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Abstract: To improve the control of active power in wind power clusters, an active power hierarchical
predictive control method with multiple temporal and spatial scales is proposed. First, the method
from the spatial scale divides the wind power clusters into the cluster control layer, sub-cluster
coordination layer and single wind farm power regulation layer. Simultaneously, from the temporal
scale, the predicted data are divided layer by layer: the 15 min power prediction is deployed for the
first layer; the 5 min power prediction is employed for the second layer; the 1 min power prediction
is adopted for the third layer. Secondly, the prediction model was developed, and each hierarchical
prediction was optimized using MPC. Thirdly, wind farms are dynamically clustered, and then the
output power priority of wind farms is established. In addition, the active power of each wind
farm is controlled according to the error between the dispatch value and the real-time power with
feedback correction so that each wind farm achieves cooperative control with optimal power output.
Finally, combined with the simulation of practical wind power clusters, the results show that the
wind abandonment rate was reduced by 2.13%, and the dispatch of the blindness was overcome
compared with the fixed proportional strategy. Therefore, this method can improve the efficiency of
cooperative power generation.

Keywords: wind power cluster; multiple temporal and spatial scales; model predictive control; wind
power prediction; dynamic grouping

1. Introduction

With the rapid development of wind power technology, the proportion of large-scale
and clustered wind power in energy applications is gradually increasing [1]. The large-
scale integration of a high percentage of wind power into the grid has put forward higher
standards and requirements for the real-time balance of power generation, transmission
and consumption of the power system [2]. However, with the vigorous promotion of high
percentage wind power, its inherent intermittency, volatility and strong uncertainty are
becoming increasingly prominent [3]. Wind power integration has a series of profound
impacts on the development of power grid dispatching, posing a huge challenge to the
balance of the power system [4]. Therefore, reasonable and optimal allocation of wind
power output, improving the accuracy of wind power prediction, as well as how to control
the active power of wind power clusters and develop an accurate wind farm output plan
have become urgent issues to be solved. Nowadays, the method of wind turbine output
power prediction using large-scale data information is a prerequisite and basis for solving
this problem [5–7].

Many scholars have carried out research on different prediction models for the accu-
racy of wind power prediction [8–10]. There are various wind power prediction methods.
Different algorithms have their own advantages and disadvantages, so the prediction
errors are different. Reference [11] evaluated the past and present wind power prediction
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methods and looked into the future trends of wind power prediction methods. Refer-
ence [12] proposed combined prediction intervals by entropy weight based on the naive
Bayes model to improve the wind power prediction performance. Reference [13] proposed
a combined forecasting method for wind power prediction, which takes full use of the
advantages of each model. Reference [14] selected different individual prediction models
and used a weighted combination method to combine the individual predicted values to
obtain the final predicted values, which effectively improved the prediction accuracy. Wind
power clusters can achieve more stable wind power than the large fluctuations of individ-
ual wind farm power, so wind power cluster power prediction has a greater value [15].
Reference [16] effectively divides wind power clusters and establishes prediction models
for different clusters, which reduces power prediction errors and improves the efficiency
of modeling. Reference [17] proposes an active power control method for wind power
clusters considering the prediction error, which reduces the power difference between
cluster output and dispatch requirements due to the prediction error. Reference [18] was
carried out using artificial neural networks. The results show that the proposed model may
be better for fitting the actual curve of wind power. It shows the advantages of artificial
neural networks in prediction. The accuracy of the above prediction model should be
improved, but the prediction model is more complex and requires meteorological and
other data. In fact, it is difficult to obtain meteorological data on smaller temporal scales
in actual dispatch. Moreover, most wind farms can only obtain power data. At the same
time, more complex prediction models can reduce the speed of forecasting and have a
negative impact on ultra-short-term dispatching. In summary, the complexity of the predic-
tion model needs to be considered in ultra-short-term dispatching. Above all, the genetic
algorithm (GA)-improved BP neural network has higher accuracy and simple models in
the ultra-short-term prediction process.

At present, a lot of fruitful research has been conducted by domestic and foreign
scholars on cooperative control within wind power clusters. Research shows that model
predictive control (MPC) theory has achieved good results in dealing with power systems
containing wind power [19]. Reference [20] introduces MPC into hierarchical control
for wind power clusters to improve wind power accommodation while ensuring system
safety. In reference [21], a fixed-time region method was designed that considers the
complete information of wind power prediction data. This makes the wind farm dynamic
clustering results applicable not only to a certain moment of time but also to the selected
time interval, laying the foundation for the realization of active power control of wind
power clusters. Reference [22] proposed a double-stage hierarchical adaptive neuro-fuzzy
inference system prediction model. It is introduced into the hierarchical control of wind
power clusters. The results prove that it can effectively improve the prediction accuracy
and wind power accommodation level. Reference [23] used an improved continuous
method model for wind power prediction and introduced hierarchical control of wind
power clusters to enable cooperative control of each wind farm, which improved the
coordination of wind farm energy storage. Reference [24] contributes to the active output
allocation of wind farms by using distributed model predictive control theory to analyze
the error distribution characteristics of wind farms. Reference [25] introduced MPC into the
coordination of wind farm power to solve the problem of faults caused by reactive power
deficiency. Reference [26] proposed a design and optimization method for wind turbine
blades, which solved the coupling problem of blade structure strength and improved the
power generation efficiency of wind turbines. Reference [27] proposed a new wind power
dispatch optimization scheme based on MPC, which is important for wind farm tracking
and dispatch plans. In this approach, a combined prediction model based on variance-
covariance variable weights is used to provide prediction information for dispatch and
maximizing the wind power generation. The analysis of the above literature reveals that
none of the relevant literature considers specific methods of wind farm coordination at
different temporal scales when achieving coordinated cooperation between different layers
of the wind power cluster. At the same time, the above literature does not mention the
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impact of wind power on the dispatch. The premise to ensure the smooth progress of the
above control is that wind power prediction can effectively cooperate with wind power
cluster control.

