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Abstract: The task of seismic data interpretation is a time-consuming and uncertain process. Machine
learning tools can help to build a shortcut between raw seismic data and reservoir characteristics
of interest. Recently, techniques involving convolutional neural networks have started to gain
momentum. Convolutional neural networks are particularly efficient at pattern recognition within
images, and this is why they are suitable for seismic facies classification and interpretation tasks.
We experimented with three different architectures based on convolutional layers and compared
them with different synthetic and field datasets in terms of quality of the seismic interpretation
results and computational efficiency. The architectures used in our study were three deep fully
convolutional architectures: a 3D convolutional network with a fully connected head; a 2D fully
convolutional network, and U-Net. We found the U-Net architecture to be both robust and the fastest
when performing classification at the prediction stage. The 3D convolutional model with a fully
connected head was the slowest, while a fully convolutional model was unstable in its predictions.

Keywords: seismic interpretation; deep learning; image segmentation; convolutional neural networks

1. Introduction

Building a 3D model of the subsurface based on information gained from seismic
reflection data and conditioned to well data is an important step in the conventional seismic-
to-simulation workflow. Obtaining facies distribution in 3D helps to better understand the
overall depositional environment and significantly reduce uncertainty in further stages of
reservoir modeling and simulation. There are, however, well-known limitations associated
with this workflow.

The conventional approach to building a discrete facies reservoir model with seismic
data [1] involves interpreting seismic data, building a 3D cell model of a reservoir, dis-
tributing its properties with geostatistical algorithms, and eventually using these properties
to obtain the prediction of reservoir performance. An alternative approach would be to
perform seismic inversion if necessary data are available and use the results to estimate a
facies distribution directly. A problem with both of these approaches is that assumptions
and approximations are introduced at each stage of the impedance inversion along with
interpreter bias, and the process requires significant manual work. The comparative study’s
purpose was to see what could be interpreted directly from the seismic traces without any
inversion. Another issue is the tradeoff between reproducing statistical information from
existing hard data and obtaining geologically sound results when applying geostatistical
algorithms. Overall, obtaining a meaningful and realistic result in the form of a 3D reservoir
model using the conventional workflow is a challenging and time-consuming task.

The task of facies distribution estimation directly from seismic data using machine
learning methods has been addressed by researchers. Some of the first to apply a machine
learning algorithm for reservoir characterization include [2,3]. In [3], PCA was used to
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reduce the dimensionality of data, and a fully connected neural network was applied to
classify seismic facies. Multiple works addressing the seismic facies classification task fea-
ture application of unsupervised algorithms of various complexity [4–6]. Some researchers
have approached the task of facies classification with linear models [7,8]. In [9–11] analysis
and comparison of the results of different models was performed. One of the first appli-
cations of a convolutional neural network (CNN) to seismic data was published in [12].
Later, [13] applied a modified U-Net architecture to the public F3 dataset using 41 labeled
sections for training. In [14], the authors classified facies without supervision using a deep
convolutional autoencoder.

Deep learning architectures based on convolutional layers are one of the most pop-
ular tools that have been used to address this challenge. Fully convolutional networks
(FCN) [15], dilated convolutional networks [16], and U-Net [17] are examples of deep
architectures that were successfully applied to seismic data. As there are currently a vari-
ety of different architectures that show different performances on different datasets and
in different settings, we perform a comparative study of the results and performance of
three different architectures for seismic interpretation. This work is a comparative study
to identify the advantages and disadvantages of using different kinds of state-of-the-art
networks in different conditions. Though all architectures are based on convolutional
layers, the networks take data of different dimensionality as input (either 2D or 3D), have a
different number of trainable parameters, and behave differently during both the training
and inference. The datasets they were applied to are also diverse—2D and 3D real datasets
from different depositional environments—which further diversifies the experiment. In
addition, one of the key challenges that need to be taken into account when applying
machine learning algorithms to seismic data—that of differences in statistical distributions
of inline and crossline training and test sets—is isolated and highlighted, which may be a
topic for further investigations.

The three architectures tested are 2D convolutional network with dilated convolution,
3D convolutional network, and a U-Net architecture. Tests are done on three different
datasets: a synthetic 2D dataset and two 3D field seismic datasets. The sensitivity analysis
of architecture hyperparameters was performed with the fully convolutional architecture
using accuracy as a target parameter. This work is intended as a test and assessment of
supervised algorithms. The seismic interpretations obtained from human experts were
taken as given and were used as labels in a supervised learning setting. The expert interpre-
tations are themselves subject to uncertainty and human biases, but estimating the quality
of human expert interpretations and uncertainty associated with them was not a focus of
this work. We take the expert labels as a given and compare the performance of supervised
machine learning algorithms with respect to the human expert interpretation. The follow-
ing sections describe briefly the three datasets and describe the different computational
tests and their results.

