Recent Advances in the Preparation and Performance of Porous Titanium-Based Anode Materials for Sodium-Ion Batteries
Abstract
:1. Introduction
2. TiO2 as Anode Materials
3. Methods of Preparing Hierarchical Micro/Nanoporous Structured Ti-Based Materials
3.1. Sol-Gel Route
3.2. Coprecipitation
3.3. Hydrolysis Route
3.4. Metal-Organic Framework (MOF)
3.5. Vacuum Filtration Process
3.6. Combined Techniques of Solvothermal and Annealing Process
3.7. Coating Techniques
3.8. Template-Assisted Spray Pyrolysis
3.9. Biotemplate Route
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pimentel, D.; Marklein, A.; Toth, M.A.; Karpoff, M.; Paul, G.S.; McCormack, R.; Kyriazis, J.; Krueger, T. Biofuel impacts on world food supply: Use of fossil fuel, land and water resources. Energies 2008, 1, 41–78. [Google Scholar] [CrossRef]
- Raugei, M.; Hutchinson, A.; Morrey, D. Can electric vehicles significantly reduce our dependence on non-renewable energy? Scenarios of compact vehicles in the UK as a case in point. J. Clean. Prod. 2018, 201, 1043–1051. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Ramanathan, V.; Feng, Y. Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmos. Environ. 2009, 43, 37–50. [Google Scholar] [CrossRef]
- Hassoon, H.A. Measurement of carbon emissions from vehicles exhaust pipe using portable gas detector. Iraqi J. Agric. Sci. 2019, 50. [Google Scholar] [CrossRef]
- Rehan, R.; Nehdi, M. Carbon dioxide emissions and climate change: Policy implications for the cement industry. Environ. Sci. Policy 2005, 8, 105–114. [Google Scholar] [CrossRef]
- Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K.B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901. [Google Scholar] [CrossRef]
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling end-of-life electric vehicle lithium-ion batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Vincent, C.A. Lithium batteries: A 50-year perspective, 1959–2009. Solid State Ion. 2000, 134, 159–167. [Google Scholar] [CrossRef]
- Murata, K.; Izuchi, S.; Yoshihisa, Y. An overview of the research and development of solid polymer electrolyte batteries. Electrochim. Acta 2000, 45, 1501–1508. [Google Scholar] [CrossRef]
- Yang, J.; Hu, C.; Wang, H.; Yang, K.; Liu, J.B.; Yan, H. Review on the research of failure modes and mechanism for lead–acid batteries. Int. J. Energy Res. 2017, 41, 336–352. [Google Scholar] [CrossRef]
- Das, S.K.; Mahapatra, S.; Lahan, H. Aluminium-ion batteries: Developments and challenges. J. Mater. Chem. A 2017, 5, 6347–6367. [Google Scholar] [CrossRef]
- Ji, B.; Zhang, F.; Wu, N.; Tang, Y. A dual-carbon battery based on potassium-ion electrolyte. Adv. Energy Mater. 2017, 7, 1700920. [Google Scholar] [CrossRef]
- Lourenssen, K.; Williams, J.; Ahmadpour, F.; Clemmer, R.; Tasnim, S. Vanadium redox flow batteries: A comprehensive review. J. Energy Storage 2019, 25, 100844. [Google Scholar] [CrossRef]
- Huie, M.M.; Bock, D.C.; Takeuchi, E.S.; Marschilok, A.C.; Takeuchi, K.J. Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 2015, 287, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yi, J.; Xia, Y. Recent progress in aqueous lithiumion batteries. Adv. Energy Mater. 2012, 2, 830–840. [Google Scholar] [CrossRef]