To further improve the accuracy of the wind power cluster tracking the dispatch
plan, rationalizing the wind farm output and giving full play to the advantages of wind
power have a very high economic value and social benefits. In this paper, an active power
hierarchical predictive control model in wind power clusters is proposed by taking advan-
tage of GA-BP and MPC theories. The method can be gradually optimized in temporal
and spatial scales to improve collaborative control accuracy. Progressive optimization of
wind power prediction information on the temporal scale to reduce prediction errors. At
the spatial scale, the wind power clusters are controlled layer by layer, and each layer is
adjusted separately on a rolling optimization. The effectiveness of the method is validated
by conducting a simulation study with the actual measured data from a wind power base
in China.

2. Active Power Hierarchical Predictive Control for Wind Power Clusters Based
on MPC

In order to realize the cooperative power output among wind farms in a wind power
cluster, this paper proposes an active power cooperative control method for wind power
clusters with multiple temporal and spatial scales. The control block diagram of the active
power stratification predictive control approach is shown in Figure 1. The optimization
modes are selected according to the size of the planned value issued by the dispatch
center and the predicted value of wind power: when the dispatched value is larger than the
predicted value, the operation is in the planned power mode. On the contrary, the operation
is in maximum power mode. The feedback correction corrects the next step of prediction
and optimization, making it closer to the actual basis for closed-loop rolling optimization.

Figure 1. Control block diagram of active power stratification predictive control approach.

Different wind farms within a wind power cluster are located in different geographical
environments and have different wind speed resources, so different wind farms have
different outputs from each other [28]. In order to reasonably arrange wind farm power
generation, this paper combines MPC to achieve active power hierarchical predictive
control of a wind power cluster. An active power stratification predictive control strategy
for a wind power cluster with multiple temporal and spatial scales is shown in Figure 2.
MPC is an optimization-based control algorithm, and rolling optimization is an important
part of it. Through the idea of hierarchical control, the wind power cluster is divided
into three layers from the spatial scale, each of which includes the operating blocks of
the MPC. From the multiple temporal scapes, each layer used different temporal scales
of wind power prediction data. The 15 min ultra-short-term wind power prediction is
deployed for the cluster control layer. The 5 min ultra-short-term wind power prediction is
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employed for the sub-cluster coordination layer. The 1 min ultra-short-term wind power
prediction is adopted for the single wind farm power regulation layer. Through layer-by-
layer refinement control and reasonable allocation of wind farm output, the problem of
inaccurate planning caused by wind power prediction errors can be reduced.
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Figure 2. Active power stratification predictive control strategy for wind power cluster with multiple
temporal and spatial scales.

In order to improve wind farm generation efficiency and wind energy utilization, the
cluster layer control model contains two modules for the dynamic clustering of wind farms
and optimization of cluster output. This layer is based on 15 min ultra-short-term wind
power prediction results by combining with wind power change trends. What is more,
it establishes wind farms for dynamic clustering and lays the foundation for post-layer
control. The control variable of this layer is the sub-cluster output power, and the rolling
optimization is executed every 15 min. The optimization time domain is set to 45 min.
The first optimization result is executed each time. The sub-cluster coordination layer
model uses the single wind farm output power as the control variable and is based on the
information of the 5 min active power prediction data. The rolling period is 5 min, and
three rolling optimizations are executed. The optimization time domain is set to 15 min
to optimize the output power of the upper layer. Meanwhile, comparing the magnitude
relationship between the predicted and dispatched values lays the foundation for a single
wind farm power regulation layer. It is further refined on the basis of the previous layer. The
time resolution of ultra-short-term wind power prediction is 1 min. The rolling optimization
period and time domain is set to 1 min. Finally, it develops a priority set of wind power
output based on wind farm dynamic grouping.

3. Active Power Prediction for Wind Power Clusters Based on GA-BP

An ultra-short-term active power prediction model based on GA-BP is proposed. BP
neural networks are feedforward networks with a multi-layer structure, where the hidden
layers can also be multi-layered. Figure 3 shows the structure of the BP neural network.
Although BP neural networks are simple, the prediction accuracy will exceed complex
prediction methods in ultra-short-term power prediction. In this paper, we mainly predict
the wind power at 1, 5 and 15 min. In summary, a GA-BP neural network is reasonable.
Therefore, it is reasonable to use GA-BP neural networks for ultra-short-term prediction of
the output power of each wind farm within the wind power cluster.
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Figure 3. BP neural network structure.

