the
power fluctuations are primarily related to the interaction between solar irradiance and cloud cover.
In small-scale systems such as microgrids, the adoption of a forecasting tool is a brilliant solution
to minimize PV power curtailment and limit the installed energy storage capacity. In the present
work, two different nowcasting methods are applied to classify the solar attenuation due to clouds
presence on five different forecast horizons, from 1 to 5 min: a Pattern Recognition Neural Network
and a Random Forest model. The proposed methods are tested and compared on a real case study:
available data consists of historical irradiance measurements and infrared sky images collected in
a real PV facility, the SolarTech™*B in Politecnico di Milano. The classification output is a range of
values corresponding to the future value assumed by the Clear Sky Index (CSI), an indicator allowing
to account for irradiance variations only related to clouds passage, neglecting diurnal and seasonal
influences. The developed models present similar performance in all the considered time horizons,
reliably detecting the CSI drops caused by incoming overcast and partially cloudy sky conditions.

Keywords: clear sky index; random forest; pattern recognition neural network; nowcasting; all-sky-cam

1. Introduction

In recent years, the share of renewables in the energy mix has been growing world-
wide [1] in order to address the increasing energy demand and due to the necessity of
reduce the greenhouse gases emissions caused by conventional power production sys-
tems [2,3]. However, concerning the solar source, a large integration of photovoltaic (PV)
power into electricity grids is challenging [4], as solar radiation is heavily dependent on
several factors such as latitude, season, atmosphere and ambient conditions; hence, it often
fluctuates erratically [5]. This leads to a decrease in stability and reliability of the power sys-
tem, with inefficient utilities planning and consequent financial losses [6]. The large-scale
penetration of PV installations into the grid is hindered by this uncontrollable variability
of radiation at ground level: since PV generation is strongly correlated with the solar
irradiation incident on PV modules, the intrinsic variability of solar radiation reflects on to
the variability of PV power production [7]. In more detail, the solar power fluctuations are
primarily related to two aspects: the first one is the inherent radiation variation due to the
diurnal pattern, which is determined by rotation and revolution of the Earth; the second
one is related to the changes in meteorological conditions, such as the coverage given by
clouds [8]. Due to a very short-term time horizon, the sudden variations of solar irradiance
are primarily caused by the clouds’ passage [9].

In small-scale plants, such as microgrids, the PV power fluctuations linked to the
variability of the solar source are commonly managed by exploiting the active power
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reduction capacity of the inverter to limit production peaks. An additional approach is
the exploitation of energy storage system with the function of supplying energy during
power declines and to store energy during power peaks [10]. In minute scale time horizon,
batteries can be used to smooth the power profile by properly setting the discharging
and the charging phases [11]. Effective management of these systems can be achieved
through their integration with forecasting tools that allow predicting the occurrence of such
fluctuations [12]: this allows the battery to charge and discharge earlier, resulting in less
energy capacity required and therefore lower costs [13].

Forecasting at minute scale commonly exploits cloud motion vectors obtained through
sky cameras, satellite images or ground-based sensors [14]. Among these possibilities,
the use of sky camera has been proven to be the most suitable thanks to its temporal and
spatial resolution [15]. Indeed, it can provide advanced warning of approaching clouds
at a lead time from few minutes to hours in a range of few kilometres [16]. Moreover, its
combination with a solar radiation sensor enables to uncover the effect of specific types of
clouds on the radiation [17].

In scientific literature, several irradiance forecast and classification approaches exploit
whole-sky cameras to acquire sky images and then perform analyses to specific groups of
pixels or Regions Of Interest (ROI) of an image, such as in the sun’s surrounding or upwind.
The features extracted can be categorized as either spectral (related to statistical properties of
pixel groups, e.g., mean, standard deviation), textural (i.e., contrast, homogeneity, entropy)
or color-related (saturation, hue) [18]. Concerning spectral features, they allow to evaluate
the general weather condition, e.g., clear or cloudy sky [19], and they play a crucial role
in the accuracy of cloud classification results [18]. Another approach using a whole-sky
imager consists of providing directly the images to a deep learning model [20], that is a more
complex method with high accuracy, but which requires large dataset to be implemented.
Other techniques quantify or predict the solar variability through some indexes, and not
directly the solar irradiance. For instance, the cloud coverage prediction is implemented
in [21] using an artificial neural network and the temporal variability of solar irradiance is
classified in [7] through the use of clear sky index.

