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Abstract: With the rapid expansion of new energy in China, the large-scale grid connection of new
energy is increasing, and the operating safety of the new energy power system is being put to
the test. The static security and stability region (SSSR) with hyper-plane expression is an effective
instrument for situational awareness and the stability-constrained operation of power systems. This
paper proposes a hybrid improved particle swarm optimization (IPSO) and recursive least square
(RLS) approach for rapidly approximating the SSSR boundary. Initially, the operating point data in
the high-dimensional nodal injection space is examined using the IPSO algorithm to find the key
generators, equivalent search space, and crucial points, which have a relatively large impact on static
stability. The RLS method is ultimately utilized to fit the SSSR border that best suits the crucial spots.
Consequently, the adopted algorithm technique was used to rapidly approximate the SSSR border in
power injection spaces. Finally, the suggested algorithm is confirmed by simulating three kinds of
generators of the new energy 118 bus system using the DIgSILENT/Power Factory. As a result, this
method accurately characterized the stability border of the new energy power system and created
the visualization space of the SSSR. Using the SSSR, a rapid state analysis could be undertaken on a
variety of parameters, such as security evaluation with diverse energy supply capacities. This study’s
findings confirmed the accuracy and efficacy of the suggested modeling for the considered system
and may thus give technical support for the new energy power system’s stability.

Keywords: new energy power system; IPSO; RLS; SSSR

1. Introduction

China’s dual carbon objective can only be achieved via the transformation of low-
carbon energy and the creation of a new power system [1,2]. To accomplish the objective of
zero net emissions by 2060, the transition from fossil fuels to new, low-carbon energy sources
is essential [3]. Wind energy, being a pure and pollution-free source of energy, stands apart
from other clean energy sources [4]. As the percentage of wind turbines linked to the grid
rises, their unpredictability and volatility pose new problems to the system’s stability and
security [5]. Modern power systems employ transmission lines with high voltage levels
and big transmission capacities to link the power grids of two areas to reduce the system’s
operating expenses and increase its operational security. Interconnection systems may
increase the transmission efficiency of the system, allow for more centralized frequency
modulation when variations occur, and allow for cooperation amongst linked systems [6].
Concurrently, regional electricity systems are becoming increasingly interdependent. Once
a defect develops in a particular location, the strong connectivity to neighboring power
systems will result in widespread cascade failures of interconnected power networks. New
power systems with guaranteed security are becoming more essential [7]. In addition, the
safe functioning of the system has a certain bearing on the wind turbine itself. Too low a
voltage will result in a low voltage crossover of the wind turbine, and too high a voltage
will result in a wind turbine fault, even during off-grid operation [8]. Analyzing the security
of large-scale modern energy generation systems is of enormous practical value [9].
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Due to the strong wind electrode’s unpredictability, the electrical grid’s operating cir-
cumstances become more dynamic, making it harder to perform a comprehensive security
study [10]. Because the accident set is predetermined, the quantity of data that can be cal-
culated and the breadth of the analysis of the system’s operating condition are constrained,
making them insufficient for online real-time analysis. Given the severe constraints and
conservatism of the standard approach to analyzing power system security, the investiga-
tion of alternative approaches that can accommodate the modern, intricate power grid is
of paramount importance. At this juncture in history, the notion of a “security domain”
emerges. It is more progressive than the legislation of old and can learn everything about
the current condition of a system’s operations. Analyzing the operation characteristics of a
wind power system from a “domain” perspective can effectively deal with the uncertainty
and volatility of wind power; after studying the boundary property of the “security do-
main” and forming the domain, the dispatcher can analyze the security of the system more
directly and simply by judging the relative position information of the system’s operating
point and the boundary of the “security domain”. Power system security zone analysis was
first suggested by E. Hnyilicza and Galiana et al. in 1975 [11,12]. To put it geographically,
the security domain is the area within which the complete system may be run without
risk [13]. Calculating the distance between the operation point and the boundary of the
security domain, determining the current operating state of the system, and providing
reliable control information for the operating system yields an approximation of the system
security margin, which is useful for providing online monitoring information, mitigation,
and optimization measures to dispatchers [14].

Thus, the notion of a “security stability region, SSR” was put out by academics. SSR,
which was originally presented in the electrical network and is described as a collection
of operating points to fulfill the power flow equation and security and stability criteria, is
regarded as a powerful instrument. The key challenge in building the SSR is figuring out
how to rapidly locate the essential point of steady functioning and shape the border of the
SSR [15]. On the other hand, it specifies the biggest safe operating zone of the whole system,
which has found widespread use in power systems. Using the relationship between the
operating point and the security border, we have given the operators useful information,
such as the security margin and the best control choice. In addition, the static security
stability region (SSSR) and the dynamic security stability region (DSSR) are derived for the
particular security and stability problem.