2. Materials and Methods

In this section, we provide a description of the datasets and the deep learning architec-
tures used in the experiments.

2.1. Datasets

We used three datasets, described below, to test the different deep learning algorithms.

2.1.1. The Synthetic Dataset

The synthetic dataset that is featured in this study was modeled based on the Stanford
VI synthetic model [18]. The dataset is an array of synthetically generated 2D normal-
incidence seismic sections. The Stanford VI facies model corresponds to a prograding
fluvial channel system. The facies model was populated with petrophysical properties, and
based on those properties, forward modeling of post-stack seismic data was performed [18].
The dataset featured 5000 training examples, 500 validations, and 500 testing examples.
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A single pair of training example and a corresponding label is shown in Figure 1. The
numbers shown along axes are the number of samples. The facies model is simulated in
depth, and the corresponding seismic data is modeled in time.
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Figure 1. Synthetic seismic section (a) and corresponding facies (b). Note that axes show the number
of samples, not physical parameters.

2.1.2. The F3 Dataset

The F3 dataset [19] was obtained in the Dutch sector of the North Sea. The exploration
target was the Upper Jurassic–Lower Cretaceous strata. The interpretation based on quali-
ties of seismic reflectors was part of the F3 dataset provided by dGB Earth Sciences. These
data were interpreted through points partially covering the seismic section. The dataset
featured a 3D seismic cube which was used as the input data for models in this work. The
inline 339 from the F3 dataset along with interpretation points and description of classes is
shown in Figure 2.

The gaps were filled in the existing interpretation of the inline 339 and the crossline
500 was interpreted to perform tests on it. Final interpretation of seismic section is shown
in Figure 3.

In the experiments, 85% of examples from the inline 339 were used as a training set
and the remaining 15% served as a validation set. The crossline 500 were used as a test
set. In Figure 4, a plot is shown that compares distributions of the inline and crossline
data (IL339 and XL500) using the multidimensional scaling (MDS) technique [20]. Each
point represents a single seismic trace coming from seismic sections being compared in the
two-dimensional MDS space. We can see qualitatively that the inline and crossline traces
had somewhat different distributions. This plot will be referred to in the following sections.

2.1.3. The RIPED Dataset

Another 3D post-stack real dataset was provided by the Research Institute of Petroleum
Exploration and Development, PetroChina (here called the RIPED dataset). The interpreta-
tion of seismic data was performed by interpreters from RIPED and used in our experiments.
The main feature of the RIPED dataset was channel bodies that can be seen on seismic sec-
tions, and especially on stratigraphic slices. Stratigraphic slices used to highlight channels
were obtained by flattening the seismic cube in time on the bottom of the stratigraphic zone
and extracting seismic data along constant time planes. The interpretation of the horizon
used for flattening was also provided by RIPED. The main channel system is represented
by channels with N–S orientation, and the additional system is oriented in the NW–SE
direction. The facies identified by RIPED interpreters within the zone of interest were
underwater distributary channel, estuary dam, sheet sand, and distal bar.
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Figure 2. Inline 339 (a), crossline 500 (b), interpretation points for the IL339 that came as a part of the
F3 dataset (c). In the legend, the different names represent different characteristics of seismic reflectors.



Energies 2022, 15, 1064 5 of 23

grizzly: chaotic, discontinuous reflections; high_amp_continuous: high amplitude continuous re-
flections; high_amp_dips: high amplitude dipping reflections; high_amplitude: high amplitude
continuous reflections; low_amp_dips: low amplitude dipping reflections; low_amplitude: low am-
plitude dipping reflections; low_coherency: discontinuous reflections of low coherency; background:
other reflections.
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Figure 3. Final interpretation of the IL339 (a) and the XL500 (b) used as input data for the algorithms.
The unlabeled parts were either labeled as background facies or were not taken into account in the
training dataset, depending on the algorithm. In the test dataset, unlabeled samples were ignored.
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In an attempt to reduce the cost of seismic data labeling, a small amount of seismic
data were interpreted. An example of a partially interpreted seismic section is shown in
Figure 5. The “background” facies shown in the figure represent any other facies that were
not interpreted as either channels or a fault zone. Eight inlines and two crosslines were
interpreted similarly. In this setting, points obtained for one of the crosslines were used as
a test set, and the remaining points were split into training and validation sets using an
85%/15% ratio.