3.1. GA-BP Neural Network

A GA-BP neural network is based on a BP neural network. In order to improve the
accuracy of its model, GA is applied to overcome the disadvantage that the model is prone
to local traps due to the randomly given weights and thresholds of the BP neural network.
GA has excellent global search ability, so it is selected to optimize the initial weights and
thresholds of the BP neural network to improve the convergence speed of the network. The
BP neural network is also improved in terms of prediction accuracy. The simplicity of the
model gives it an advantage in ultra-short-term wind farm dispatch due to its faster prediction
speed relative to complex prediction models in 1, 5 and 15 min wind power prediction.

3.2. Wind Power Dispatch Analysis on Temporal Scale

The GA-BP neural network can provide reasonable wind power prediction data for
1, 5 and 15 min ultra-short-term dispatch. Its reasonableness is reflected in the fact that
the dispatching process can accept dispatching instructions faster so that it can take the
regulation power determined by the latest predicted data to achieve the purpose of meeting
the dispatching plan. The wind power dispatch analysis on a temporal scale is shown in
Figure 4.

0 minute 5 minutes

Dispatch center

Wind farms

Wind farms produce power according 
to new dispatch instructions

Wind farms produce power according to the 
dispatch instructions of the previous period

Dispatch instruction determination

Wind power 
predicted time

Issuing dispatch 
instructions

Upload 
predicted data

Figure 4. Wind power dispatch analysis on a temporal scale.

As can be seen from Figure 4, the wind farm needs wind power predictions for
the dispatch center to issue a new dispatch instruction in the case where issuing and
determining the dispatch instructions and uploading the predicted data is ignored [29].
The wind farm can only follow the dispatch instructions of the previous time period to
produce power during this time. Since the prediction accuracy is higher the closer to the
prediction point, the average accuracy of the last time period dispatching instruction is not
as good as the immediate dispatching instruction issued by the real-time prediction. In
theory, the larger the proportion of the total time for immediate dispatch instructions to
power output, the higher the efficiency of wind energy utilization. It is of great significance
to shorten the wind power predictive time to improve the efficiency of wind power cluster
generation [30].



Energies 2022, 15, 9453 6 of 21

3.3. Ultra-short-term Active Power Prediction Based on GA-BP

The flow chart of the predicted ultra-short-term wind power output using the GA-BP
neural network is shown in Figure 5. The input data selected for this paper are: wind
speed, wind direction of the wind tower, historical power data of the wind farm and NWP
weather data. We group the above datasets and use the first 60% of them as the model
training set, the middle 30% as the validation set and the last 10% as the test set. The data
were normalized to eliminate the effect of the variation in the installed capacity of different
wind farms. The predicted time domain is set to 24 h.

GA-BP
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Output
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Data
preprocessing

Begin

End

Set up training data 
and dispatch data

Normalization of 
sample data

Building GA-BP 
neural network

GA-based network 
parameter 

optimization

Inverse normalization 
of predictive results

Output of predictive 
results 

Meet the 
termination 

requirements?

Training and test

Input historical data

No

Yes

Figure 5. Flow chart of wind power prediction.

4. Hierarchical Predictive Control Multi-objective Rolling Optimization Model

MPC is based on the construction of the controlled object; finding the optimal solution
to reach the control objective by rolling optimization [31–33]. In the next control time
domain, the feedback information obtained is used to perform a new round of optimization.
Figure 6 shows a diagram of rolling optimization in MPC. Rolling optimization only
performs the optimization process of the current optimal control variable [34].
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Figure 6. Diagram of rolling optimization in MPC.

4.1. Dynamic Clustering of Wind Farms

With the increase in installed wind power capacity, large-scale wind energy access to
the grid has formed a trend. The volatility of wind energy will form a major disturbance to
the power system [35]. Based on the ultra-short-term wind power active power predicted
data, wind farms are classified according to the changes in active power that will occur
in the future and wind farms with the same trend of change are grouped into the same
category. Therefore, it is possible to determine the trend of output power variation of
the wind farm with the closest variation pattern using the active power predicted by the
GA-BP neural network. Every 45 min is used as a time interval to dynamically group the
power variation of wind farms for 24 h. This approach not only reflects useful information
from wind power comprehensively but also can track the wind resource changes over
time, which makes the application of dynamic groups more universal and the results
more accurate.

Using the 24 h active output power prediction information of the wind farm obtained
from the prediction model, the time resolution is set to 15 min. The rolling optimization
is executed every 15 min. The set of trend changes in output power for the next 45 min is
combined with the prediction moment. In order to distinguish the small range fluctuation
during continuous rising or falling, we calculate the difference between the maximum
and minimum values of the wind farm trend judgment power sequence. After several
experiments and analyses, the threshold value is set to one percent of the installed capacity
of wind farms when the installed capacity of wind farms is within 150 MW; the threshold
value is set to 5 MW when the installed capacity of wind farms is greater than or equal to
150 MW, as shown in Equations (1)–(4).