To avoid any undesirable events, such as voltage collapse, it is essential to maintain
the SSSR of a power system. Therefore, voltage instability problems have been of utmost
concern for electric utilities, which is closely related to reactive power distribution and
heavy load in the wind power transmission system [1–6]. Various strategies, including
variational sensitivity [16], incorporative dynamic modeling [17], integrated constant power
flow [18], optimal power flow [19], Lyapunov–Krasovskiı̆ functional method [20], and
modified Lyapunov–Razumikhin method [21], have been presented thus far to solve the
security difficulties of the new energy power system. The authors of [22] performed an
extensive study based on the DC power flow model in an attempt to identify the SSSR,
which is composed of the security constraint plane. Reference [23] expanded on the DC
model and introduced a decoupling model that takes active and reactive power into
account. This model may simultaneously explore active and reactive power challenges.
The paper [24] proposes a maximum embedding approach that uses the size of the SSSR
as an indicator for measuring the grid margin. The computation procedure is tedious,
and the resulting SSR is conservative [25]. To avoid the aforementioned flaws, C. C. Liu
employs the expansion approach to determine the maximum security region. Nevertheless,
the step size does not vary, while the calculation procedure changes, resulting in a slow
calculation time. Moreover, the needed SSR will vary according to the growth order [26].
Literature [27] advocated tracking the border of SSSR using the Lagrangian multiplier
approach to construct SSR. Literature [28] increased the efficiency of SSR production by
optimizing the search model according to the nature of the grid boundary. Reference [29]
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demonstrated that the boundary of the security region in engineering applications can be
represented by a set of one or more hyperplanes. Literature [30], based on the relationship
between the space angle of the space tangent vector at the critical point and the maximum
space angle threshold, performs a piecewise approximation of the boundary of the SSSR.
Reference [31] utilized the Taylor series trajectory sensitivity method to solve the security
region. The reference [32] examines the usage of a combined model-based superconducting
fault current limiter and shunt FACTS Controller (STATCOM) for evaluating the transient
stability of a power system with an automated voltage regulator. The FACTS controller aids
in increasing the dynamic stability limit, improves power flow regulation, and increases
asset utilization, system flexibility, and system performance [33].

With the rapid development of artificial intelligence techniques [34,35] and the widespread
deployment of new energy power systems, data-driven machine learning methods, such as
decision trees [36,37], support vector machines [38,39], K nearest neighbors [40], extreme
learning machines [41,42], a differential evolution algorithm [43], the least square support
vector machine method [44], a genetic algorithm [45], gravitational search algorithm [46],
particle swarm optimization algorithm [47], recursive least square algorithms [14], and
recurrent neural networks [48]; all of which are becoming increasingly prevalent. In addi-
tion, some intelligent optimization algorithms are also used to analyze power systems. For
example, reference [49] gives the “boundary” command in MATLAB to the particle optimal
value found by the PSO algorithm and connects them to form the boundary of the security
domain. Reference [50] describes an improved ant colony algorithm, which establishes
a more intuitive stability criterion by adjusting the participation factors and refining the
search rules, and more accurately analyzes the power system’s stability to make the SSSR
searched the most comprehensive. Literature [51] uses a neural network algorithm to solve
a problem based on the DC power flow model, with the volume of the inner hypercube
as the objective function, but still cannot avoid the problem of low calculation efficiency.
Reference [52] focuses on incorporating a voltage collapse proximity index in the traditional
optimal power flow problem for multi-objective particle swarm optimization (MOPSO).
Reference [53] uses the limit gradient lifting tree algorithm to assess power system voltage
stability. This algorithm can meet the needs of online assessment but cannot guarantee
the global tracking accuracy of SSR critical points. To solve the problems above, many
scholars put forward their own opinions. Using intelligent optimization algorithms is one
of the effective ways to solve the problems above, many intelligent algorithms have been
proposed for the static stability problems of power systems such as PSO, RLS, GA, DEA,
GSA algorithm, and so on. The effectiveness of these optimization techniques in the static
stability problem of the system has been demonstrated and is widely used. Among them,
PSO and RLS are considered the most mature optimization algorithms and are considered
benchmarks for optimization techniques [14]. However, the inherent defects of these two
algorithms limit their development to a certain extent. The convergence speed of PSO
algorithm is slow in the later period, and it is difficult to deal with discrete optimization
problems and easy to fall into local optimization; RLS has an insufficient memory ability,
the group matures early, and the efficiency is low. Various hybrid IPSO-RLS algorithms
have been proposed to overcome the inherent shortcomings of the above two algorithms,
However, their application in the static stability problems of power systems is still relatively
rare. Because of this, we have created a generic meta-heuristic method for constructing the
SSSR in a power system operating on renewable sources of energy. Recently developed
alternatives to the model-based approach, such as the improved particle swarm optimiza-
tion (IPSO) algorithm and the recursive least square (RLS) method [14], have demonstrated
significantly increased speed, greater accuracy, and broader applicability. To efficiently
identify key generators, this research presented a novel IPSO-RLS algorithm. The following
is a brief overview of the main findings of this research.