- Opra, D.; Gnedenkov, S.; Sinebryukhov, S.; Podgorbunsky, A.; Sokolov, A.; Ustinov, A.Y.; Kuryavyi, V.; Mayorov, V.Y.; Zheleznov, V. Doping of titania with manganese for improving cycling and rate performances in lithium-ion batteries. Chem. Phys. 2020, 538, 110864. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef]
- Opra, D.; Gnedenkov, S.; Sokolov, A.; Podgorbunsky, A.; Ustinov, A.Y.; Mayorov, V.Y.; Kuryavyi, V.; Sinebryukhov, S. Vanadium-doped TiO2-B/anatase mesoporous nanotubes with improved rate and cycle performance for rechargeable lithium and sodium batteries. J. Mater. Sci. Technol. 2020, 54, 181–189. [Google Scholar] [CrossRef]
- Chayambuka, K.; Mulder, G.; Danilov, D.L.; Notten, P.H. From li-ion batteries toward Na-ion chemistries: Challenges and opportunities. Adv. Energy Mater. 2020, 10, 2001310. [Google Scholar] [CrossRef]
- Abraham, K. How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 2020, 5, 3544–3547. [Google Scholar] [CrossRef]
- Hu, Y.-X.; Zhang, D.-T.; Tang, F.-L.; Tian, C.-Y.; Li, J.; Jin, X.; Chang, C.-G.; Liu, M.-C. Expanded interlayer spacing of graphene oxide achieved by electrostatic cation intercalation towards superior sodium ion storage. Ionics 2022, 28, 3833–3842. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, L.; XiLi, D.; Kang, J. Advances of carbon materials as loaders for transition metal oxygen/sulfide anode materials. Chin. J. Rare Met. 2021, 45, 1241. [Google Scholar]
- Meng, J.; Jia, G.; Yang, H.; Wang, M. Recent advances for SEI of hard carbon anode in sodium-ion batteries: A mini review. Front. Chem. 2022, 10, 986541. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.I.; Yoon, W.-S. Challenges and Design Strategies for Conversion-Based Anode Materials for Lithium-and Sodium-Ion Batteries. J. Electrochem. Sci. Technol. 2022, 13, 32–53. [Google Scholar] [CrossRef]
- Guo, S.; Yi, J.; Sun, Y.; Zhou, H. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy Environ. Sci. 2016, 9, 2978–3006. [Google Scholar] [CrossRef]
- Wei, T.-T.; Wang, F.-F.; Li, X.-Z.; Zhang, J.-H.; Zhu, Y.-R.; Yi, T.-F. Towards high-performance battery systems by regulating morphology of TiO2 materials. Sustain. Mater. Technol. 2021, 30, e00355. [Google Scholar] [CrossRef]
- Wu, L.; Bresser, D.; Buchholz, D.; Giffin, G.A.; Castro, C.R.; Ochel, A.; Passerini, S. Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142. [Google Scholar] [CrossRef]
- Fehse, M.; Henry, A.; Zitolo, A.; Boury, B.; Louvain, N.; Stievano, L. Revisiting the Sodiation Mechanism of TiO2 via Operando X-ray Absorption Spectroscopy. Appl. Sci. 2020, 10, 5547. [Google Scholar] [CrossRef]
- Lin, D.; Li, K.; Wang, Q.; Lyu, L.; Li, B.; Zhou, L. Rate-independent and ultra-stable low-temperature sodium storage in pseudocapacitive TiO2 nanowires. J. Mater. Chem. A 2019, 7, 19297–19304. [Google Scholar] [CrossRef]
- He, H.; Gan, Q.; Wang, H.; Xu, G.-L.; Zhang, X.; Huang, D.; Fu, F.; Tang, Y.; Amine, K.; Shao, M. Structure-dependent performance of TiO2/C as anode material for Na-ion batteries. Nano Energy 2018, 44, 217–227. [Google Scholar] [CrossRef]
- He, H.; Wang, H.; Sun, D.; Shao, M.; Huang, X.; Tang, Y. N-doped rutile TiO2/C with significantly enhanced Na storage capacity for Na-ion batteries. Electrochim. Acta 2017, 236, 43–52. [Google Scholar] [CrossRef]