Additionally, interpretation of stratigraphic slices was performed to form another
dataset for training and testing. Two stratigraphic seismic slices were labeled to be used for
training, while another slice was chosen as a test set. An interpreted slice extracted at the
time −1034 ms is shown in Figure 6. Here, one of the interpreted slices was used as the
test set, and the examples from the other two were split with a ratio of 85%/15% to form
training and validation sets.
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Figure 6. Stratigraphic seismic slice extracted at the time −1034 ms (a) and the corresponding
label (b). Interpretation was done by interpreters at RIPED. Though there is uncertainty associated
with labels, especially where the faulted zone and channels overlap, the goal of this work was to test
the supervised algorithm, so human interpretation uncertainty was not taken into account.
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2.2. Architectures

Three convolutional deep neural network models were featured in this study. All
three models showed good results when applied to seismic data [13,21,22]; however, they
have different numbers of parameters and costs of training. To understand advantages and
disadvantages of the architectures when applied to different datasets, three deep learning
architectures were compared in this study, and their descriptions are given in this section.

2.2.1. Fully Convolutional 2D Network with Dilated Convolutional Layers

The fully convolutional 2D network with dilated convolutional layers architecture
was based on [21]. In [21], the authors employ a 3D model, while in this work we used
a 2D version of this model. The network consisted of two parts: the first part was based
on ordinary 2D convolutional layers and the second part was built with 2D convolutional
layers with a dilation factor [23] that essentially controlled the increase of the field of view
of convolutional filters. Each convolutional layer was followed by a batch normalization
layer [24] to stabilize the distribution of the output of the preceding layer and a ReLU
activation function [25] to introduce nonlinearity. The final activation function was a
softmax activation, which is suitable for a multiclass classification task and outputs the
probability of each class. Since the model was fully convolutional, the input was 2D and
the output was also 2D, so it mapped a seismic section to a segmented section, where each
pixel had a value of the class with maximum predicted probability obtained by learning
latent representations of the input. A schematic architecture is shown in Figure 7.

Energies 2022, 15, x FOR PEER REVIEW 7 of 26 
 

 

 

Figure 6. Stratigraphic seismic slice extracted at the time −1034 ms (a) and the corresponding label 

(b). Interpretation was done by interpreters at RIPED. Though there is uncertainty associated with 

labels, especially where the faulted zone and channels overlap, the goal of this work was to test the 

supervised algorithm, so human interpretation uncertainty was not taken into account. 

2.2. Architectures 

Three convolutional deep neural network models were featured in this study. All 

three models showed good results when applied to seismic data [13,21,22]; however, they 

have different numbers of parameters and costs of training. To understand advantages 

and disadvantages of the architectures when applied to different datasets, three deep 

learning architectures were compared in this study, and their descriptions are given in 

this section. 

2.2.1. Fully Convolutional 2D Network with Dilated Convolutional Layers 

The fully convolutional 2D network with dilated convolutional layers architecture 

was based on [21]. In [21], the authors employ a 3D model, while in this work we used a 

2D version of this model. The network consisted of two parts: the first part was based on 

ordinary 2D convolutional layers and the second part was built with 2D convolutional 

layers with a dilation factor [23] that essentially controlled the increase of the field of view 

of convolutional filters. Each convolutional layer was followed by a batch normalization 

layer [24] to stabilize the distribution of the output of the preceding layer and a ReLU 

activation function [25] to introduce nonlinearity. The final activation function was a soft-

max activation, which is suitable for a multiclass classification task and outputs the prob-

ability of each class. Since the model was fully convolutional, the input was 2D and the 

output was also 2D, so it mapped a seismic section to a segmented section, where each 

pixel had a value of the class with maximum predicted probability obtained by learning 

latent representations of the input. A schematic architecture is shown in  Figure 7. 

 

Figure 7. A schematic representation of the fully convolutional 2D network. ReLU activation was 

used after each block except the last one. The final activation waws softmax. Both input and output 

are 2D. 

Figure 7. A schematic representation of the fully convolutional 2D network. ReLU activation was
used after each block except the last one. The final activation waws softmax. Both input and output
are 2D.

A number of the model parameters treated as hyperparameters are shown in Table 1.

Table 1. Hyperparameters considered during the training.

