Urban Sustainability: Recovering and Utilizing Urban Excess Heat
Abstract
:1. Introduction
2. Materials and Methods
2.1. EU Potential
2.2. Method to Assess Scalability and Replicability
2.3. Method to Compare Costs of Alternatives for Heating
2.4. Method to Study Business Aspects
2.5. Method for Technical Demonstration
3. Results
3.1. Urban Waste Heat Potential
3.2. Urban Waste Heat Recovery Performance
3.2.1. Demonstrator Performance
Data Center
Heat Recovery from a Hospital
Awareness Building Demonstrator (Dashboard)
Metro Heat Recovery Demonstrator
Scalability and Replicability Analysis of Demonstrator Sites
3.2.2. Competitiveness of Urban Waste Heat Recovery
3.3. Barriers
3.4. Results on Business Aspects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
DH | District Heating |
DHN | District Heating Network |
LT | Low Temperature |
HT | High Temperature |
HP | Heat Pump |
References
- Roman Baths. Available online: https://www.worldhistory.org/Roman_Baths/ (accessed on 26 July 2022).
- Raynal, P.; Gibert, J.; Barthomeuf, C. Chaudes-Aigues: Historique des utilisations de la géothermie. Reseaux Chal. 1992, 4, 67–75. [Google Scholar]
- Chaudes-Aigues: France’s First Heating Network. Available online: https://www.dhcnews.net/chaudes-aigues-frances-first-heating-network/ (accessed on 26 July 2022).
- Collins, J.F., Jr. The history of district heating. Dist. Heat. 1959, 44, 154–161. [Google Scholar]
- Werner, S. Development and Spread of District Heating (in Swedish: Fjärrvärmens Utveckling Och Utbredning); Värmeverksföreningen: Stockholm, Sweden, 1989. [Google Scholar]
- Frederiksen, S.; Werner, S. District Heating and Cooling, 1st ed.; Studentlitteratur AB: Lund, Sweden, 2013; ISBN 9789144085302. [Google Scholar]
- Lygnerud, K.; Werner, S. Low-Temperature District Heating Implementation Guidebook, IEA-DHC, Annex TS2, Final Report. 2021. Available online: https://www.iea-dhc.org/the-research/annexes/2017-2021-annex-ts2 (accessed on 26 July 2022).
- Köhler, B.; Dengler, J.; Dinkel, A.; Mauman, A.; Kalz, D.; Bonato, P.; Fleitern, T.; Steinbach, J.; Ragwitz, M.; Arens, M.; et al. Mapping and Analyses of the Current and Future (2020–2030) Heating/Cooling Fuel Deployment (Fossil/Renewables). Work package 2: Assessment of the technologies for the year 2012. Technology 2016. [Google Scholar] [CrossRef]
- Werner, S. International review of district heating and cooling. Energy 2017, 137, 617–631. [Google Scholar] [CrossRef]
- Miró, L.; Brückner, S.; Cabeza, L.F. Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries. Renew. Sustain. Energy Rev. 2015, 51, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Bühler, F.; Petrović, S.; Karlsson, K.; Elmegaard, B. Industrial excess heat for district heating in Denmark. Appl. Energy 2017, 205, 991–1001. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Xia, J.; Zhu, K.; Su, Y.; Jiang, Y. Industrial waste heat utilization for low temperature district heating. Energy Policy 2013, 62, 236–246. [Google Scholar] [CrossRef]
- Sun, F.; Cheng, L.; Fu, L.; Gao, J. New low temperature industrial waste heat district heating system based on natural gas fired boilers with absorption heat exchangers. Appl. Therm. Eng. 2017, 125, 1437–1445. [Google Scholar] [CrossRef]
- Andrés, M.; Regidor, M.; Macía, A.; Vassalo, A.; Lygnerud, K. Assessment methodology for urban excess heat recovery solutions in energy-efficient District Heating Networks. Energy Procedia 2018, 149, 39–48. [Google Scholar] [CrossRef]
- Nielsen, S.; Hansen, K.; Lund, R.; Moreno, D. Unconventional Excess Heat Sources for District Heating in a National Energy System Context. Energies 2021, 13, 5068. [Google Scholar] [CrossRef]
- Soloha, R.; Pakere, I.; Blumberga, D. Solar energy use in district heating systems. A case study in Latvia. Energy 2017, 137, 586–594. [Google Scholar] [CrossRef]
- Oktay, Z.; Aslan, A. Geothermal district heating in Turkey: The Gonen case study. Geothermics 2007, 36, 167–182. [Google Scholar] [CrossRef]