The present work, in line with a previous one [22], aims at developing a nowcasting
model capable of being integrated with the control strategy of batteries and able to predict,
over different time horizons ranging from 1 to 5 min, the occurrence of PV power fluctua-
tions. Such a tool allows to get early alerts on both sudden increases and sharp decreases
in solar irradiance and, consequently, in PV production. The tool exploits, as inputs, in-
frared images acquired through a whole-sky camera and meteorological measurements
recorded by a properly equipped weather station: the combined exploitation of these types
of information in the nowcasting of solar irradiance fluctuations constitutes the novelty
of the present work. Many machine learning techniques have been proposed in scientific
literature to classify and predict irradiance: specifically, Artificial Neural Networks (ANN)
and Random Forest (RF) models are deemed to be among the most promising ones [23,24].

With respect to other research papers that exploit all-sky camera images, the method
implemented here requires a lower number of images for achieving good results with a
lower number of images. The use of machine learning methods overcome the need of
a specific cloud modeling that requires much information that are hard to be estimated
or calculated.

2. Procedure

The present section discusses the selected classification models, the structure of avail-
able data and the performance metrics adopted to assess the classification accuracy.

2.1. Tested Methodologies

In this work, different methods are tested to detect the occurrence of sudden PV power
fluctuations, employing Artificial Neural Network (ANN) and Random Forest (RF). An
ANN is a Machine Learning tool that mimics the structure and the learning mechanism
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typical of the human brain. Its structure is conceptually divided into three blocks: one input
layer, one or more hidden layers and one output layer [25]. The input layer is responsible of
receiving the inputs from outside the network. Then, the signal flows into the hidden layers,
where it is processed by the hidden neurons. Lastly, the output layer has the function
of predicting the final result, starting from the information received from the previous
layers [26]. An ANN is capable of recognizing hidden patterns between input data and a
series of output classes, thus acting as classifier.

The ANN developed in the present study is characterized by a feed-forward network
architecture. The dimension of the hidden layers, i.e., the number of hidden neurons, is
selected through a sensitivity analysis aimed at finding the optimal compromise between
model performance and complexity. In practical terms, this procedure allows to select the
desired structure by analyzing the classification performance in function of the model structure
exploiting the cross-entropy metric [27]. During the training phase of the ANN, 70% of the
available data are used as training set, 10% as validation set and 20% as test set. The training
is performed through the scaled conjugate gradient back-propagation algorithm.

On the other hand, the RF is an ensemble method composed by several Decision Tree
classifiers as base learners. Each base learner performs predictions through a sequence of
binary partitions, the so-called “splits”, on input variables: each sample, when processed,
starts from the “root node” of the tree and flows across its structure until it reaches a “leaf
node”, representing an output class. The classification outputs of all the base learners are
then properly aggregated in order to obtain the final RF output [28]. The RF structure
allows to avoid overfitting issues and to effectively handle noisy data. During the training
phase, each tree is trained using a randomly selected subset of available data, relying on the
idea of bagging [29]. Some samples may be used to train several decision trees, while other
samples may never be involved in the training procedure. The latter samples are called
“Out-Of-Bag” (OOB) samples and, being completely extraneous to the training process,
they are useful to assess the RF classification performance.

As for the ANN model, a proper sizing of the RF structure is achieved through a
sensitivity analysis procedure, aimed once again at finding a reasonable compromise
between complexity and classification accuracy. This time, the sizing is based on the OOB
samples and allows to select a proper number of trees involved in the classification task.

2.2. Available Data

All methods are tested, validated and compared on a real case study: a PV facility at
SolarTech™B, on the rooftop of the Department of Energy at Politecnico di Milano, Milan,
Italy (Figure 1).

Figure 1. SolarTech™B PV facility at Politecnico di Milano, Italy.

The available data, corresponding to 72 days comprised between September 2019 and
March 2020 and recorded with a time granularity of one minute, are collected by means
of sensors installed in a dedicated weather station and a whole-sky camera placed in the
proximity of the considered PV plant. In more detail, the Global Horizontal Irradiance (GHI)
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measurements are acquired through an irradiance sensor, while images in the infrared
spectral region are collected through the all-sky camera.