Parameter Values

number of convolutional layers 2, 3, 4, 5

number of dilated convolutional layers 2, 3, 4, 5

kernel size 3, 5, 7

number of filters 16, 32

learning rate 0.0005, 0.001

training example size 16, 32, 64

training example overlap 30, 50, 70, 80

batch size 4, 8, 15

max pooling True, False

telescopic architecture True, False

The number of filters in all convolutional layers was kept constant across the model.
If the max pooling parameter was “true”, every other convolutional layer was followed
by a max pooling layer with the 2 × 2 kernel, and after dilated convolutional layers
there were upconvolutional layers to preserve image size. Telescopic architecture requires
decreasing kernel size by two and increasing the number of filters by a factor of two for
each convolutional layer (without the dilation factor). Training samples were constructed
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by extracting rectangular regions of the size equal to the “training example size” parameter
value with horizontal and vertical overlaps set by the “training example overlap” value in
percent from interpreted seismic sections.

2.2.2. The 3D Convolutional Network

This architecture consisted of 3D convolutional layers with a fully connected head.
It was based on the MalenoV tool [26], which was later improved [22], with the resulting
architecture shown in Figure 8. The architecture consisted of three convolutional 3D and
three fully connected layers with two max pooling layers after the first and the third convo-
lutional layers. The activation functions used were ReLU activations; the final activation
was a softmax activation. Batch normalization layers were introduced after fully connected
layers. Three-dimensional convolutional layers were designed to work with 3D data, while
fully connected layers were capable of processing 1D vectors. Thus, to feed the output
of convolutional layers to the first fully connected layer, we flattened it, making it one
dimensional. The final prediction was done by a layer consisting of the only node, which,
topped with a softmax function, gave the probability of each class, and the class with the
maximum probability was given as the output. To leverage spatial awareness of 3D layers,
around each of the points used for training or prediction a small 3D subcube of seismic
data was taken to form a single training example. Prediction was done for each seismic
sample individually in contrast to the model described above. However, to inform the
model of each sample’s surroundings, a small 3D volume of data was taken into account.
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convolutional and fully connected layer except the last one. The final activation was softmax. The
input is 3D and the output is a single value (class index).

With the sparse sampling scheme introduced in [22], every other sample was taken
into account along each dimension; therefore, the initial size of 65 × 65 × 65 was reduced
to 33 × 33 × 33. In this way, the computational time required was reduced significantly
with a negligible decrease in accuracy.

2.2.3. The U-Net Architecture

The U-Net architecture [17] was used to tackle the challenge of facies classification.
The implementation in Python was adopted from [27] and follows the originally proposed
architecture configuration. The architecture was fully convolutional, meaning its input
is 2D and output is also 2D. The architecture is shown in Figure 9. It had clear encoder
and decoder paths, with the encoder reducing the size of the input and the decoder
decompressing the latent space representation back to the original size. Each block except
the last block had two convolutional 2D layers followed by an additional layer depending
on the paths: for an encoder, it was a max pooling layer, and for a decoder, it was a
transpose convolutional 2D layer [28]. Each max pooling layer reduces the size of the input
by a factor of two along both height and width dimensions, which reduces the complexity
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of the following operations while retaining the most important details of the input. Two-
dimensional transpose convolution both doubles the input size along two dimensions and
calculates the inverse of a convolution operation with a weight matrix, so it also learns
some useful features. An additional feature of the U-Net architecture is skip connections
that concatenate outputs from encoder path blocks with decoder path outputs, thus mixing
low-level and high-level features, which is designed to enhance the result.
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Figure 9. The U-Net architecture. Based on [17]. Features encoder and decoder paths and skip
connections concatenating their outputs. Both input and output are 2D.

Hyperparameter values that were considered are shown in Table 2.

Table 2. Hyperparameters considered during the training.

Parameter Values

learning rate 1 × 10−4, 1 × 10−5, 5 × 10−6

network depth (the number of convolutional
blocks in both top-down and bottom-up pathways) 3, 5, 6

number of filters in the first convolutional block 16, 32, 64

training example size 64, 128, 256

training example size overlap (in percent,
horizontal and vertical) 30, 50, 70

number of epochs 150, 250

Rectangular patches of the size equal to a “training example size” value were extracted
from initial slices to form a training dataset with overlap equal to a “training example size
overlap” value.

2.3. Investigating the Validation–Test Accuracy Gap

During our experiments, we observed a clear and consistent gap between validation
and test accuracy, which in some cases was significant. The phenomenon was especially
prominent when working with the F3 dataset. This issue is usually caused by the difference
in distributions of test data and training data, which is indeed the case in this study. As
exhibited in Figure 4, despite a significant overlap between distributions, the test (crossline)
and training (inline) data clearly differed from each other.