- Sawalha, S. Investigation of heat recovery in CO2 trans-critical solution for supermarket refrigeration. Int. J. Refrig. 2013, 36, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Zühlsdorf, B.; Christiansen, A.R.; Holm, F.M.; Funder-Kristensen, T.; Elmegaard, B. Analysis of possibilities to utilize excess heat of supermarkets as heat source for district heating. Energy Procedia 2018, 149, 276–285. [Google Scholar] [CrossRef]
- Somogyi, V.; Sebestyén, V.; Domokos, E. Assessment of wastewater heat potential for district heating in Hungary. Energy 2018, 163, 712–721. [Google Scholar] [CrossRef]
- Spriet, J.; McNabola, A.; Neugebauer, G.; Stoeglehner, G.; Ertl, T.; Kretschmer, F. Spatial and temporal considerations in the performance of wastewater heat recovery systems. J. Clean. Prod. 2020, 247, 119583. [Google Scholar] [CrossRef]
- Huang, P.; Copertaro, B.; Zhang, X.; Shen, J.; Löfgren, I.; Rönnelid, M.; Fahlen, J.; Andersson, D.; Svanfeldt, M. A review of data centers as prosumers in district energy systems: Renewable energy integration and wasteheat reuse for district heating. Appl. Energy 2020, 258, 114109. [Google Scholar] [CrossRef]
- Oró, E.; Taddeo, P.; Salom, J. Waste heat recovery from urban air cooled data centres to increase energy efficiency of district heating networks. Sustain. Cities Soc. 2019, 45, 522–542. [Google Scholar] [CrossRef]
- Petrović, S.; Colangelo, A.; Balyk, O.; Delmastro, C.; Gargiulo, M.; Simonsen, M.B.; Karlsson, K. The role of data centres in the future Danish energy system. Energy 2020, 194, 116928. [Google Scholar] [CrossRef]
- Wahlroos, M.; Syri, S.; Pärssinen, M.; Manner, J. Utilizing data center waste heat in district heating—Impact on energy efficiency and prospects for low-temperature district heating networks. Energy 2017, 140, 1228–1238. [Google Scholar] [CrossRef]
- Wahlroos, M.; Pärssinen, M.; Rinne, S.; Syri, S.; Manner, J. Future views on waste heat utilization—Case of data centers in Northern Europe. Renew. Sustain. Energy Rev. 2018, 82, 1749–1764. [Google Scholar] [CrossRef]
- Davies, G.; Boot-Handford, N.; Curry, D.; Dennis, W.; Ajileye, A.; Revesz, A.; Maidment, G. Combining cooling of underground railways with heat recovery and reuse. Sustain. Cities Soc. 2019, 45, 543–552. [Google Scholar] [CrossRef]
- ReUseHeat—Recovery of Urban Excess Heat. European Commission. Grant Agreement Number: 767429. H2020-EE-2016-2017/H2020-EE-2017-RIA-IA. Available online: https://www.reuseheat.eu/ (accessed on 20 July 2022).
- Nijs, W.; Castelló, P.R.; González, I.H. Heat Roadmap Europe. Baseline Scenario of the Total Energy System up to 2050. 2017. Available online: https://heatroadmap.eu/wp-content/uploads/2018/11/HRE4_D5.2.pdf (accessed on 26 July 2022).
- HRE3/Stratego. 2022. Available online: https://heatroadmap.eu/sp_faq/heat-roadmap-europe-3-stratego-2015/ (accessed on 26 July 2022).
- Celsius. Celsius-Smart Cities. 2020. Available online: https://celsiuscity.eu/ (accessed on 26 July 2022).
- REWARDHeat. 2022. Available online: https://www.rewardheat.eu/en/ (accessed on 26 July 2022).
- Persson, U.; Atabaki, S.; Nielsen, S.; Moreno, D. Report on the Amounts of Urban Waste Heat Accessible in the EU28: Update of Deliverable 1.4. Deliverable 1.9. 2022. Available online: https://www.reuseheat.eu/wp-content/uploads/2022/09/D1.9-Report-on-amounts-of-urban-waste-heat-accessible-in-EU28.pdf (accessed on 14 October 2022).
- Persson, U.; Averfalk, H.; Nielsen, S.; Moreno, D. Accessible Urban Waste Heat. Deliverable 1.4 (Revised version). ReUseHeat. Recovery of Urban Excess Heat. 2020. Available online: https://www.reuseheat.eu/wp-content/uploads/2021/02/D1.4-Accessible-urban-waste-heat_revised-compressed.pdf (accessed on 20 July 2022).
- Leonte, D. Scalability, Replicability and Modularity. Deliverable 2.9. ReUseHeat. Recovery of Urban Excess Heat. 2021. Available online: https://www.reuseheat.eu/wp-content/uploads/2021/09/D2.9-Scalability-replicability-and-modularity_Final-version_April-2021.pdf (accessed on 22 September 2022).