The weather conditions are monitored with a meteorological station equipped with
different sensors to record several ambient parameters: solar irradiance, temperature,
humidity, wind speed, wind direction and rain collector. Solar irradiance is measured
with two secondary standard pyranometers for the measurement of the total (or global)
irradiance on the horizontal and 30° tilt planes. In addition, a pyranometer with shadow
band is available for measuring the diffuse solar irradiance. The pyranometer at 30° tilt is
directly used to define the solar irradiation on the PV modules which have the same tilt.
The main characteristics of the sensors together with the temperature measuring equipment
are shown in Figure 2 on the right and reported in Table 1. The meteorological station
performs ambient conditions measurements every ten seconds. The average, maximum,
minimum and the standard deviation of these values measured by the above-mentioned
sensors are calculated every minute and they are stored into a database.

The employed Sky InSight™ is a patented infrared all-sky imager for the continuous
tracking and forecasting of the cloud cover developed by Reuniwatt [30].

A schematic representation of the adopted all-sky camera is reported in Figure 2 on
the right. The infrared camera films an underlying hemispherical mirror, observing the
cloud ceiling with a 360° angle corresponding to a 2 km radius. The use of the infrared
vision technology allows a noticeable accuracy for day and night cloud detection, offering
many advantages in comparison to optical cameras:

¢ Itavoids segmentation errors related to the “circumsolar”, i.e., the overexposure region
surrounding the sun.

¢ It allows steady performance in conditions such as dawn, sunset, storms, etc. by
overcoming optical brightness and contrast variation issues.

¢ Itis capable to provide information such as altitude and optical thickness of clouds.

Table 1. Solar irradiance and temperature sensor characteristics.

Irradiance Sensors

Pyranometer (LSI, DPA252)

Standard Secondary standard ISO 9060
Measurements range (W/ m?) <2000

Spectral range 300-3000 nm

Total achievable daily uncertainty <2%

Directional response <+5.4 W /m?

Thermal drift <2%

Temperature and humidity sensor (LSI, DMA 875)

Temperature sensor
Measurements range
Uncertainty
Resolution
Response time (T90)

Pt100 1/3 B (DIN EN 60751)

[—30°C, +70 °C]

0.2°C (at 0 °C)

0.04 °C

3 min: with filter; 20 s: without filter (air speed 0.2 m/s)
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Figure 2. Weather station sensors (left) and 3D scheme of a whole-sky camera (right).

Figure 3 shows an example of infrared image acquired with the described system: the
blue part corresponds to the clear sky, the clouds are represented by different shades of
color and the sun is indicated by a black dot. The central red area and the surroundings are

part of the whole-sky camera structure [31].

Figure 3. Image acquired on 20 September 2019 at 10.05 a.m.: the blue part is the clear sky, the clouds
are represented with different shades and the red that surrounds all the image is the camera sys-

tem reflection.

Infrared images can be interpreted by referring at the 3D representation in real cardinal

coordinates reported in Figure 4.
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Figure 4. Cardinal coordinates of each image with sun trajectory: it rises to the left, reaches the noon
on the top and sets to the right of 2D image.

As models output, the solar attenuation due to the clouds passage is selected since this
phenomenon is representative of the PV power fluctuations. There are two possible types
of output: an absolute GHI and a relative GHI, expressed through the Clear Sky Index
(CSI). This latter parameter, as shown in Equation (1), is derived as the ratio between the
measured GHI and the GHI in clear sky conditions in the time interval ¢, computed through
physical modeling accounting for the Sun angles. Clear Sky Index (CSI) is employed due
to its several advantages:

¢ Itis not affected by the seasonal fluctuation of solar radiation along the year, being a
ratio among solar parameters.

e Itis strictly related to the Global Irradiance on the plane of the array and to the output
power of the PV plant.

* Itis easy to calculate its components, both because GHIcs is deterministic and be-
cause GHIm could be easily measured especially in complex building conditions when
the PV system is made by arrays of PV modules with different tilt and azimuth.

CSI|, = % 1)
GHIs,

The absolute value of GHI is directly comparable with the PV power production, but it
presents a non-negligible dependence on the period of the year and on the moment of
the day. Therefore, its variation in the time horizon of few minutes is influenced even
by parameters other than the cloud cover. Considering the time period corresponding to
the available data, indeed, irradiance values recorded in different seasons exhibit large
variability. On the other hand, the CSI allows to remove the diurnal and seasonal effects
typical of absolute GHI and, therefore, it reflects the irradiance variability related to the
only cloud cover. In light of that, this indicator is more suitable than the absolute GHI to
provide a general overview starting from data covering large time spans and, therefore, it
is selected as output of the models.