To confirm that the validation/test accuracy gap is caused by differences in distribu-
tions and to better understand how the gap is affected by this difference, the following
experiment was performed. In the comparative study, we used an inline to construct the
training and validation sets and a crossline to form the test set, which caused the distribu-
tion difference. We updated the datasets by exchanging some number of examples coming
from inline and crossline to reduce the difference in distributions between them. Instead
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of using only examples extracted from the inline to form training and validation sets, we
substituted some of them with examples extracted from the crossline. The same procedure
was applied to the test set: a number of examples from the crossline that were previously
used as test data and moved to the training/test set were substituted by the same number
of inline examples from those that were no longer used for the training and validation sets.
Thus, adding to the training and validation sets, some crossline data and some inline data
to the test set, we reduced the difference in validation and test distributions and examined
how the results compared to the initial data.

3. Results and Discussion

This section describes the numerical experiments run with different deep learning
architectures on the different datasets and discusses their results.

3.1. Experiments with the Fully Convolutional 2D Network with Dilated Convolutional Layers

The architecture was first tested on the synthetic dataset to validate its ability to handle
the task. The result of predicting the test samples is shown in Figure 10. The resulting test
accuracy was 0.92, which indicates that the architecture was suitable for handling the task.
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Figure 10. Synthetic seismic section (a), ground truth facies model (b) and predicted result (c).
92% accuracy indicates that the architecture is viable and can be applied to the real datasets.

The first real dataset the architecture was applied to was the F3 dataset. Hyper parame-
ter tuning was performed by Monte Carlo sampling [29] parameters which were uniformly
distributed over a set of possible distinct values. Fifty different sets of parameters were
drawn to initialize and train 50 architectures. Prediction results varied significantly between
different initializations. The most and least accurate results of predicting facies distribution
of the crossline 500 are shown in Figure 11. The test accuracy of the most accurate prediction
was 0.85, and that of the least accurate prediction was 0.16. Attempts were made to improve
the stability of the model by regularizing it (using Dropout layers [30] with different rates
and adding max pooling layers), but they did not have a noticeable effect. Lack of stability
may indicate that this network does not have enough expressive power, which may be
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solved by adding layers, increasing the number of weights, or adjusting the architecture in
some other ways—essentially, changing the model.
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Figure 11. XL500 (a) along with its interpretation (b), prediction with 0.85 accuracy (c), prediction with
0.16 accuracy (d). Prediction performance of the fully convolutional 2D network varies significantly
with slight changes in parameter.

The history of validation loss and accuracy of the prediction with the highest test
accuracy is shown in Figure 12. From the graphs, we concluded that the model did not
overfit, and the validation accuracy achieved was close to 1.
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Figure 12. Validation loss and accuracy of the prediction with the highest test accuracy. Validation
accuracy gets close to 1, no signs of overfitting.

However, there is a clear gap between the validation accuracy and the test accuracy
achieved during the training; the validation accuracy was close to 1, while the highest test
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accuracy was 0.85. To investigate how validation and test distribution difference affects
this gap, the test described in 2.3 was performed.

The experiment was performed three times by exchanging 10%, 20%, and 30% of
patches from the crossline with patches from the inline. The MDS plot comparing the
distributions of test and training samples after exchanging 30% of samples is shown in
Figure 13. The mean Mahalanobis distance [31] between the samples in the test set and the
distribution of the training set was reduced from 2.90 for the baseline case (corresponding
to the points in Figure 4 to 2.66 for the data after exchanging 30% of samples. The difference
was reduced, and training samples became more representative of the test set distribution.
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Figure 13. Distributions of training/test samples after applying the balancing procedure. Grey dots:
training examples; red dots: test examples.

The accuracies obtained over five runs for each scenario are shown in Table 3. Each
column in the table corresponds to a particular number of patches from the crossline and
the inline mixed to form a training set and a test set (baseline—no mixing). The number
of patches extracted from the crossline and placed in the training set was calculated as a
fraction (0.1, 0.2, 0.3) of the total number of patches being extracted from the crossline. The
same number of patches was taken from the inline and placed in the test set. It was clearly
shown that accuracy increases with an increasing amount of mixed data, which provides
evidence validating the initial hypothesis.

Table 3. Accuracy values obtained with different balancing of a dataset.

Baseline 0.1 mix 0.2 mix 0.3 mix

accuracy (best case) 0.847 0.886 0.909 0.938

mean 0.823 0.837 0.886 0.931

std 0.021 0.026 0.012 0.006

Additionally, for the F3 dataset, sensitivity analysis was performed to identify which
parameters affect prediction accuracy. The technique used to perform the analysis was
distance-based generalized sensitivity analysis (DGSA) [32], and it was based on unsu-
pervised clustering of all the response factors being considered into N classes (three in
this case) and calculating L1-norm distance between the prior cumulative distribution
function (CDF) and the CDF of each cluster for each parameter. If a confidence interval
for a parameter centered around 1 did not overlap with its Pareto bar, the parameter was
marked as insensitive, otherwise it was marked as sensitive [32].