ΩPi =
[

Pfor
i,t , Pfor

i,t+1, Pfor
i,t+2, Pfor

i,t+3

]
(1)

γi = sign
(

Pfor
i,t+1 − Pfor

i,t

)
+ sign

(
Pfor

i,t+2 − Pfor
i,t+1

)
+ sign

(
Pfor

i,t+3 − Pfor
i,t+2

)
(2)

M = max
(
ΩPi

)
−min

(
ΩPi

)
(3)

η =

{
PN

i /100, PN
i < 150MW

5MW, PN
i ≥ 150MW

(4)

where ΩPi is the power trend set for the next 45 min, t is the current time, Pfor
i,t is the

prediction power of wind farm i at t time, Pfor
i,t+1 is the predictive power for 15 min, Pfor

i,t+2 is
the predictive power for 30 min, Pfor

i,t+3 is the predictive power for 45 min, γi is the wind
power variation trend factor, sign(x) is a function that takes the sign of a certain number
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(positive or negative) and is used to determine the trend of wind power variation, M is the
difference between the maximum and minimum values of the wind farm trend judgment
power sequence, η is the threshold value and PN

i is the installed capacity of wind farm
i. When M ≤ η , it is defined as the transitional fluctuation group. When M = 0, it is
defined as the smooth group. When x > 0, sign(x) = 1; when x = 0, sign(x) = 0; when x < 0,
sign(x) = −1. From Equation (2), it can be calculated that max (γi) = 3, min (γi) = −3. As a
result, the trend of wind farm power can be determined. When γi = 0, it means that the
value of sign(x) will continue to be equal to 0 in the next 45 min; therefore, wind power
trends remain unchanged, Pfor

i,t+1 − Pfor
i,t = 0, and it is defined as the smooth group. When

max (γi) = 3, it means that the value of sign(x) will continue to be equal to 1 for the next
45 min; when the wind power prediction series show an increase, Pfor

i,t+1 − Pfor
i,t > 0, it is

defined as the uphill group. When min (γi) = −3, it means that the value of sign(x) will
continue to be equal to −1 in the next 45 min; when the wind power prediction series show
a decrease, Pfor

i,t+1 − Pfor
i,t < 0, it is defined as the downhill group. When −3 < γi < 3, it

means that the wind power is not monotonically increasing or decreasing. At this time, the
wind power prediction series shows fluctuation, which is defined as the oscillating group.

∆σ = Pfor
i,t+1 − Pfor

i,t (5)

where ∆σ is the trend of power change.
According to Equation (5), the wind farm oscillation group can be further classified as

two kinds of groups, as demonstrated in Equations (6) and (7).

(1) First uphill then downhill group. {
∆σ∆t > 0
∆σ∆t+1 < 0

(6)

(2) First downhill then uphill group. {
∆σ∆t < 0
∆σ∆t+1 > 0

(7)

The problem of bias caused by incomplete information on the future output power
of wind farms is addressed by using a single point value as the basis for determining the
output power state at a certain moment. This paper designs a power change trend factor as
the basis of the judgment of wind farms based on the power change trend factor, taking into
account output power information of wind power clusters in a fixed time window instead
of a single time section. The dynamic clustering results are applicable to all wind farms
in the selected time period. The dynamic clustering criterion for wind farms is shown in
Table 1. Figure 7 shows the process of a wind farm dynamic cluster. The characterization of
dynamic wind power grouping is shown in Table 2.

Table 1. Wind power dynamic clustering criterion.

Number Criteria Group Type

0 γi = 0 or M = 0 Smooth group
1 γi = 3, M > η Uphill group
2 γi = −3, M > η Downhill group
3

{
∆σ∆t > 0
∆σ∆t+1 < 0

First uphill then downhill group

4
{

∆σ∆t < 0
∆σ∆t+1 > 0

First downhill then uphill group

5 M ≤ η Transitional fluctuation group
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Figure 7. Process of wind farm dynamic clustering. (a) Smooth group; (b) Uphill group; (c) Downhill
group; (d) First uphill then downhill group; (e) First downhill then uphill group; (f) Transitional
fluctuation group.

Table 2. Characterization of dynamic wind power grouping.

Group Type Characterization

Smooth group No change in output power trend

Uphill group The output power shows an upward trend and is able to
complete the increased power command

Downhill group The output power shows a downward trend and is able to
complete the power reduction command

Oscillating group The output power shows a trend of rising then falling, falling
then rising

Transitional fluctuation group The output power fluctuates up and down, easily causing
control errors

4.2. Cluster Layer Control Model

There are two rolling optimization objectives for the cluster layer, which are to mini-
mize fluctuations in wind power output and to achieve maximum power output from wind
power clusters. Adjusting the total dispatch plan of the wind power cluster by receiving the
dispatch plan values and comparing them with the wind power predicted values within 15
min. The sub-cluster dispatch plan is issued based on the comparison results. Its objective
function is shown in Equation (8).

min Jclu =
T

∑
k=1

m

∑
j=1

αj

[
λj1

(
Popt

ji,t+∆t − Pact
ji,t

)2
+ λj2

(
Popt

ji,t+∆t − P̄opt
ji,t+∆t

)2
]

(8)

where m is the number of sub-cluster types, T is the predicted time domain, αj is the
weight of the j sub-cluster, λj1 is the weight for suppressing fluctuations in wind power
output, λj2 is the weight to maximize the cluster out, Popt

ji,t+∆t is the power value of wind

farm i in j cluster at t + ∆t time, Pact
ji,t is the actual power value at t moment and P̄opt

ji,t+∆t is
ultra-short-term wind power prediction for 15 min. In the cluster layer, the future 1 h plan
value is optimized each time. The resolution is set to 15 min, so T = 4. Only the results at
k = 1 are taken for rolling optimization each time.