The CSI output is not a specific value, but a class corresponding to a range of possible
values. In more detail, five output classes are defined through strict threshold values
reported in the Table 2. These five classes are partially related to previous works of the
same authors [32,33] where, at first, three-day types are included: “cloudy”, “partially
cloudy” and “clear” days. However, when dealing with the clear sky index for classification
purposes, in the literature there are different thresholds and these could strongly depend
on the typical weather conditions related to the given location [34,35] (i.e., desertic areas,
rainy forests, etc. ...). In this study case, a linear partition to five classes is a reasonable
compromise between too many classes scarcely populated and few overcrowded. Moreover,
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this five-classes partition allows detecting more dense sudden changes in solar radiation
variations. The chart in Figure 5 expresses the number of samples in each class. To have a
lower number of samples in a particular class is a common issue in classification problems,
and sometimes either a different data grouping criteria or merging different classes together
could be a possible solution. In this work, class 5, even if with a reduced number of samples,
is kept separated from the others to spot those weather conditions with “over-irradiance”
which are not statistically significant (class 5 samples account 4% of the times), but which
could highlight particular operating conditions in the PV system (i.e., with solar irradiance
higher than Standard Test Conditions). To have meaningful prediction of this class, it is
reasonable to assume that an equal share among data classes, in terms of equal number of
samples, should be employed and the lack of this homogeneity in our case study is slightly
affecting the classification results, in particular when considering class 5 samples.

Table 2. Range of CSI values for each class.

Classes CSI Values Sky Conditions
1 (0;0.2] Overcast
2 (0.2;0.45] Partially cloudy
3 (0.45;0.75] Partially cloudy
4 (0.75;1] Clear sky
5 (1;1.6] Over-irradiance
943; 4.1% I Class 1
2134;9.28% I Class 2
[ Class 3
[ Class 4
[ IClass5

6315; 27.45% 8559; 37.2%

5055; 21.97%

Figure 5. Amount of samples in the five CSI classes with the relevant share of the available data.

In the present work, CSI is not only an output parameter, but it is exploited also as
input: CSI value at time T is provided as input to the model to forecast the CSI class at time
T + AT, where AT is the time horizon.

Concerning the other input parameters, several features are extracted from the infrared
images. The following list contains all the features computed for each of the available
sky images:

* 05 standard deviation of the pixel values in a small circular crown around the sun
computed separately for the red, green and blue channels.
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*  us: mean of the pixel values in a small circular crown around the sun computed
separately for the red, green and blue channels.

* 0 standard deviation of the pixel values in a large circular crown around the sun
computed separately for the red, green and blue channels.

* u;: mean of the pixel values in a large circular crown around the sun computed
separately for the red, green and blue channels.

Other than those features, additional information about GHI and solar angles, such as
solar elevation («) and azimuth (), are exploited during classification.

In general, the model development can be improved by training it with data about
the dynamic behavior of the system, namely, information about its previous states: for this
reason, as predictors, all parameters in the 3 min before the time Ty (except for solar angles)
are provided to the model to forecast the CSI class at time T + AT. The general prediction
scheme is depicted in Figure 6.

16 feature:
Ts, ls, 0y, iy @t To, T_y, T_p, T_3 ———)

GHl at Ty, T, T_,, T_; 21calures, Forecasting

CSlatTeT « T o T 4 features Model
ot-1,4-2,1-3

2 feat
W, a at T, eatures

———CSlat Ty + AT

T, = Forecasttime

T_, = Forecast time —1 minute
T_, = Forecast time —2 minutes
T_5 = Forecast time —3 minutes
AT = Forecast horizon

Figure 6. Prediction scheme for all the proposed models.

Once all data are stored, they undergo a proper cleaning procedure: it is necessary to
remove all the inconsistent samples and samples with missing values, in order to avoid their
potential negative influence on the forecast models performance. Moreover, all samples
related to rainy days (selected through the use of rain gauge) are excluded from training
since the presence of droplets on the mirror surface hinders a proper calculation of the
input parameters starting from the infrared images.