The result of the sensitivity analysis is shown in Figure 14. The sensitive parameters
(shown as blue bars) are the number of convolutional filters, number of dilated layers,
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batch size, and window size. Unexpectedly, kernel size and number of convolutional layers
were insensitive, even though they had a direct effect on the overall number of parameters
of the model. The number of dilated layers is more important than the number of regular
layers, which may be one reason that the dilation factor in the convolutional kernel allows
it to learn more relevant and descriptive features.

Energies 2022, 15, x FOR PEER REVIEW 14 of 26 
 

 

regular layers, which may be one reason that the dilation factor in the convolutional kernel 

allows it to learn more relevant and descriptive features. 

 

Figure 14. Sensitivity analysis of hyperparameters. Parameters are num conv layers: number of con-

volutional layers; num dil layers: number of dilated convolutional layers; n filters: number of filters; 

lr: learning rate, window size: training example size; overlap: training example overlap; maxpool: 

max pooling; telescopic: telescopic architecture. The parameters are described in 0. 

Finally, the experiment was performed on the RIPED dataset. As input interpretation 

and corresponding labels were sparse, a binary mask was introduced to mask unlabeled 

pixels to prevent the network from learning from pixels with no real labels. The concept 

and the code were adapted from [33]. The underlying concept was simply multiplying the 

output from each convolutional layer by 0 where input pixels do not have labels. Data 

augmentation (horizontal flipping and addition of Gaussian noise) was utilized to in-

crease the number of examples and make the network more robust. 

Again, 50 different hyper parameter sets were formed to run 50 independent training 

and prediction iterations. Examples of predicting the IL500 are shown in Figure 15. The 

results were unsatisfactory as there were no hyper parameter sets that resulted in a satis-

factory prediction. 

Figure 14. Sensitivity analysis of hyperparameters. Parameters are num conv layers: number of
convolutional layers; num dil layers: number of dilated convolutional layers; n filters: number of
filters; lr: learning rate, window size: training example size; overlap: training example overlap;
maxpool: max pooling; telescopic: telescopic architecture. The parameters are described in 0.

Finally, the experiment was performed on the RIPED dataset. As input interpretation
and corresponding labels were sparse, a binary mask was introduced to mask unlabeled
pixels to prevent the network from learning from pixels with no real labels. The concept
and the code were adapted from [33]. The underlying concept was simply multiplying
the output from each convolutional layer by 0 where input pixels do not have labels. Data
augmentation (horizontal flipping and addition of Gaussian noise) was utilized to increase
the number of examples and make the network more robust.

Again, 50 different hyper parameter sets were formed to run 50 independent train-
ing and prediction iterations. Examples of predicting the IL500 are shown in Figure 15.
The results were unsatisfactory as there were no hyper parameter sets that resulted in a
satisfactory prediction.

As mentioned previously, the most likely reason for these poor results was that the
amount of training data was very limited, and only part of the distribution represented
in the input data was labeled. In addition, channels on seismic sections are very hard to
identify precisely, even for human interpreters.

When trained on stratigraphic slices from the same RIPED dataset, however, the model
shows a significantly better performance. Though it did not capture all of the small details,
it did produce a comprehensive result, achieving a 0.82 test accuracy. The result is shown
in Figure 16.
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3.2. Experiments with the 3D Convolutional Network

The tool was applied to the synthetic data to assess its performance. To make a 3D
model applicable to 2D data, each 2D line was repeated to form the third dimension.
The test accuracy obtained was 0.74, and an example of the prediction result is shown in
Figure 17. This result was not very accurate, but it captured key details. Since the data was
2D in nature, the 3D model was restricted in its capabilities, which is why this result was
poor compared to the other predictions.
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Figure 17. Synthetic seismic section (a), ground truth facies model (b) and predicted result (c). The
data is 2D in nature, which does not allow the model to leverage its spatial awareness.

Then, an experiment was performed on the F3 dataset. The goal of the experiment was
to find an optimal subcube size, treating it as a hyper parameter, and then relate it to some
real geological or spatial characteristics of the data. This would allow for the estimation of
the subcube size given a new dataset rather than perform hyper parameter tuning again.