- Gan, Q.; He, H.; Zhu, Y.; Wang, Z.; Qin, N.; Gu, S.; Li, Z.; Luo, W.; Lu, Z. Defect-assisted selective surface phosphorus doping to enhance rate capability of titanium dioxide for sodium ion batteries. ACS Nano 2019, 13, 9247–9258. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Zhang, Y.; Miao, C.; Zhu, K.; Chen, Y.; Du, F.; Yin, J.; Ye, K.; Cheng, K.; Yan, J. MXene-derived defect-rich TiO2@ rGO as high-rate anodes for full Na ion batteries and capacitors. Nano-Micro Lett. 2020, 12, 128. [Google Scholar] [CrossRef]
- Opra, D.P.; Gnedenkov, S.V.; Sokolov, A.A.; Zheleznov, V.V.; Voit, E.I.; Sushkov, Y.V.; Sinebryukhov, S.L. Enhancing the reversible capacity of nanostructured TiO2 (anatase) by Zr-doping using a sol–gel template method. Scr. Mater. 2015, 107, 136–139. [Google Scholar] [CrossRef]
- Blomgren, G.E. The development and future of lithium ion batteries. J. Electrochem. Soc. 2016, 164, A5019. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tang, Y.; Li, W.; Chen, X. Nanostructured TiO2-Based Anode Materials for High-Performance Rechargeable Lithium-Ion Batteries. ChemNanoMat 2016, 2, 764–775. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, F.; Lee, C.S.; Tang, Y. Low-cost metallic anode materials for high performance rechargeable batteries. Adv. Energy Mater. 2017, 7, 1700536. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.-H.; Pucci, A.; Herntrich, T.; Willinger, M.-G.; Baek, S.-H.; Sung, Y.-E.; Pinna, N. Surfactant-free nonaqueous synthesis of lithium titanium oxide (LTO) nanostructures for lithium ion battery applications. J. Mater. Chem. 2011, 21, 806–810. [Google Scholar] [CrossRef]
- Ryu, M.-H.; Jung, K.-N.; Shin, K.-H.; Han, K.-S.; Yoon, S. High performance N-doped mesoporous carbon decorated TiO2 nanofibers as anode materials for lithium-ion batteries. J. Phys. Chem. C 2013, 117, 8092–8098. [Google Scholar] [CrossRef]
- Pérez-Carvajal, J.; Aranda, P.; Obregón, S.; Colón, G.; Ruiz-Hitzky, E. TiO2-clay based nanoarchitectures for enhanced photocatalytic hydrogen production. Microporous Mesoporous Mater. 2016, 222, 120–127. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, S.; He, H.; Xie, C.; Tang, Y.; He, C.; Shao, M.; Wang, H. Oxygen vacancy engineering in titanium dioxide for sodium storage. Chem.–Asian J. 2021, 16, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, N.; Guastaldi, A.C. Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater. 2009, 5, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Velten, D.; Biehl, V.; Aubertin, F.; Valeske, B.; Possart, W.; Breme, J. Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. 2002, 59, 18–28. [Google Scholar] [CrossRef]
- Motola, M.; Capek, J.; Zazpe, R.; Bacova, J.; Hromadko, L.; Bruckova, L.; Ng, S.; Handl, J.; Spotz, Z.; Knotek, P. Thin TiO2 coatings by ALD enhance the cell growth on TiO2 nanotubular and flat substrates. ACS Appl. Bio Mater. 2020, 3, 6447–6456. [Google Scholar] [CrossRef]
- Ajmal, N.; Saraswat, K.; Bakht, M.A.; Riadi, Y.; Ahsan, M.J.; Noushad, M. Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: Characterization, in vitro antibacterial, antioxidant activities. Green Chem. Lett. Rev. 2019, 12, 244–254. [Google Scholar] [CrossRef] [Green Version]
- Lewis, C.S.; Li, Y.R.; Wang, L.; Li, J.; Stach, E.A.; Takeuchi, K.J.; Marschilok, A.C.; Takeuchi, E.S.; Wong, S.S. Correlating titania nanostructured morphologies with performance as anode materials for lithium-ion batteries. ACS Sustain. Chem. Eng. 2016, 4, 6299–6312. [Google Scholar] [CrossRef]