2.3. Evaluation Metrics

The performance evaluation is a crucial step to assess the capability of the model to
correctly identify the CSI class to whom an unlabeled sample belongs. All the classification
models, regardless of the underlying algorithm and the forecast horizon, are developed
starting from a common input dataset and their performances are evaluated on the basis of
common evaluation metrics.

Specifically, four metrics are considered: accuracy, precision, recall and F1 score for
each CSI class. The first three metrics are derived from the confusion matrix, while the last
can be calculated as a proper combination of the others.

The test accuracy provides an overview of “how well” a model is doing, returning the
fraction of predictions the model got right. Considering a generic day d, the daily accuracy
(Ay) is calculated as stated in Equation (2).

TPy

Ay = N, ()
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where TP; (True Positives) is the number of samples in day d correctly classified by the model,
while Nj is the number of available samples in day 4. In larger time periods, the overall
accuracy (A) is simply computed by averaging the daily values, as in Equation (3).

N
A=t Z\‘;‘—d ®3)

where N is the number of days in the considered time period.

The precision (P), also denoted as “positive predictive value”, for a class C is calculated
as stated in Equation (4). It defines how trustworthy an outcome is when the model
associates a sample to a specific class.

TP

P=Tp7Fp

4)
where TP is the number of samples that the model correctly classifies, namely, those
truly belonging to class C; FP (False Positives) is the number of samples that the model
incorrectly classifies as belonging to class C, while they belong to a different class.

The recall (R), also denoted as “sensitivity”, for a class C expresses how well the model
is able to detect that class. It is calculated as stated in Equation (5).

TP

R=Tp7EN ©®)

where TP is the number of samples that the model correctly classifies, namely, those truly
belonging to class C; FN (False Negatives) is the number of samples belonging to class C
that are incorrectly classified as belonging to a different class.

Considering a specific class C, one the following situations occurs:

¢ In the case that C is accurately recognized by the model, both high recall and high
precision are observed.

* In the case that C is not well recognized by the model but, when recognized, the out-
come is reliable, low recall and high precision are observed.

*  In the case that C is well recognized but the model assigns to C also points from other
classes, high recall and low precision are observed.

*  In the case that C is poorly recognized by the model, both low recall and low precision
are observed.

The F1 Score (F1) combines precision and recall in one single metric. In detail, it
consists of the harmonic mean of their value, as stated in the Equation (6). Whereas the
arithmetic mean equally weights all values, the harmonic mean assigns larger weight to
low values. As for precision and recall, this metric is also defined for a specific class C.

P-R
(P+R)

Fl=2- (6)

3. Results

The classification performances reported in the current chapter are computed on the
available data previously described.

3.1. Model Definition

The ANN and the RF methods are characterized by some important parameters that
highly affect the performances of the method. In particular, for the ANN, the number of
neurons in the hidden layer is the key feature that should be analyzed; for the REF, it is the
number of trees. Both these parameters can be found heuristically with a sensitivity analysis.

The sensitivity analysis on the neural network size has been performed training
15 independent times the network in order to reduce the impact of the stochastic weight
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initialization. In addition, for each of the 15 trials, the dataset splitting between training,
validation and testing has been resampled randomly. The optimal size of the ANN is
determined by the number of hidden neurons above which the improvement is negligible.

This analysis has been performed on all the identified time horizons (from 1 to 5 min).
Figure 7 shows the results obtained with time horizon equal to 5 min. The complete results
for all the time horizons are summarized in Table 3.

01 5 T T T T T T
Average training cross entropy
Average testing cross entropy
0.145 | QO Selected network size 7
0.14 - 1
2
© 0.135
c
[0}
3
© 013r
(@]
0.125 |
0.12
01 1 5 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Number of neurons

Figure 7. Sensitivity analysis on the number of neurons in the ANN with time horizon equal to 5 min.

Table 3. Results of the sensitivity analysis on the ANN hidden layer.

Time TH1 TH2 TH3 TH4 TH5
horizon
Optimal
number of 13 16 20 23 25
neurons

A sensitivity analysis on the number of trees has been performed for the RS model.
In this case, the performance has been computed with the out-of-bag algorithm, which
is capable of avoiding the lack of generalization. The results of this analysis for the time
horizon equal to 5 min are shown in Figure 8. The results on all the time horizons are
reported in Table 4.

Table 4. Results of the sensitivity analysis on the RF number of trees.