To compare results obtained with different subcube sizes, values from 5 to 61 voxels
with a step of four were considered for both horizontal and vertical dimensions. The
resulting accuracies varied, but not significantly; almost all of the accuracies were within
the 0.75 to 0.9 range. In Figure 18, facies classification of the XL500 is shown for different
subcube sizes. Overall, the bigger the input subcube, the smoother the predicted result. If a
subcube size is too small, the result becomes very noisy (b). However, if the subcube size
is big, the result is smooth, but some details may be lost. The dominating facies tends to
spread its influence even further (d).

To make geological sense of the subcube size parameter, an experiment was performed
to relate it to the two-point correlation (variogram) ranges obtained from the seismic data.
Variogram ranges were estimated from the seismic data as 68 samples in the inline direction,
40 samples in the crossline direction, and four samples in the vertical direction. With a
sparse sampling scheme (dropping every other sample), the horizontal subcube size based
on the variogram range was 35 × 21; the vertical size was increased to nine samples to
avoid a very noisy result. The result is shown in Figure 19. The prediction made with
a subcube size based on the variogram ranges was significantly more detailed than the
base case, which could be potentially attributed to geological features. The test accuracy
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obtained with the variogram-sized subcube was 0.785. This shows that the two-point
correlation of the data can be a reasonable guide to set the parameter value for the input
subcube size.
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Figure 18. Facies classification of the XL500 (a) with different subcube sizes: 5 × 5 subcube (b),
33 × 33 subcube (c), 61 × 61 subcube (d). The bigger the input subcube the smoother the predicted
result.
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Figure 19. Facies classification for the XL500 with a variogram range sized subcube (a) and a
33 × 33 × 33 subcube (b). Prediction obtained with a variogram-based subcube has more features
and details which could be related to actual geological features.

The next experiment involved using the RIPED dataset. The subcube size, which is the
amount of data around each seismic sample taken into consideration, was a hyperparameter,
and 15 different sizes were tested. The network was trained for two epochs, and the best
result of predicting the IL540 is shown in Figure 20.
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Figure 20. The IL500 with channel bodies circled (a) and an example of predicted facies (b). Notice
misclassified channels along the faulted zone (circled in red), which is most likely caused by channel-
like reflection contrast and geometry.

In this case, there were no fully labeled examples, so the accuracy was not calculated.
Blobs classified as channels in the central part of the sections corresponded to the actual

channels circled on the seismic section, which were identified as channels by interpreters
from RIPED. It can be seen from predicted results that the network misinterpreted most in
areas where there were no labels and especially in the faulted zone, which was expected.
Overall, channels were correctly but imprecisely predicted by the model; however, the
majority of channel bodies were the result of the model being confused by artifacts in the
faulted zone.

The model was also applied to stratigraphic slices extracted from the RIPED cube. The
result is shown in Figure 21, the best test accuracy obtained was 0.80. In the result, the key
details were captured, but it lacked precision. One possible explanation for this is the lack
of expressive power of the model.
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3.3. Experiments with the U-Net Architecture

First, the same exercise of testing the architecture on the synthetic dataset was per-
formed. An extreme case was tested, with only 13 examples for training and two examples
for testing. The prediction result is shown in Figure 22. Though not very accurate, the
predicted facies distribution patterns still captured the true facies distribution.
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Figure 22. Synthetic seismic section (a), ground truth facies model (b) and predicted result (c). U-Net
was trained on 13 training examples. In the prediction the true facies distribution is captured.

When the entire synthetic training dataset was used to train the model, a test accuracy
of 0.95 was obtained, which is the best among all three models. The result is shown in
Figure 23.

The model was then used to predict facies distribution in the F3 dataset. As there
was a single training section available, a patch extraction process was performed to form
a training set. The best accuracy obtained was 0.86, and the result is shown in Figure 24.
Several factors could have affected the performance negatively: a significant number of
classes to learn and lack of data corresponding to each of the classes; overall lack of data
for training such a deep model; and the difference in distributions between the inline used
for training and the crossline used for testing.

Investigating the validation accuracy graph in Figure 25, the issue described in
Section 2.3 can be identified. The model achieved very high validation accuracy but signifi-
cantly lower test accuracy on the same F3 dataset.

The same experiment was performed by mixing data patches from inline and crossline
to balance out the distributions of the training set and the test set, and the results are
summarized in Table 4 (structured in the same way as the Table 3). Again, the trend of test
accuracy increasing with an increasing amount of mixed data is observed. This confirms
that the distribution shift accounted for at least a significant share of the validation-test
accuracy gap. The experiment also highlights the fact that the distribution shift is a major
problem when applying machine learning algorithms to seismic data: seismic data is
usually spatially heterogeneous; therefore, the distribution of data changed throughout the
cube or from inline to crossline seismic sections.
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was trained on the entire training set. The prediction is very close to the true facies model.
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Table 4. Accuracy values obtained with different balanced dataset modifications.