- Wheatcroft, E.; Wynn, H.P.; Volodina, V.; Dent, C.J.; Lygnerud, K. Model-Based Contract Design for Low Energy Waste Heat Contracts: The Route to Pricing. Energies 2021, 14, 3614. [Google Scholar] [CrossRef]
- Ostewalder, A.; Pigneur, Y. Business Model Generation; Wiley: New York, NY, USA, 2010; ISBN 978-0-470-87641-1. [Google Scholar]
- Lygnerud, K.; Nielsen, S.; Persson, U.; Wynn, H.; Wheatcroft, E.; Antolin-Gutierrez, J.; Leonte, D.; Rosebrock, O.; Ochsner, K.; Keim, C.; et al. Handbook for Increased Recovery of Urban Excess Heat; Deliverable 6.2. ReUseHeat. Recovery of Urban Excess Heat; European Commission: Brussels, Belgium, 2022; ISBN 978-91-7883-404-4. Available online: https://www.euroheat.org/static/378761b4-2d76-48ef-a77a73730832b05a/ReUseHeat-Handbook-For-Increased-Recovery-of-Urban-Excess-Heat.pdf (accessed on 11 December 2022).
- Antolín, J.; Sanz, R.; Miguel, F. Evaluation. Deliverable 4.5. ReUseHeat. Recovery of Urban Excess Heat. 2022. Available online: www.reuseheat.eu (accessed on 11 December 2022).
- Lygnerud, K.; Wheatcroft, E.; Wynn, H. Contracts, Business Models and Barriers to Investing in Low Temperature District Heating Projects. Appl. Sci. 2019, 9, 3142. [Google Scholar] [CrossRef] [Green Version]
- Leonte, D. Market and Stakeholder Analysis. Deliverable 2.1. ReUseHeat. Recovery of Urban Excess Heat. 2019. Available online: https://www.reuseheat.eu/wp-content/uploads/2019/03/D2.1-Market-and-stakeholder-analysis.pdf (accessed on 22 September 2022).
- Wheatcroft, E.; Wynn, H.; Lygnerud, K.; Bonvicini, G.; Leonte, D. The Role of Low Temperature Waste Heat Recovery in Achieving 2050 Goals: A Policy Positioning Paper. Energies 2020, 13, 2107. [Google Scholar] [CrossRef] [Green Version]
- Wynn, H.; Wheatcroft, E.; Lygnerud, K. Efficient Contractual Forms and Business Models for Urban Waste Heat Recovery. Deliverable 2.3. ReUseHeat. Recovery of Urban Excess Heat. 2021. Available online: https://www.reuseheat.eu/wp-content/uploads/2021/03/D2.3-UPDATED_20210223.pdf (accessed on 22 September 2022).
- European Commission. Committing to Climate-Neutrality by 2050: Commission Proposes European Climate Law and Consults on the European Climate Pact. 2020. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_20_335 (accessed on 26 July 2022).
- European Union. A European Green Deal. 2021. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 26 July 2022).
- IEA—International Energy Agency. World Energy Model. Macro Drivers. Available online: https://www.iea.org/reports/world-energy-model/macro-drivers (accessed on 26 July 2022).
- Danish Energy Agency. Technology Data. Available online: https://ens.dk/en/our-services/projections-and-models/technology-data (accessed on 26 July 2022).
- Hansen, C.H.; Gudmundsson, O. The-Competitiveness-of-District-Heating-Compared-to-Individual-Heatingv2. 2018. Available online: https://www.danskfjernvarme.dk/-/media/danskfjernvarme/gronenergi/analyser/03052018-the-competitiveness-of-district-heating-compared-to-individual-heatingv2.pdf (accessed on 26 July 2022).
- Greenhouse Gas Emission Intensity of Electricity Generation in Europe. Available online: https://www.eea.europa.eu/ims/greenhouse-gas-emission-intensity-of-1 (accessed on 26 July 2022).
- Schüppler, S.; Fleuchaus, P.; Blum, P. Techno-economic and environmental analysis of an Aquifer Thermal Energy Storage (ATES) in Germany. Geotherm. Energy 2019, 7, 11. [Google Scholar] [CrossRef]
- Malaich, B.; Oschatz, B. BDEW-Heizkostenvergleich Altbau 2021. Ein Vergleich der Gesamtkosten verschiedener Systeme zur Heizung und Warmwasserbereitung in Altbauten. 2021. Available online: https://www.bdew.de/media/documents/BDEW-HKV_Altbau.pdf (accessed on 26 July 2022).