Time TH1 TH2 TH3 TH4 TH5
horizon
Optimal

number of 114 92 116 167 153

trees
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0.55

0.5

0.45

0.4

0.35 1

Out-of-bag classification error

O. 1 5 Il Il Il Il Il I
0 50 100 150 200 250 300

Number of trees
Figure 8. Sensitivity analysis on the number of trees in the RF with time horizon equal to 5 min.

3.2. Models Comparison

First, a performance evaluation is carried out comparing the two proposed classifi-
cation algorithms by means of the previously defined evaluation metrics and in function
of the different forecast horizons considered. The summary in Table 5 refers to the ANN
performance and contains each index calculated and the percentage differences (A) between
cases with time horizon of 1 min (TH1) and 5 min (TH5). The five classes are indicated
with names from C1 to C5.

Table 5. Indexes of performance for ANN model.

TH1 TH2 TH3 TH4 THS5 A
A (%) 87.7 83.6 80.3 77.8 76.4 11.3
C1 95.9 93.2 92.5 91.5 90.3 5.6
C2 93.5 90.3 86.3 85.7 83.6 9.9
P (%) C3 83.9 74.8 76.8 68.7 68.6 15.2
C4 88.4 87.9 84.4 84.9 79.7 8.7
C5 78.6 66.7 64.7 60.8 62.4 16.2
C1 97.4 96.3 92.8 92.7 91.3 6.1
C2 92.0 87.6 86.7 83.5 81.3 10.7
R (%) C3 79.3 77.6 70.6 722 65.2 14.1
C4 93.1 89.3 89.9 87.0 88.0 5.1
C5 69.1 51.9 52.4 38.6 30.7 38.4
C1 96.6 94.7 92.6 92.1 90.8 5.8
C2 92.8 88.9 86.5 84.6 82.5 10.3
F1 (%) C3 81.5 76.2 73.6 70.4 66.9 14.6
C4 90.7 88.6 87.0 85.9 83.6 7.0
C5 73.5 58.3 57.9 47.2 41.1 324

It is observed that the classification performance, according to all the evaluation
metrics considered, worsens when the time horizon increases: indeed, the problem to
solve becomes more complicated and difficult to predict. Moreover, performances on some
classes suffer greater percentage loss with respect to others according to the class-specific
indexes, in particular classes 2, 3 and 5. This can be due to the fact that class 2 and 3 are
representative of partially cloudy conditions and, thus, they are the most difficult to identify.
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On the other hand, class 5 contains less samples than the other classes, and therefore the
capability of the models to recognize this class is lower.

Table 6 summarizes the RF performance. As before, it contains each index calculated
and the percentage differences (A) between cases with time horizon of 1 min (TH1) and
5 min (TH5) and the five classes are indicated with names from C1 to C5.

Table 6. Indexes of performance for RF model.

TH1 TH2 TH3 TH4 TH5 A
A (%) 88.4 84.1 80.9 78.1 76.2 12.2
C1 97.9 96.8 95.7 94.8 93.8 42
C2 93.2 89.8 86.8 85.7 84.5 8.7
P (%) C3 82.2 77.1 73.8 72.5 71.2 11.0
C4 89.2 86.2 84.6 83.2 82.6 6.6
C5 76.9 713 69.8 69.1 69.6 74
C1 97.7 95.8 94.2 93.0 92.0 5.7
Cc2 93.6 90.1 87.6 85.9 84.3 9.3
R (%) C3 81.2 75.6 72.1 70.5 69.3 11.9
C4 91.5 89.6 88.5 88.0 88.0 34
C5 63.1 53.7 47.6 44.7 42.6 20.5
C1 97.8 96.3 95.0 93.9 929 49
Cc2 93.4 89.9 87.2 85.8 84.4 9.0
F1 (%) C3 81.7 76.4 729 715 70.2 11.5
C4 90.3 87.8 86.5 85.6 85.2 5.1
C5 69.4 61.3 56.6 54.2 529 16.5

It is observed that the RF model has the least loss of performance by increasing the
time horizon in terms of precision, recall and F1 score. On the contrary, the performance
loss in terms of accuracy is slightly lower with the ANN classifier. All methods perform
similarly on all the considered forecast horizons. In general, the RF slightly outperform the
ANN except for the time horizon TH5, where the ANN is the best performing classifier.