Equations (9)–(12) are the constraints:

(1) Wind power cluster output climbing limit.

|
m

∑
j=1

n

∑
i=1

Popt
ji,t+∆t −

m

∑
j=1

n

∑
i=1

Pact
ji,t |≤ D̄cluPN

clu (9)
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where n is the number of wind farms in each sub-cluster, D̄clu is the climbing rate
limit for the layer (15 min) and PN

clu is the sum of the installed capacity of all wind
farms within the wind cluster.

(2) Wind farm output climbing limit.

| Popt
ji,t+∆t − Pact

ji,t |≤ D̄jiPN
ji (10)

(3) Limitation of wind farm output.

Pmin
ji ≤ Popt

ji,t+∆t ≤ P̄for
ji,t+∆t ≤ PN

ji (11)

(4) Wind power cluster dispatch plan tracking constraints.

m

∑
j=1

n

∑
i=1

Popt
ji,t+∆t = Pdis

sys,t+∆t (12)

where Pmin
ji is the minimum output power of wind farm i in the j cluster, PN

ji is the

installed capacity of wind farm i in the j cluster and Pdis
sys,t+∆t is the value of the wind

power cluster power dispatch plan.

Through the MPC rolling optimization, the output power of each sub-cluster within
the cluster is shown in Equation (13). This cluster rolling optimization result is used as the
target value for each sub-cluster in the sub-cluster coordination layer.

P̃opt
j,t+∆t =

n

∑
i=1

Popt
ji,t+∆t (13)

where P̃opt
j,t+∆t is the output power of each wind farm in the cluster.

4.3. Sub-Cluster Coordination Layer Model

This layer is to realize the requirement of tracking the power grid dispatching com-
mands. Comparing the dispatch instruction of the wind farm with the actual output value
at the previous moment, the difference is the wind power output value that needs to be
adjusted [36], as demonstrated in Equation (14). According to the wind power adjustment
value, the output power priority set of wind farms responding to the changing character-
istics of wind power in different time periods is determined by realizing the cooperative
power output among wind farms in the wind power cluster and achieving the requirement
of tracking the grid dispatching command.

∆P = Pdis
WFC (t + 1)− Preal

WFC(t) (14)

where Pdis
WFC (t + 1) is the dispatch command for the wind farm at t+1 time, and Preal

WFC(t) is
the actual output value of the wind farm at t time.

(1) The amount of dispatching changes ∆P > 0.
This situation means that system dispatching requires the wind cluster to generate
more power at the next moment. At this time, it is necessary to regulate the output of
wind farms with an increasing trend in output power within the wind power cluster,
giving priority to the uphill group and the first uphill then downhill group.

(2) The amount of dispatching changes ∆P < 0.
This situation means that system dispatching requires the wind cluster to generate
less power at the next moment. At this time, it is necessary to arrange the wind farm
output in the wind power cluster with decreasing active power, giving priority to the
downhill group and the first downhill cluster then uphill group.

(3) The amount of dispatching changes ∆P = 0.
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This situation means that system dispatching requires the wind cluster to maintain
power stability at the next moment. At this time, it is necessary to regulate the output
of wind farms with a smooth trend of output active power within the wind power
cluster, giving priority to the smooth group.

This layer model has the main objectives of tracking the planned value of the sub-
cluster, suppressing the active power fluctuations and maximizing the output power. This
layer considers ultra-short-term wind power predicted values at a 5 min resolution. The
rolling cycle is 5 min, optimizing the output power for the next 15 min. It performs three
optimizations between two optimization moments in the cluster layer. The initial single
wind farm dispatching values are compared with the information of the 5 min ultra-short-
term predicted data, and then the dispatch plan results are distributed to each wind farm
to develop the initial single wind farm dispatching plan values. The objective function is
demonstrated in Equation (15).

min Jwfs =
T
∑

k=1

{
n
∑

i=1

[(
Popt

i,t+∆t − Pact
i,t

)2
+
(

Popt
i,t+∆t − P̂opt

ji,t+∆t

)2
]

+

(
n
∑

i=1
Popt

i,t+∆t − P̃opt
j,t′+∆t′

)2
} (15)

where
_
P

for
ji,t+∆t is the ultra-short-term wind power prediction for 5 min, P̃opt

j,t′+∆t′ is the

planned value sent from the cluster layer to the sub-cluster layer, t′ and ∆t′ correspond to
the cluster layer moment and time difference and ∆t is 5 min.

Equations (16)–(19) are the constraints:

(1) Wind power cluster output climbing limit.

|
m

∑
j=1

n

∑
i=1

Pact
ji,t+∆t −

m

∑
j=1

n

∑
j=1

Pact
ji,t |≤

_
Dclu PN

clu (16)

where
_
Dclu is the sub-cluster climbing rate limit.