• A unique mathematical notion and formulations of the proposed grid and its SSR were
presented to improve the proposed new energy power system’s reliability through the
study of static security and stability.
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• This research developed and integrated the benefits of the IPSO algorithm and the RLS
method to determine the crucial security stability operation region of the new energy
power system more rapidly and precisely. In addition, a unique hybrid IPSO-RLS
algorithm for finding the region of greatest static security and stability was developed.

• The SSSR of the system was fitted and examined by IPSO-RLS, all by different energy
in the new energy 118 bus system with varying power output.

The remaining part of this work is structured as follows: In Section II, we examine
the concept and definition of the power grid, as well as the new energy power system
model and solution, and a full overview of the SSSR model, security, and stability restric-
tions. Section III proposes an innovative IPSO-RLS hybrid algorithm, which combines the
strengths of both algorithms. The New England 118 bus system is simulated in Section IV
with multiple amounts of new energies, and the findings, together with a security stability
study, are presented. Section V provides the conclusions and outlooks.

2. Static Security and Stability Analysis
2.1. Static Security and Stability Analysis

A straightforward approach is presented for evaluating the static security and stability
of an electrical system. The SSSR surface depicts the active power, reactive power, and
voltage at the stable region point. Figure 1 depicts the circuit diagram used to describe the
static security and stability method.
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.
E is the system balancing point of voltage,

.
Vpcc is the voltage of new energy farms

at PCC, Rs + jXs is the equivalent impedance between new energy farms and the grid,
Pn + jQn is the output apparent power of the new energy farms, and Pw + jQw is the current
injected by the new energy farms, as illustrated in Figure 1. Using Figure 1 as an example,
the following equations may be derived from a basic communication system:

.
Vpcc =

.
E + (Rs + jXs)

.
I (1)

PCC is supplied with the following types of energy by the new energy farms (for
example,

.
E = E∠0◦,

.
Vpcc = Vpcc∠θ):

Pn + jQn =
.

Vpcc

∗
Vpcc −

∗
E

Rs − jXs
=
(
Vpcc cos θ + jVpcc sin θ

)(Vpcc cos θ − jVpcc sin θ − E
Rs − jXs

)
(2)

By grouping genuine and fictitious concepts, the following may be derived: Pn =
VpccE(Xs sin θ−Rs cos θ)+V2

pccRs

R2
s+X2

s

Qn =
−VpccE(Xs cos θ+Rs sin θ)+V2

pccXs

R2
s+X2

s

(3)
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Equation (3) may be organized as follows: Pn −
V2

pccRs

R2
s+X2

s
=

VpccE(Xs sin θ−Rs cos θ)

R2
s+X2

s

Qn −
V2

pccXs

R2
s+X2

s
=
−VpccE(Xs cos θ+Rs sin θ)

R2
s+X2

s

(4)

Equation (4) may be rearranged to remove, as follows, θ:(
Pn −

V2
pccRs

R2
s + X2

s

)2

+

(
Qn −

V2
pccXs

R2
s + X2

s

)2

=
V2

pccE2

R2
s + X2

s
(5)

When the left and right sides of Equation (5) are multiplied by
(

R2
s + X2

s
)2, the follow-

ing equation is obtained:(
V2

pcc

)2
+
[
−2PnRs − 2QnXs − E2

]
V2

pcc +
(

R2
s + X2

s

)(
P2

n + Q2
n

)
= 0 (6)

At PCC, the voltage of new energy farms is Vpcc =
√

V′ ±V ′′ .
where  V′ = E2

2 + PnRs + QnXs

V ′′ =

√(
E2

2 + PnRs + QnXs

)2
− (R2

s + X2
s )(P2

n + Q2
n)

(7)

Ignoring the transmission line resistance Rs, the voltage at PCC Vpcc is simplified as:

Vpcc =

√
E2

2
+ QnXs ±

√
E4

4
− P2

n X2
s + E2XsQn (8)

where Vpcc, Pn, Qn represent the voltage at grid connection (PCC), the active power output of
the new energy farms, and the reactive power output of the new energy farms, respectively.