- Wu, L.; Bresser, D.; Buchholz, D.; Passerini, S. Nanocrystalline TiO2 (B) as anode material for sodium-ion batteries. J. Electrochem. Soc. 2014, 162, A3052. [Google Scholar] [CrossRef] [Green Version]
- Su, D.; Dou, S.; Wang, G. Anatase TiO2: Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem. Mater. 2015, 27, 6022–6029. [Google Scholar] [CrossRef]
- Gu, X.; Li, L.; Wang, Y.; Dai, P.; Wang, H.; Zhao, X. Hierarchical tubular structures constructed from rutile TiO2 nanorods with superior sodium storage properties. Electrochim. Acta 2016, 211, 77–82. [Google Scholar] [CrossRef]
- Hasegawa, G.; Kanamori, K.; Kiyomura, T.; Kurata, H.; Nakanishi, K.; Abe, T. Hierarchically porous Li4Ti5O12 anode materials for Li-and Na-ion batteries: Effects of nanoarchitectural design and temperature dependence of the rate capability. Adv. Energy Mater. 2015, 5, 1400730. [Google Scholar] [CrossRef]
- Li, Y.-N.; Su, J.; Lv, X.-Y.; Long, Y.-F.; Wen, Y.-X. Yeast bio-template synthesis of porous anatase TiO2 and potential application as an anode for sodium-ion batteries. Electrochim. Acta 2015, 182, 596–603. [Google Scholar] [CrossRef]
- Hung, T.-F.; Lan, W.-H.; Yeh, Y.-W.; Chang, W.-S.; Yang, C.-C.; Lin, J.-C. Hydrothermal synthesis of sodium titanium phosphate nanoparticles as efficient anode materials for aqueous sodium-ion batteries. ACS Sustain. Chem. Eng. 2016, 4, 7074–7079. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; He, Y.-B.; Tang, L.; Kaneti, Y.V.; Lv, W.; Lin, Z.; Li, B.; Yang, Q.-H.; Kang, F. Li-ion and Na-ion transportation and storage properties in various sized TiO2 spheres with hierarchical pores and high tap density. J. Mater. Chem. A 2017, 5, 4359–4367. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M.; Zhu, G.; Li, D.; Yan, D.; Lu, T.; Pan, L. Porous cake-like TiO2 derived from metal-organic frameworks as superior anode material for sodium ion batteries. Ceram. Int. 2017, 43, 2398–2402. [Google Scholar] [CrossRef]
- Liu, X.; Xu, G.; Xiao, H.; Wei, X.; Yang, L. Free-standing hierarchical porous assemblies of commercial TiO2 nanocrystals and multi-walled carbon nanotubes as high-performance anode materials for sodium ion batteries. Electrochim. Acta 2017, 236, 33–42. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Huang, X.; Lan, T.; Wei, M.; Ma, T. Metal–organic framework derived hierarchical porous TiO2 nanopills as a super stable anode for Na-ion batteries. J. Energy Chem. 2017, 26, 667–672. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.; Yang, J.; Zhang, Q.; Wang, N.; Niu, F.; Xu, X.; Yang, J.; Fan, W.; Qian, Y. Biphase-interface enhanced sodium storage and accelerated charge transfer: Flower-like anatase/bronze TiO2/C as an advanced anode material for Na-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 43648–43656. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, D.; Li, M.; Gao, Y.; Wang, C.; Chen, G.; Du, F. Fabrication of hierarchical potassium titanium phosphate spheroids: A host material for sodium-ion and potassium-ion storage. Adv. Energy Mater. 2018, 8, 1801102. [Google Scholar] [CrossRef]
- Li, B.; Xi, B.; Feng, Z.; Lin, Y.; Liu, J.; Feng, J.; Qian, Y.; Xiong, S. Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage. Adv. Mater. 2018, 30, 1705788. [Google Scholar] [CrossRef] [PubMed]