(2) Wind farm output climbing limit.

| Popt
i,t+∆t − Pact

i,t |≤
_
Di PN

i (17)

where
_
Di is the wind farm climbing rate limit (5 min), and PN

i is the installed capacity
of wind farm i.

(3) Limitation of wind farm output.

Pmin
i ≤ Popt

i,t+∆t ≤
_
P

for
i,t+∆t≤ PN

i (18)

(4) Wind farm cluster scheduling plan tracking constraints.

n

∑
i=1

Popt
i,t+∆t ≤ P̃opt

i,t′+∆t′ (19)

where Pmin
i is the minimum output power of wind farm i, and PN

i is the installed
capacity of wind farm i. The results obtained from the sub-cluster layer are sent down
to the wind farms within the cluster to be used as tracking targets for the next layer.
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4.4. Single Wind Farm Power Regulation Model

The wind farm receives the dispatch issued by the sub-cluster coordination layer every
5 min. The optimized time domain is 1 min, so T = 1. This layer is mainly used to adjust
the wind farm itself with ultra-short-term wind power predicted values at 1 min resolution
to improve the control accuracy, track the wind farm dispatching objectives and maximize
the needs of system dispatching and to suppress wind power fluctuations as the main
objectives, as demonstrated in Equation (20).

min Jwf =
(

Popt
i,t+∆t − Pact

i,t

)2
+
(

Popt
i,t+∆t − P̂opt

i,t′′+∆t′′

)2
(20)

Equations (21)–(23) are the constraints:

(1) Wind farm output climbing limit.∣∣∣Popt
i,t+∆t − Pact

i,t

∣∣∣ ≤_
Di PN

i (21)

(2) Limitation of wind farm output.

Pmin
i ≤ Popt

i,t+∆t ≤
_
P

for
i,t+∆t≤ PN

i (22)

(3) Wind farm cluster scheduling plan tracking constraints.

Popt
i,t+∆t ≤

_
P

opt
j,t′′+∆t′′ (23)

where P̂opt
i,t′′+∆t′′ is the dispatch plans issued from the sub-cluster coordination layer,

P̂for
i,t+∆t is the predicted value of wind power (1 min) and D̂i is the single wind farm

output climbing rate limit (1 min).

5. Simulation Study
5.1. GA-BP Neural Network Prediction Results

To validate the effectiveness of the proposed method in this paper, the wind power
data of a wind power cluster from 1 February to 27 February 2021 are used as the training
dataset; the actual measured wind power data are from 28 February 2021. The experimental
dataset includes time series data of four different categories of wind speed, wind direction,
temperature and wind power. The wind power cluster contains six wind farms with the
installed capacity shown in Table 3.

Table 3. Wind farm installed capacity.

Wind Farm Number Installed Capacity (MW)

WF1 201
WF2 50
WF3 94
WF4 99
WF5 96
WF6 98.8

Figure 8 shows the wind farm power prediction curve. From Figure 8, it can be seen
that the GA-BP neural network predicts the curve closest to the actual curve throughout the
ultra-short-term wind power cluster power prediction, and the fluctuation trend follows
the original power trajectory. Compared with the BP neural network prediction results, the
proposed method has significantly improved the performance of power prediction. It can
be seen that the GA-BP neural network is more advanced in wind power prediction and
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has higher prediction accuracy. Meanwhile, the reasonableness and accuracy of GA-BP in
ultra-short-term wind power prediction are confirmed.
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Figure 8. Wind farm power curve of forecasting. (a) WF1; (b) WF2; (c) WF3; (d) WF4; (e) WF5;
(f) WF6.

5.2. Analysis of Dynamic Grouping Results

There is no strict definition of a wind power cluster, but it can generally be summarized
as a collection of several wind farms in close proximity to each other in terms of geographic
location or electrical network structure with complementary relationships where the wind
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power clusters are integrated into the grid. On the one hand, it can achieve flexible control
of the output power of wind power within the cluster, and on the other hand, it can make
full use of wind resources to achieve friendly scheduling and control of output power.
In this paper, the active power of wind farms is dynamically clustered according to the
ultra-short-term power predicted data on 28 February 2021. Dynamic clustering of wind
farms in a cluster is performed according to wind power dynamic clustering criterion and
trends in wind power forecast data. The clustering results are shown in Table 4.

Table 4. Results of wind farm dynamic cluster.