2.2. SSSR-Surface

Figure 1 depicts the communication system and the notations for system variables
used in the subsequent derivations. The relationship between receiving end and transmit-
ting end voltages (E and V), active power (P), and reactive power (Q) may be expressed
mathematically as follows:

V4
pcc + V2

pcc

[
−2(RsPn + XsQn)− E2

]
+
(

R2
s + X2

s

)(
P2

n + Q2
n

)
= 0 (9)

To plot the SSSR surfaces, a solution must be developed for active and reactive powers
and voltage. Four voltage solutions are derived by rearranging and solving for active and
reactive powers:

P1,2 = − RsV2
pcc∓

√
−Q2

n(R2
s+X2

s )
2
+(R2

s+X2
s )(V2

pcc−2QnXs)V2
pcc−X2

s V4
pcc

R2
s+X2

s

Q1,2 = −XsV2
pcc±

√
−P2

n(R2
s+X2

s )
2
+(R2

s+X2
s )(V2

pcc−2PnRs)V2
pcc−R2

s V4
pcc

R2
s+X2

s

V1,2 =

√
−(PnRs + QnXs) +

V2
pcc
2 ±

√
V4

pcc
4 − (PnRs −QnXs)

2 −V2
pcc(PnRs + QnXs)

V3,4 = −

√
−(PnRs + QnXs) +

V2
pcc
2 ±

√
V4

pcc
4 − (PnRs −QnXs)

2 −V2
pcc(PnRs + QnXs)

(10)

In the formula, the entire SSSR surface is described by the two solutions for P, Q, and
four solutions for V.

(1) Equality constraint



Energies 2022, 15, 9655 6 of 17

The active power and reactive power balancing constraint at each node in the system
constitute the power flow constraint equation, which is a requirement of reactive power
optimization management of new energies. It is expressed as:

Pi −Vi

NS

∑
j=1

Vj
(
Gij cos θij + Bij sin θij

)
= 0 (11)

Qi −Vi

NS

∑
j=1

Vj
(
Gij sin θij − Bij cos θij

)
= 0 (12)

where i,j ∈ Ns,Ns represents the total node set of the system; Pi and Qi the active power
and reactive power injection amount of the node, respectively; Gij and Bij the real and
imaginary parts corresponding to the ij branch admittance, respectively; θij the phase angle
difference of the nodes at both ends of the branch ij.

(2) Inequality constraint

For new energies to take part in voltage management in their access region, reactive
power optimization control must be in place. The major function of this device is to act as a
voltage regulator for the newly installed energy grid connection. Voltage fluctuations occur
as a result of system disturbances or when the voltage command is altered by dispatch at a
higher level. Maintaining the grid point voltage requires the new energy farms to use a
wide range of reactive power devices, which are constantly adjusted. New energy farms
must adhere to the following voltage deviation limits from the grid point:

Vref
pcc −Verr

pcc ≤ Vpcc ≤ Vref
pcc + Verr

pcc (13)

where Vpcc is the current voltage at the grid-connected point for the new energy farms,
Vref

pcc is the voltage control instruction from above, and Verr
pcc is the margin for error in the

control system.
New energy farms are limited in their reactive power regulation capabilities by the

following factors:

[Qgimin
, Qgimax

] =

{
[0, Qgimax

] , Vref
pcc > Vpcc + Vband

pcc
[Qgimin

, 0] , Vref
pcc < Vpcc −Vband

pcc
(14)

where Vband
pcc represents the voltage control dead zone of the PCC bus for new energy farms.

Then, the variable inequality constraint of the reactive power optimization control of
the wind farm also includes the upper and lower bounds of the voltage amplitude of each
node and the capacity constraint of the dynamic reactive power regulating device. The
expression is:

Uimin ≤ Ui ≤ Uimax i ∈ NS (15)

Qscimin ≤ Qsci ≤ Qscimax i ∈ NQ (16)

where Vimax and Vimin are, respectively, the upper and lower limits of the voltage of node i
in the new energy farms.

3. Methodology
3.1. Overview of IPSO

PSO was created by Kennedy and Eberhart in 1995 to replicate social behavior, as a
stylized portrayal of the movement of creatures in a flock of birds or a school of fish [54].
It solves a problem by having a population of possible solutions, referred to as particles,
and by moving these particles about in the search space based on a simple mathematical
formula for each particle’s location and velocity. Furthermore, each particle’s motion is
controlled by its local best-known position (Pbest) but is also directed toward the best-known
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locations in the search space, which are discovered by other particles as the global best
position (Gbest). In conclusion, the objective of the search procedure is to accelerate each
particle toward its (Pbest) and the swarm’s global best (Gbest) shown in Figure 2.
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The particle velocity and update equations are stated as:

νi(j + 1) = ω · νi(j) + c1 · r1 · (Pbest(j)− x(j)) + c2 · r2 · (Gbest(j)− x(j)) (17)

xi(j + 1) = xi(j) + νi(j + 1) (18)

ω = ωmax

(
ωmax −ωmin

iter,max

)∗
iter,max (19)

where ω is the inertia weight factor, ωmax = 0.4 and ωmin = 0.9; i = 1, 2, . . . , n; j = 1, 2, . . . ,
m, j + 1 is the current iteration number, j is the previous iteration number, c1 and c2 are
the acceleration constants for thinking and interacting, which are usually between [0, 2],
and r1 and r2 are two independent random variables drawn from a uniform distribution
throughout the interval in the range of [0, 1]. The trajectory of the particles in the range of
c2 is shown in Figure 3.
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3.2. RLS Method

The least square (LS) technique, initially presented by Gauss (k. f. Gauss) in his study
of the prediction of orbital motion, is the simplest and most used approach [55]. Based on
the LS, the RLS is a new approach that fixes its memory consumption issues and allows for
an online identification to be performed. It is commonly utilized because of its ability to
achieve numerical forecasts [56,57]. Every time fresh observation data is collected, the RLS
updates its parameter estimations, ensuring a consistently good identification outcome.

For an observable system, its L-group input and output observations can be expressed
as {y(k) , u(k), k = 1, 2, . . . , L} the LS estimate of the system parameters can be obtained:

∧
θ =

(
ΦTΦ

)−1
ΦTY (20)
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where Φ is the data vector matrix and Y is the system output matrix.
The idea of the recursive least squares method is:

∧
θ(k) =

∧
θ(k− 1) + correction (21)

The recursive idea is introduced into Equation (20); that is, the least squares method
is developed into a batch RLS. From this, at the time k, the least squares estimate can be
obtained.

∧
θ(k) =

(
ΦT

k Φk

)−1
ΦT

k Yk (22)

where Φk =

(
Φk−1
ϕT(k)

)
∈ Rk×(na+nb+1); Yk =

(
Yk−1
y(k)

)
∈ Rk×1.

Cause

P(k) =
(

ΦT
k Φk

)−1
=

[(
ΦT

k−1, ϕ(k)
)
·
(

Φk−1
ϕT(k)

)]−1

=
[

P−1(k− 1) + ϕ(k) · ϕT(k)
]−1

(23)

Therefore
P−1(k) = P−1(k− 1) + ϕ(k) · ϕT(k) (24)

From Equations (22) and (23), the estimated value at the time k − 1 can be derived:

∧
θ(k− 1) =

(
ΦT

k−1Φk−1

)−1
ΦT

k−1Yk−1 = P(k− 1)ΦT
k−1Yk−1 (25)

Available from Equations. (24) and (25):

ΦT
k−1Yk−1 = P−1(k− 1)

∧
θ(k− 1) =

[
P−1(k)− ϕ(k) · ϕT(k)

]∧
θ(k− 1) (26)

Then, the least squares estimate at the time k can be expressed as:

∧
θ(k) = P(k)ΦT

k Yk =
∧
θ(k− 1) + K(k)

[
y(k)− ϕT(k)

∧
θ(k− 1)

]
(27)

where K(k) is the gain vector and K(k) = P(k) ϕ(k).
The RLS iterative formula may be derived using the matrix inversion lemma as follows:

∧
θ(k) =

∧
θ(k− 1) + K(k)

[
y(k)− ϕT(k)

∧
θ(k− 1)

]
P(k) =

[
I − K(k)ϕT(k)

]
P(k− 1)

K(k) = P(k−1)ϕ(k)
1+ϕT(k)P(k−1)ϕ(k)

(28)

3.3. The Parameter Identification Basis on IPSO-RLS

Although it is challenging to assure the accuracy of the IPSO algorithm’s range es-
timation, its global optimization capability assists in reducing the solution range and
approximating the ideal solution. The RLS’s sensitivity to the beginning value of the
iteration is its primary downside. However, when the beginning value of the iteration is
closer to the actual solution, RLS converges quickly and with great precision. To obtain the
required results, it is necessary to combine the global optimization capability of IPSO with
the rapid convergence capability of the RLS in the neighborhood of the global optimum
solution. Figure 4 depicts the block diagram for locating the global optimum SSSR-surface
process using the hybrid IPSO-RLS method.
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The step-by-step procedure of the proposed algorithm is explained below.
Step 1: Input the original data and necessary parameters;
Input all the relevant electrical data of the system, including the system’s node, branch

information, control parameters, and all kinds of constraint conditions. Further, the operat-
ing parameters of the optimization algorithm are set.