- Großklos, M. Kumulierter Energieaufwand und CO2-Emissionsfaktoren Verschiedener Energieträger und–Versorgungen. 2020. Available online: https://www.iwu.de/fileadmin/tools/kea/kea.pdf (accessed on 26 July 2022).
- Miara, M.; Günther, D.; Kramer, T.; Oltersdorf, T.; Wapler, J. Wärmepumpen effizienz. Messtechnosche Untersuchung von Wärmepumpenangelan zur Analyse und Bewertung der Effizienz in realen Betrieb. 2011. Available online: https://wp-monitoring.ise.fraunhofer.de/wp-effizienz//download/wp_effizienz_endbericht_langfassung.pdf (accessed on 26 July 2022).
- Zukunfsheizen. Available online: https://www.zukunftsheizen.de/brennstoff/zusammensetzung-heizoelpreis/ (accessed on 26 July 2022).
- Bundesministerium für Wirtschaft und Klimaschuts. Staatlich veranlasste Bestanteile des Gaspreises. Available online: https://www.bmwi.de/Redaktion/DE/Artikel/Energie/gaspreise-bestandteile-staatlich.html#:~:text=Die%20Energiesteuer%20(Gassteuer)%20f%C3%BCr%20die,und%20flie%C3%9Ft%20in%20den%20Bundeshaushalt (accessed on 26 July 2022).
- Eurostat—Statistics Explained. Electricity Prices for Household Consumers, First Half 2021 v5. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Electricity_prices_for_household_consumers,_first_half_2021_v5.png#file (accessed on 26 July 2022).
- Eurostat—Statistics Explained. Electricity Prices for Household Consumers, First Half 2021 v1. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Natural_gas_prices_for_household_consumers,_first_half_2021_v1.png (accessed on 26 July 2022).
- AGFW—Der Energieeffizienzverband für Wärme, Kälte und KWK. Available online: https://ag-energiebilanzen.de/mitglied/agfw-der-energieeffizienzverband-fuer-waerme-kaelte-und-kwk-e-v/ (accessed on 11 December 2022).
- Resolution BOE-A-2020-11426. Ministerio para la Transición Ecológica y el Reto Demográfico. Resolución de 29 de septiembre de 2020, de la Dirección General de Política Energética y Minas, por la que se Publica la Tarifa de Último Recurso de gas Natural. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2020-11426 (accessed on 26 July 2022).
- Precios de los Derivados del Petróleo: España. Available online: https://datosmacro.expansion.com/energia/precios-gasolina-diesel-calefaccion/espana (accessed on 26 July 2022).
- Precio neto de la Electricidad para uso Doméstico y uso Industrial—Euros/kWh. Available online: https://www.mincotur.gob.es/es-es/IndicadoresyEstadisticas/BoletinEstadistico/Energ%C3%ADa%20y%20emisiones/4_12.pdf (accessed on 26 July 2022).
- ADEME Agence de la Transition Écologique. Available online: https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/818-reseaux-de-chaleur-et-de-froid-etat-des-lieux-de-la-filiere-marches-emplois-couts.html (accessed on 26 July 2022).
Impact | Unit | Intended Result | Estimated Value for a Full Year |
---|---|---|---|
Heat supply | MWh/year | 2300 | 2451 |
Excess heat volume | MWh/year | 1750 | 1660 |
Electricity | MWh/year | 580 | 791 |
Primary energy saved (PES) | MWh/year | 1284 | 2602 |
CO2 emissions saved | Tonnes/year | 304 | 412 |
Simplified payback period | Years | 8 | 3.1 |
Impact | Unit | Intended Result | Estimated Value for a Full Year |
---|---|---|---|
Heat supply | MWh/year | 770 | 2704 |
Waste heat recovered | MWh/year | 532 | 1751 |
Electricity | MWh/year | 238 | 789 |
Primary energy saved | MWh/year | 554 | 3768 |
CO2 emissions saved | Tonnes/year | 154 | 721 |
Simplified payback period | Years | 15 | 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lygnerud, K.; Langer, S. Urban Sustainability: Recovering and Utilizing Urban Excess Heat. Energies 2022, 15, 9466. https://doi.org/10.3390/en15249466
Lygnerud K, Langer S. Urban Sustainability: Recovering and Utilizing Urban Excess Heat. Energies. 2022; 15(24):9466. https://doi.org/10.3390/en15249466
Chicago/Turabian StyleLygnerud, Kristina, and Sarka Langer. 2022. "Urban Sustainability: Recovering and Utilizing Urban Excess Heat" Energies 15, no. 24: 9466. https://doi.org/10.3390/en15249466
APA StyleLygnerud, K., & Langer, S. (2022). Urban Sustainability: Recovering and Utilizing Urban Excess Heat. Energies, 15(24), 9466. https://doi.org/10.3390/en15249466