Time WF1 WF2 WF3 WF4 WF5 WF6

00:00–00:45 2 3 4 2 2 2
00:45–01:30 2 2 2 3 3 2
01:30–02:15 2 1 2 1 4 4
02:15–03:00 2 1 2 1 0 4
03:00–03:45 2 0 3 3 0 1
03:45–04:30 4 3 3 2 0 1
04:30–05:15 1 0 4 3 0 1
05:15–06:00 4 2 1 4 0 2
06:00–06:45 1 0 4 1 4 3
06:45–07:30 4 1 3 1 1 4
07:30–08:15 1 2 2 1 3 1
08:15–09:00 2 1 1 3 4 2
09:00–09:45 4 1 2 2 1 2
09:45–10:30 2 1 1 2 1 5
10:30–11:15 4 2 1 1 4 2
11:15–12:00 2 2 2 3 2 1
12:00–12:45 4 5 3 2 4 4
12:45–13:30 1 5 4 1 4 1
13:30–14:15 1 2 3 3 3 1
14:15–15:00 4 4 4 2 3 4
15:00–15:45 2 4 4 4 4 1
15:45–16:30 2 1 3 4 3 1
16:30–17:15 4 1 3 2 4 5
17:15–18:00 1 1 1 1 4 1
18:00–18:45 1 1 1 1 1 2
18:45–19:30 1 1 4 1 3 2
19:30–20:15 1 3 3 1 1 2
20:15–21:00 1 4 1 2 2 2
21:00–21:45 1 2 1 3 4 2
21:45–22:30 1 2 2 3 2 2
22:30–23:15 1 1 1 1 2 2
23:15–24:00 1 3 2 1 4 2

During the normal operation of a wind farm, the active power is in constant change
due to the uncertainty and randomness of the wind resource. Synchronous scheduling
means that the dispatching command and the real-time power change trend are the same;
asynchronous scheduling means that the dispatching command and the real-time power
change trend are not the same [37]. Therefore, the wind farm output power sequence is
regulated to ensure that the wind power tracks the grid dispatch commands.

When the predicted value of the wind farm output power lies above the dispatch plan
value, the dispatch department needs to adjust the output power to achieve the power
reduction. When the predicted value of active power is below the dispatch plan value, it is
necessary to track the maximum output power and increase the output power regulation.
In summary, the wind power output priority set is established, as shown in Table 5.
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Table 5. Wind power output priorities.

Mode The Trend of Wind
Power Dispatch Directions

Dynamic Grouping
of Output Power

Priorities

Synchronous scheduling Rise Increase 1 > 3 > 0 > 2 > 4
Decline Decrease 2 > 4 > 0 > 3 > 1

Asynchronous scheduling Rise Increase 2 > 4 > 3 > 1 > 0
Decline Decrease 1 > 3 > 0 > 4 > 2

Figure 9 shows the wind power cluster power prediction and dispatch curve. When
the system dispatch value is larger than the wind power prediction value, the wind farm
runs the maximum power tracking mode. The dispatch department controls the active
power of the wind power cluster to match the system dispatch command. When the system
dispatch value is less than the wind power predicted value, the wind farms operate the
planned power mode to control the coordinated power output of each wind farm in the
wind power cluster.
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Figure 9. Wind power cluster curve of forecasting and dispatch.

From 09:15 to 13:30, the predicted value of the wind power cluster is larger than the
dispatch value; the active power of the wind power cluster is in the planned power mode,
so all wind farms in the wind power cluster need to be regulated to meet the dispatch
plan value. During this period, power reduction regulation is required, and the optimal
sequence of wind power clusters is the downhill group, first downhill then uphill group
and smooth group. From 13:30 to 16:00, the predicted value of the wind power cluster is
less than the dispatch value; the dispatch department issues an increase plan so that all
wind farms in the wind power cluster are in the maximum active power mode. The optimal
wind power cluster order to be regulated is the uphill group, first uphill then downhill
group and smooth group. Specifically, the output power of each wind farm is coordinated
against the cluster results to achieve the optimal output power of the wind power cluster.

5.3. Hierarchical Predictive Control Results

In this paper, the fixed proportion strategy is used for comparison with the hierarchical
predictive control method. The core idea is to distribute the power according to the ratio
size of each wind farm in the wind cluster to the total output power. Figure 10 shows the
wind power cluster curve of the dispatch under different control strategies.

From Figure 10, it can be seen that the dispatching curve under the hierarchical
control strategy can track the dispatching command to the maximum extent, but the fixed
proportion method cannot fully respond to the cluster dispatching command. The analysis
shows that the hierarchical control strategy allocates the dispatched power to the wind
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farm based on the predicted information. The fixed proportion method does not consider
the predicted information so the wind farm dispatch power and wind farm predicted
power mismatch. As a result, the wind farm energy storage coordination output and wind
curtailment under the MPC-based strategy are higher.
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Figure 10. Wind power cluster curve of dispatch.

Figure 11 shows the different control effects of wind power in a single wind farm
under the two control methods. Relative to the overall effect, the hierarchical model control
is more advanced to the fixed proportion method. Because of the dynamic clustering of
wind farms in this paper, the hierarchical predictive control method can make full use
of wind power prediction information to reasonably allocate power output among wind
farms. For example, clustering results of the WF1 are in the smooth group from 15:15 to
17:45. Compared with the fixed proportional allocation method; the hierarchical predictive
control makes full use of dynamic grouping information to bring the wind farm output
curve closer to the dispatching plan. In the end, power generation and efficiency of wind
energy utilization are improved. There is no tracking and dispatching curve for WF2 from
12:00 to 13:45. Because, at this time, the wind farms are divided into clusters that result in
the transitional fluctuation group. The main goal of this type of sub-cluster is to suppress
fluctuations. From 12:00 to 16:00, the main clustering results of WF5 are the downhill
group and oscillating group so that the output curve decreases more gently and with lower
volatility than the fixed proportion approach. From 6:00 to 9:45, the main clustering results
of WF6 are the downhill group and transitional fluctuation group so that wind farms are in
the planned power mode tracking dispatching power output. Therefore, the model given in
the paper can achieve dynamic clustering of wind power clusters and real-time regulation
of wind farm output through layer-by-layer refinement of power prediction information.