Step 2: With the specifications from step 1, perform the power flow calculations for
the given network;

Step 3: Initialize a group of particles (group size N), including their random positions
and velocity vectors;

Step 4: Evaluate the fitness value of each particle;
Step 5: For each particle, its fitness value (P) is compared with its best position (Pbest).

If the obtained fitness is better than Pbest, then the current best position (Pbest) is updated
with the obtained fitness;

Step 6: Update the particle velocity and position based on Equations (17) and (18);
The velocity updating was calculated based on Equation (17) while the upper and

lower limits were considered as follows:

vi,j(t + 1) > vj,max

vi,j(t + 1) < vi,min

Besides, the position updating was calculated based on (18), whereas the upper and
lower limits were decided as follows:

xi,j(t + 1) > xj,max

xi,j(t + 1) < xj,min

This procedure is followed to obtain Gbest;
Step 7: Taking the global extreme value, Gbest from the L-group of IPSO as the initial

value for RLS iterations;

Step 8: If it is the first iteration of the calculation, initialize P(0),
∧
θ(0) and proceed with

the iterations; otherwise, read P(k−1),
∧
θ(k− 1).
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Step 9: If either the condition
∣∣∣∣∆∧θ(k)∣∣∣∣ < ε is satisfied or the maximum number of

iterations is reached, read the global optimum and end the process; otherwise continue
with the next iteration.

Finally, based on the parameter identification result from Equation (10), one can plot
the SSSR-surface map for the new energy farms.

In the new energy power system, the connection between active power, reactive power,
and voltage is well-defined for every given system configuration. The SSSR surface may be
used to estimate the available margin of a grid-connected new energy power system and to
develop a wind and PV power scheduling strategy. When system disruptions occur, the
power margin needs to be satisfied and may be estimated based on the SSSR surface, and
efforts should be made to improve the margin.

4. Test System Simulation Results and Discussions
4.1. Introduction of New England 118 Bus System

The New England 118 bus system has 54 generators, 91 load nodes, and 186 lines, and
the installed capacity of the generators ranges from 20 to 650 MW. Its topology is shown in
Figure 5. The modeling and simulation of the SSSR of the IEEE 118 bus system with new
energy are carried out, in which the doubly fed asynchronous wind turbine (DFIG) with a
single unit capacity of 5 MW is connected at Bus 25. When a 3 PH, 5 MW photovoltaic unit
is connected to Bus 59, the active power ratio of the wind power plant is about twice that
of the photovoltaic power plant.
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4.2. SSSR-Surface Calculation

According to the time domain simulation results of the DIgSILENT/Power Factory
power system simulation software, the operating point parameters of all nodes can be
obtained, and the power flow calculation result sample data of the system can be obtained.
The three-dimensional SSSR of the system is fitted through the identification of IPSO-RLS
algorithm parameters in Figure 4. The IPSO-RLS hybrid algorithm is implemented by using
MATLAB language. The parameters set in the algorithm are: the population size is 30,
and the maximum number of iterations is 100. In the two-dimensional SSR plane obtained
by using the IPSO-RLS hybrid algorithm in the Figure 6, the dark purple area is the safe
operation area.



Energies 2022, 15, 9655 11 of 17Energies 2022, 15, 9655 12 of 18 
 

 

Basic operating point

Voltage amplitude constraint

Generator reactive power constraint

Branch power flow constraint

Generator active power constraint
SSSR boundary

 

Figure 6. Two-dimensional SSR constructed by IPSO-RLS hybrid algorithm. 

For parameter identification, take synchronous unit G89, wind turbine DFIG 

(GDFIG25), and the PV unit (GPV59) of IEEE 118 bus system as examples to obtain the three-

dimensional SSSR, as shown in Figures 7–9. 

540

560

580

600

620

640

660

−3
0

−2
0

−1
0

0
10

20

30
0.995

1.000

1.005

1.010

1.015

1.020

0.9930

0.9956

0.9982

1.001

1.003

1.006

1.009

1.011

1.014

1.017

1.019

VG89/(p.u.)QG89/(Mvar)

PG89/(MW)

V(p.u.)

−4
0−5

0

 

Figure 7. SSSR of G89 synchronous unit. 

1.00
0.950.900.85

0.80
0.75

0.70

120

140

160

180

200

240

−40

−20
0

20

40

60

80

1.021

0.9913

0.9616

0.9022

0.8725

0.8428

0.8131

0.7834

0.7537

0.7240

QDFIG/Mvar

PDFIG/MW

VDFIG/(p.u.)

V(p.u.)