- Devina, W.; Nam, D.; Hwang, J.; Chandra, C.; Chang, W.; Kim, J. Carbon-coated, hierarchically mesoporous TiO2 microparticles as an anode material for lithium and sodium ion batteries. Electrochim. Acta 2019, 321, 134639. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, W.; Zhou, Z.; Liu, X.; Zhang, H.; Wei, M. Hierarchical porous anatase TiO2 microspheres with high-rate and long-term cycling stability for sodium storage in ether-based electrolyte. ACS Appl. Energy Mater. 2020, 3, 3619–3627. [Google Scholar] [CrossRef]
- Ma, J.; Xing, M.; Yin, L.; San Hui, K.; Hui, K.N. Porous hierarchical TiO2/MoS2/RGO nanoflowers as anode material for sodium ion batteries with high capacity and stability. Appl. Surf. Sci. 2021, 536, 147735. [Google Scholar] [CrossRef]
- Xiong, Y.; Qian, J.; Cao, Y.; Ai, X.; Yang, H. Graphene-supported TiO2 nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries. J. Mater. Chem. A 2016, 4, 11351–11356. [Google Scholar] [CrossRef]
- Ling, L.; Bai, Y.; Li, Y.; Ni, Q.; Wang, Z.; Wu, F.; Wu, C. Quick activation of nanoporous anatase TiO2 as high-rate and durable anode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 39432–39440. [Google Scholar] [CrossRef]
- Yan, D.; Yu, C.; Bai, Y.; Zhang, W.; Chen, T.; Hu, B.; Sun, Z.; Pan, L. Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries. Chem. Commun. 2015, 51, 8261–8264. [Google Scholar] [CrossRef]
- Opra, D.P.; Gnedenkov, S.V.; Sinebryukhov, S.L.; Gerasimenko, A.V.; Ziatdinov, A.M.; Sokolov, A.A.; Podgorbunsky, A.B.; Ustinov, A.Y.; Kuryavyi, V.G.; Mayorov, V.Y. Enhancing lithium and sodium storage properties of TiO2 (B) nanobelts by doping with nickel and zinc. Nanomaterials 2021, 11, 1703. [Google Scholar] [CrossRef]
- Xu, Y.; Lotfabad, E.M.; Wang, H.; Farbod, B.; Xu, Z.; Kohandehghan, A.; Mitlin, D. Nanocrystalline anatase TiO2: A new anode material for rechargeable sodium ion batteries. Chem. Commun. 2013, 49, 8973–8975. [Google Scholar] [CrossRef]
- Zhang, H.; Qin, B.; Buchholz, D.; Passerini, S. High-efficiency sodium-ion battery based on NASICON electrodes with high power and long lifespan. ACS Appl. Energy Mater. 2018, 1, 6425–6432. [Google Scholar] [CrossRef]
- Jiang, N.; Hu, Y.; Jiang, H.; Li, C. Hierarchical TiO2 microspheres with enlarged lattice spacing for rapid and ultrastable sodium storage. Chem. Eng. Sci. 2021, 231, 116298. [Google Scholar] [CrossRef]
Characteristics | Maximum Rate Performance (mAhg−1) | Cycle Performance (mAhg−1) | Strategy | Ref. |
---|---|---|---|---|
HP Li4Ti5O 12 | 165 | 121 at 30C (500 cycles) | Temperature-dependent rate capability of SIBs | [52] |
Porous anatase TiO2-HP structure | 255.98 | 112.93 at 5C (100 cycles) | Low-cost yeast cells used as bio-templates | [53] |
NaTi2(PO4)3, nanoparticles | 121 | 103 at 2C (300 cycles) | Cost-effective hydrothermal method without calcination | [54] |
HP and high-tap-density TiO2 spheres with controllable size | 189 | 184 at 1C (200 cycles) | Hydrolysis method for producing different types of high-tap-density TiO2 | [55] |
TiO2 porous cake-like | 250 | 173 (2500 cycles) | Annealing Ti-based metal-organic frameworks templates | [56] |
TiO2 free-standing HP nanocrystals | 100 | 150 (500 cycles) | Mixing of multiwall carbon nanotubes and free-standing TiO2 nano crystals by ubes (designated as TiO2 MWCNTs) for Na storage by free-drying, annealing, and modified vacuum filtering | [57] |