As can be seen in Figure 11, this method is effective in tracking the planned values
throughout the period when the ultra-short-term wind cluster predicted power is less than
the dispatched values. The MPC-based dispatching strategy is more advanced in dealing
with wind power volatility. The MPC hierarchical control method tracks the dispatching
plan values more smoothly, especially WF3, from 01:45 to 08:00, without large fluctuations.
This is because the MPC dispatching method takes into account the predicted information
of ultra-short-term wind power cluster power output on the one hand and effectively
handles the continuous fluctuation of the wind cluster active power dispatching plan
through rolling optimization and error feedback correction, on the other hand, to improve
the stability of active power output. It shows that the MPC strategy can still achieve good
results when dealing with non-stationary active power.
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Figure 11. Control results of the active power stratification predictive control approach in a wind
farm. (a) WF1; (b) WF2; (c) WF3; (d) WF4; (e) WF5; (f) WF6.

Under hierarchical predictive control, the wind farm output is optimized based on
three links of predictive model control to track the grid dispatch plan values as the spatial
and temporal scales are refined layer by layer. The accuracy of the tracking and dispatching
plan is subsequently improved. For example, the WF4 output curve can effectively track
the dispatch curve from 15:00 to 18:00. The error caused by the control effect is improved
by the prediction information under the temporal scales, and the reasonable distribution of
the wind farm output is realized.
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5.4. Industrial Field Verification

In order to further analyze the effectiveness of the hierarchical predictive control
method in coping with the active power control of wind power, this paper conducts
industrial field validation of wind power clusters within a large wind power base. The
industrial field application is shown in Figure 12.

Figure 12. Industrial field applications.

As can be seen from Figure 12, this wind power cluster is in four regions, A, B, C and
D, containing six wind farms with a total installed capacity of 638.8 MW. Areas A and D
contain two wind farms, and areas B and C contain one wind farm. All wind turbines in
the wind farm are of controllable power. The number of wind turbines included in each
wind farm is 134, 25, 66, 55, 32 and 91, totaling 403 wind turbines. The method proposed in
this paper is used to collaboratively control each wind farm in this wind power cluster with
a control time horizon of 1 month. Figure 13 shows the comparison of the output power of
the wind cluster under the two control methods.
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Figure 13. Comparison of wind power cluster output power.
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From Figure 13, it can be seen that the proposed method of wind power cluster output
power is better than the fixed proportion method. The successful field validation not only
confirms the effectiveness of the cooperative control among the wind farms in the wind
power cluster but also validates the advantages of the proposed method in improving the
efficiency of wind power.

The wind abandonment rate is the percentage of wind power abandoned by the wind
farm to the planned power generation in the statistical cycle, which measures the power
generation efficiency of the wind turbine. Table 6 shows the abandonment rates of wind
farms in each region with different control strategies. It can be seen that the hierarchical
predictive control method can reduce the abandoned wind rate. In general, the method
proposed in this paper enables a coordinated distribution of the power output among the
wind farms to improve the efficiency of wind power utilization while meeting the planned
values of the wind power cluster dispatch center.

Table 6. Comparison of wind farm abandonment rates in different regions.

Area Number Fixed Proportion Strategy
(%)

Active Hierarchical
Predictive Control (%)

A 7.43 5.23
B 6.54 5.08
C 8.49 6.03
D 5.80 3.37

6. Conclusions

Based on the errors that occur between the predicted active power values of wind
power clusters and the dispatch values and the serious imbalance in the long-term power
distribution within wind farms, the ultra-short-term wind power prediction data are fully
considered, and the active power hierarchical prediction control model with multiple
temporal and spatial scales for a wind power cluster based on the MPC idea is proposed.
The following conclusions are obtained.

(1) Application of MPC’s rolling optimization strategy for the wind cluster active con-
trol with continuous feedback correction using actual values. The GA-BP neural network
is adopted in the prediction model to improve prediction accuracy. It is conducive to the
development of more accurate wind power dispatching plans and the reduction in the
wind power abandonment rate.

(2) Dynamic clustering of wind farms for wind power variation patterns in continuous
time periods. The output power priority of wind farms within the cluster is established,
which makes the active power dispatch mode of wind farms more reasonable. On the
premise of meeting the grid dispatching plan, it can further effectively improve the ability
of wind farms to make full use of wind energy resources and coordinate the power output
of each wind farm to improve the efficiency of wind power cluster generation.

(3) A hierarchical predictive control model is used to overcome the problem of unrea-
sonable distribution of active power output within traditional wind farms. The control
accuracy is improved by layer-by-layer refinement from temporal and spatial scales. This
reduces the impact of the wind power prediction error and wind power uncertainty on
active power control.

(4) The advance in the hierarchical predictive control method for collaborative control
among wind farms within a wind cluster is effectively demonstrated through industrial
field application. This significantly increases the active output power of the wind power
cluster, and the wind abandonment rate was reduced by 2.13%. This possesses practical
engineering significance.
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