3.3. Performance Evaluation on Specific Days

An additional analysis is performed on four days with at least one sample for each
CSI class where the classification models developed present the best and the poorest
performances considering a time horizon of 5 min. The dates 27 September 2019 (Figure 9)
and 5 November 2019 (Figure 10) constitute the days where the ANN presents, respectively,
the best and the worst classification performance. On the other hand, 3 March 2020
(Figure 11) and 15 March 2020 (Figure 12) represent the days where the RF presents,
respectively, the best and the worst classification performance.

Figures 9-12 report the trend of CSI in the considered days and highlight the borders
of the different CSI classes. Additional information provided is related to the relevance of
the classification errors committed by the classification models on specific time frames. A
“less relevant incorrect classification” is a classification error that associates a time sample
to a CSI class which is contiguous to its real one. On the contrary, a “most relevant incorrect
classification” is a classification error that associates a time sample to a CSI class which is
not contiguous to its real one, estimating an irradiance level which is largely different from
the observed one.

A common characteristic between days characterized by bad classification perfor-
mances is the sudden variability in CSI value, fluctuating between different classes in
short time intervals. On the contrary, on days characterized by accurate classification
performances, the changes in solar irradiation are more gradual and the CSI trend is
less rugged.
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Figure 9. CSI trend with highlighted classification errors for the day of 27 September 2019.
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Figure 10. CSI trend with highlighted classification errors for the day of 5 November 2019.
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Figure 11. CSI trend with highlighted classification errors for the day of 3 March 2020.
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Figure 12. CSI trend with highlighted classification errors for the day of 15 March 2020.

Table 7 shows the CSI classes numerosity for each day and the test accuracy achieved
by each method.

Table 7. Performance and class composition of the days selected for the performance comparison.

Number of Samples Test Accuracy
Day Cc1 C2 C3 C4 C5 ANN RF
27 September 10 185 118 16 3 79.8% 74.4%
5 November 23 117 82 75 35 42.5% 62.8%
3 March 8 200 54 41 29 77.4% 81.9%
15 March 44 150 71 31 36 63.3% 62.7%

Analyzing the results, it is possible to notice that 5 November is a very critical day due
to the large number of high frequency fluctuations in solar irradiance. In addition, another
criticality of this day is related to the fact that many samples have a irradiance value very
close to the selected limits of the classes. The forecasting accuracy in these cases can be
increased by exploiting ensemble forecasting or fuzzy logic.

4. Conclusions

The increasing penetration of PV power systems into the electric grid is leading to
the necessity to smooth the PV power fluctuations, related to the intermittency which
characterizes the solar source. This task is typically addressed by exploiting battery energy
storage systems, whose control logic can be improved by integrating specific forecasting
tools capable of estimating the solar irradiance fluctuations in the near future. This control
strategy allows to charge and discharge the battery in advance in order to successfully
handle peaks and drops in PV power production. Moreover, the integration of a forecasting
tool potentially permits to undersize the energy storage capacity, allowing money savings.

The present work proposes two different nowcasting methods capable to predict,
over different time horizons ranging from 1 to 5 min, the occurrence of PV power fluc-
tuations: an Artificial Neural Network and a Random Forest model. From the results
presented, the following conclusions are drawn:

*  From a general perspective, the two proposed models present similar classification
performances on all the five time horizons analyzed. Therefore, the proposed now-
casting strategy, aimed at predicting the occurrence of PV power fluctuations on the
basis of the combination between infrared sky images and meteorological parameters,
performs similarly adopting either ANN or RF classification model. However, in the
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presented case study, RF scored the best results both in terms of overall classification
accuracy and computational load.

e  From a detailed analysis on specific days, it is observed that classification models
present reasonable performance whenever the CSI variation is gradual, while their
accuracy drops in conditions characterized by sudden solar irradiance fluctuations.

The forecasting time horizon used in this work ranges from 1 min to 5 min; these
horizons are valuable when dealing with grid management and with the need of exploiting
batteries to smooth power variations.

Finally, the topic discussed presents several potential future developments. One of
the main limits related to the proposed irradiance forecasting strategy is related to the
strict thresholds imposed to divide the registered CSI values in classes. Thus, it may be
worth increasing class number or trying different threshold values, in order to achieve a
more convenient and homogeneous class partitioning. Another possible investigation is
related to the extracted features: different image features can be tested and specific selection
criteria can be applied in order to reduce the dimensionality of the training data. Moreover,
classification methods other than ANN and RE, already applied, can be investigated.
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