0.9319

 

Figure 8. SSSR of GDFIG25 wind power unit. 
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For parameter identification, take synchronous unit G89, wind turbine DFIG (GDFIG25),
and the PV unit (GPV59) of IEEE 118 bus system as examples to obtain the three-dimensional
SSSR, as shown in Figures 7–9.
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The static security and stability operation point values of G89, GDFIG25, and GPV59
are obtained from the visual SSSR in Figures 7–9. After the new energy is connected to
the system, due to its strong uncertainty, it harms the security and stability of the system.
Therefore, the security and stability of the new energy power system are improved through
the security and stability region, and the instability and collapse of the system are prevented
through the safe and stable operation point to ensure the security and stability of the system.
With the increase of the new energy penetration rate of the system, the area of the fitted
safe and stable region will become smaller and smaller, and the points that can make the
system operate safely and stably will also change. Therefore, a reasonable and scientific
grid connection ratio of new energy plays an important role in improving the security
and stability of the power system. The SSSR studied in this paper can provide important
information, such as the set of safe and stable operating points of the system and the weak
links of the operating points. The static safety and stability distance (SSSD) of the system
can be obtained from Figures 7–9, to judge whether the operation point is safe and stable
and to find out the weak links of the system.

It can be seen from Tables 1–3 that the active power, reactive power, and voltage
boundary values of the operating points on the surface of the SSSR are the per unit values
taken from the three-dimensional visualization surface, which means that all the operating
points of the system are within the boundary value range, which is safe and stable, and
vice versa. The fitting error of the SSSR used in engineering is within 5%, so the results
obtained are feasible. For the SSSR studied, the operating point with a large SSSD makes the
system more secure and stable, has better elasticity, and can better contain the uncertainty
of new energy. For traditional synchronous generator sets, operation point 15 is a relatively
weak link. For wind turbines, operation points 4 and 6 are relatively weak compared with
operation points 8, 10, and 15. For PV units, operation points 4 and 14 are weak links. As
a new means of power system security and stability assessment and control of the grid
security and stability margin, SSSR is more directly and closely related to the uncertainty
in the new energy power system, so it is more scientific and effective to identify the weak
links of the grid. With the rapid development of new energy and the increasing uncertainty
of power systems, the SSSR has important research value and engineering use value.
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Table 1. Time domain simulation SSSR parameters of synchronous unit G89.

Operation
Point Pcr (p.u.) Qcr (p.u.) Vcr (p.u.) Fitting Curves

Error/% SSSD (p.u.)

1 0.9312 2.8871 0.9911 −0.2017 1.5342
2 0.9524 1.4586 0.9972 0.0549 2.0311
3 0.9625 1.0752 0.9989 −0.3228 1.4573
4 0.9690 0.9374 0.9999 0.1859 1.0033
5 0.9752 0.8505 1.0008 −0.4429 2.1595
6 0.9827 0.7829 1.0017 0.3093 1.6086
7 0.9931 0.7304 1.0027 −0.5601 1.9926
8 1.0028 0.7172 1.0031 0.4226 2.6413
9 1.0122 0.7307 1.0031 −0.6727 1.6592
10 1.0216 0.7665 1.0027 0.5235 2.1323
11 1.0311 0.8241 1.0020 −0.7792 1.4323
12 1.0404 0.9059 1.0010 0.6096 1.8308
13 1.0495 1.0169 0.9999 −0.878 1.2709
14 1.0509 1.0390 0.9997 0.6980 1.5990
15 1.0463 1.9576 0.9966 −0.0622 0.9413

Table 2. Time domain simulation SSSR parameters of wind power unit GDFIG25.

Operation
Point Pcr (p.u.) Qcr (p.u.) Vcr (p.u.) Fitting Curves

Error/% SSSD (p.u.)

1 0.7196 0.7163 0.7621 −1.2763 1.8258
2 0.9029 1.2612 0.8389 0.2017 0.8852
3 1.1996 0.8812 0.9635 −1.2407 1.7748
4 1.1903 1.1832 1.0049 0.0427 0.6101
5 1.1529 1.7650 1.0590 −1.2161 1.7396
6 1.1306 1.5295 1.0735 −0.1512 0.6213
7 1.1019 1.0500 1.0636 −1.1647 1.6662
8 1.0607 0.8486 1.0550 −0.3385 0.8442
9 1.0254 0.7549 1.0505 −1.1257 1.6103
10 1.0016 0.7132 1.0503 −0.5537 0.7921
11 0.9890 0.6991 1.0524 −1.0804 1.5455
12 0.9854 0.7001 1.0554 −0.7543 1.0791
13 0.9886 0.7086 1.0584 −1.0295 1.4726
14 0.9945 0.7171 1.0601 −0.9748 1.3940
15 0.8261 2.0639 0.9909 0.1756 0.7510

Table 3. Time domain simulation SSSR parameters of PV power unit GPV59.