TiO2 HP nanopills | 196.4 | 115.9 (3000 cycles) | MIL-125(Ti) titanium metal–organic framework as a precursor | [58] |
Flower-like ultrathin TiO2 nanosheets composed of anatase and bronze | 120 | 104 at 100C (6000 cycles) | Simple solvothermal reaction and high temperature annealing | [59] |
Self-assembled hierarchical spheroid-like KTi2(PO4)3@C nanocomposites | 283.2 | 136.1 (5000 cycles) | Electrospray method | [60] |
TiO2 nanoparticles linked in consistent pattern to compose HP hybrid nanosheet | 146 | 129 at 10C (20,000 cycles) | Adding nitrogen-doped graphene layer networks | [61] |
HP anatase TiO2 microparticles | 275 | 40 at 10C (450 cycles) | Incorporation of organic surface modifiers with supercritical methanol (scMeOH) | [62] |
Hierarchical architecture of porous anatase TiO2 microspheres | 207.3 | 140.6 (10,000 cycles) | Solvothermal reaction, combining ether-based electrolyte with porous structure | [63] |
TiO2/MoS2 to form a nanoflower structure | 616 | 460 (350 cycles) | Construction of hybrid architecture composed of MoS2 and TiO2 nanosheets | [64] |
Characteristics | Maximum Rate Performance (mAhg−1/Ag−1) | Cycle Performance (mAh g−1) | Strategy | Reference |
---|---|---|---|---|
Porous TiO2 nanospheres | 123.1/4.0 | 208 (over 500 cycles) | Graphene-supported TiO2 nanospheres by using hydrothermal method | [65] |
Nanoporous anatase TiO2 | 179/6.7 | 145 at 1C (over 3000 cycles) | Combination of uniforme nanopores and tiny nanocrystals | [66] |
TiO2 nanotubes | 257/0.05 | 103 (over 700 cycles) | Sn doping | [67] |
Mesoporous TiO2(B) | For Zn-doping 173/0.05 For nickel-doping 104/1.8 | For Zn-doping 151 (over 100 cycles) For nickel-doping 97 (over 50 cycles) | Zn doping, nickel doping | [68] |
Mesoporous TiO2 | 150/2 | 135–150 (over 100 cycles) | Anode material prepared by using anatase TiO2 nanocrystals | [69] |
Nanoporous NaTi2(PO4)3//Na3V2(PO4)3 | 85/2.4 | 64 (over 1000 cycles) | Scalable sol-gel method | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balasankar, A.; Arthiya, S.E.; Ramasundaram, S.; Sumathi, P.; Arokiyaraj, S.; Oh, T.; Aruchamy, K.; Sriram, G.; Kurkuri, M.D. Recent Advances in the Preparation and Performance of Porous Titanium-Based Anode Materials for Sodium-Ion Batteries. Energies 2022, 15, 9495. https://doi.org/10.3390/en15249495
Balasankar A, Arthiya SE, Ramasundaram S, Sumathi P, Arokiyaraj S, Oh T, Aruchamy K, Sriram G, Kurkuri MD. Recent Advances in the Preparation and Performance of Porous Titanium-Based Anode Materials for Sodium-Ion Batteries. Energies. 2022; 15(24):9495. https://doi.org/10.3390/en15249495
Chicago/Turabian StyleBalasankar, Athinarayanan, Sathya Elango Arthiya, Subramaniyan Ramasundaram, Paramasivam Sumathi, Selvaraj Arokiyaraj, Taehwan Oh, Kanakaraj Aruchamy, Ganesan Sriram, and Mahaveer D. Kurkuri. 2022. "Recent Advances in the Preparation and Performance of Porous Titanium-Based Anode Materials for Sodium-Ion Batteries" Energies 15, no. 24: 9495. https://doi.org/10.3390/en15249495
APA StyleBalasankar, A., Arthiya, S. E., Ramasundaram, S., Sumathi, P., Arokiyaraj, S., Oh, T., Aruchamy, K., Sriram, G., & Kurkuri, M. D. (2022). Recent Advances in the Preparation and Performance of Porous Titanium-Based Anode Materials for Sodium-Ion Batteries. Energies, 15(24), 9495. https://doi.org/10.3390/en15249495