Operation
Point Pcr (p.u.) Qcr (p.u.) Vcr (p.u.) Fitting Curves

Error/% SSSD (p.u.)

1 1.0036 0.9034 0.9033 0.7672 2.60478
2 1.0149 0.6799 0.9822 −1.0495 1.9041
3 0.9905 0.9162 0.9952 0.8154 2.4507
4 0.9930 0.9684 1.0026 −1.1201 0.7842
5 0.9943 1.1746 1.0085 0.8409 2.3764
6 0.9953 1.5128 1.0142 −1.1797 1.6939
7 0.9965 1.7546 1.0196 0.8615 2.3198
8 0.9983 1.7194 1.0216 −1.2282 1.6271
9 1.0000 1.6058 1.0216 0.8566 2.3330
10 1.0013 1.4786 1.0200 −1.2652 1.5795
11 1.0024 1.3182 1.0172 0.8258 2.4199
12 1.0033 1.1239 1.0138 −1.2908 1.5483
13 1.0040 0.8990 1.0098 0.7685 2.6003
14 1.0041 0.8584 1.0091 −1.3051 0.9312
15 0.9990 1.0107 0.9752 0.7042 2.8379
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4.3. Comparison and Analysis for Conclusions

In this paper, the hybrid IPSO-RLS is applied for SSSR-surface parameter identification,
and the obtained simulation results are compared with that of the basic PSO and IPSO
algorithms. To verify the feasibility of the proposed algorithm, the error and convergence
accuracy of the three algorithms are compared and analyzed using the simulation results.
Therefore, it can be seen from Table 4 that with different optimization algorithms, when the
distance of SSSD becomes longer, the system stability boundary value will become larger.
In this way, not only the SSSR domain can be obtained more accurately in the iteration
process, but also, the stability of the system’s operation can be guaranteed.

Table 4. Comparison of SSSR surface parameters of different algorithms for three units.

Power Units Algorithms Vcr (p.u.) Qcr (p.u.) Pcr (p.u.) SSSD (p.u.)

Synchronous
unit

PSO 0.7794 0.6785 1.3115 1.452
IPSO 0.9195 0.7529 1.6387 1.599
IPSO-RLS 1.0408 0.9736 1.8372 1.826

Wind power unit
PSO 0.5185 3.7169 2.6012 1.912
IPSO 0.7228 4.3085 2.9887 2.178
IPSO-RLS 0.8034 4.8361 3.0613 2.422

PV power unit
PSO 0.6026 1.4287 1.6012 1.951
IPSO 0.6974 1.5857 1.8107 2.201
IPSO-RLS 0.7829 1.732 1.9744 2.656

It can be seen from Figure 10 that the results of the PSO and IPSO algorithms are very
different from the results of the IPSO-RLS hybrid algorithm in the three cases considered.
With the increase of iteration times, the convergence accuracy of the three algorithms is
slightly improved. However, it should be noted that the convergence accuracy of the IPSO-
RLS algorithm is always higher than that of the PSO and IPSO algorithms. Considering the
small fitting error of the IPSO-RLS hybrid algorithm, it can be concluded that the IPSO-RLS
hybrid algorithm has the highest convergence speed and accuracy compared with the other
two algorithms.
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5. Conclusions

Taking the IEEE 118 bus system as an example, this paper studies the SSSR of the
new energy power system. Through the simulation study, the SSSR of the new energy
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power system can be effectively fitted to ensure safe and stable operation. The following
conclusions are drawn:

1. The new energy power system’s IPSO-RLS static security and stability region critical
point search optimization model constructed can greatly reduce the optimization
space of the critical point search, while ensuring the accuracy and precision of the
searched critical point, achieve an effective dimensionality reduction of the high-
dimensional space security and stability region critical point search, and improve the
search efficiency of the critical point.

2. The critical value, fitting error, and safety distance of different generator operation
points are obtained by comparing the static safety and stability regions of three
different generator sets. According to the safe distance from the critical value to the
operating point, it can be judged whether the point is in the safe and stable region
and whether it is a weak link. For traditional generator sets, operation point 15 is
a relatively weak link. For wind turbines, operation points 4 and 6 are relatively
weak compared with operation points 8, 10, and 15. For photovoltaic units, operation
points 4 and 14 are weak links. The fitting error in engineering is less than 5%. The
error verification results obtained in this paper are reasonable, which proves that this
method can be applied in engineering practice.

3. The proposed static security stability region boundary search method based on the
IPSO-RLS algorithm effectively avoids the complex optimization process of the tradi-
tional “point-by-point method”. While ensuring the error, convergence accuracy, and
convergence speed, the effectiveness of the proposed method in obtaining the static
security and stability region of the new energy power system is verified, which also
lays a foundation for practical research.
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