Baseline 0.1 mix 0.2 mix 0.3 mix

accuracy (best case) 0.858 0.845 0.918 0.946

mean 0.801 0.806 0.876 0.934

std 0.033 0.037 0.036 0.010

When applied to the RIPED dataset, with sparsely labeled vertical sections as training
data, the model did not yield any meaningful results. The model was then applied to
stratigraphic slices from the RIPED dataset. Patch extraction and data augmentation by
flipping left–right and adding Gaussian noise were utilized.

In Figure 26, examples of predictions made with different hyperparameters are shown.
Overall, in the results, all the main features visible in seismic data were captured. The
prediction in (d) was more precise and more detailed than the one shown in (c), which was
expected given its deeper network with more weights and longer training. The image in (d)
also has some details not present in the interpretation itself. The accuracy achieved is 0.847.

Energies 2022, 15, x FOR PEER REVIEW 23 of 26 
 

 

Table 4. Accuracy values obtained with different balanced dataset modifications. 

  Baseline 0.1 mix 0.2 mix 0.3 mix 

accuracy (best 

case) 
0.858 0.845 0.918 0.946 

mean 0.801 0.806 0.876 0.934 

std 0.033 0.037 0.036 0.010 

When applied to the RIPED dataset, with sparsely labeled vertical sections as training 

data, the model did not yield any meaningful results. The model was then applied to strat-

igraphic slices from the RIPED dataset. Patch extraction and data augmentation by flip-

ping left–right and adding Gaussian noise were utilized. 

In Figure 26, examples of predictions made with different hyperparameters are 

shown. Overall, in the results, all the main features visible in seismic data were captured. 

The prediction in (d) was more precise and more detailed than the one shown in (c), which 

was expected given its deeper network with more weights and longer training. The image 

in (d) also has some details not present in the interpretation itself. The accuracy achieved 

is 0.847. 

 

Figure 26. Seismic slice (a) and its interpretation (b) and examples of prediction obtained with U-

Net with different hyperparameter sets (c) and (d). The prediction in (d) is much more detailed than 

the one in (c), even some details not present in the manual interpretation were captured. 

Figure 27 shows results from the interpretation of multiple stratigraphic slices, visu-

alized as isosurfaces delineating the channel geobodies. The interpreted volume was 20 

ms in the vertical size. In Section 4 the comparison of training times and prediction times 

for the different architectures is shown. The good performance of the U-Net architectures 

came at the cost of a much longer training time. However, once trained, its predictions 

were faster than the other architectures. The geobody interpretation shown in Figure 27 

was obtained in less than a minute. 

Figure 26. Seismic slice (a) and its interpretation (b) and examples of prediction obtained with U-Net
with different hyperparameter sets (c,d). The prediction in (d) is much more detailed than the one
in (c), even some details not present in the manual interpretation were captured.

Figure 27 shows results from the interpretation of multiple stratigraphic slices, visual-
ized as isosurfaces delineating the channel geobodies. The interpreted volume was 20 ms in
the vertical size. In Section 4 the comparison of training times and prediction times for the
different architectures is shown. The good performance of the U-Net architectures came at
the cost of a much longer training time. However, once trained, its predictions were faster
than the other architectures. The geobody interpretation shown in Figure 27 was obtained
in less than a minute.
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4. Conclusions

A comparison of architectures in terms of accuracy values on different datasets was
performed; its results are shown in Table 5. The performance of the 3D convolutional
architecture on the synthetic data, which is 2D in nature, was worse than on the 3D datasets.
This, together with the fact that in the synthetic dataset there are 5000 training examples
and test data comes from the same distribution as training data, may indicate that the 3D
convnet is sensitive to the size and dimensionality of input examples. Fully convolutional
architectures showed good performance on all the datasets. The key difference between
the dilated FCN and the U-Net was that the former was very sensitive to hyper parameter
changes, while the latter was overall robust.

Table 5. Accuracy values of architectures on different datasets.

Dilated FCN 3D Conv U-Net

synthetic 0.92 0.74 0.91
F3 0.83 0.81 0.82

RIPED (slices) 0.8 0.8 0.85

The validation/test accuracy gap highlighted in this study emphasizes the problem
that is likely to arise when applying ML models to seismic data. Due to geological hetero-
geneity, it may be impossible to obtain human-level performance on a part of the seismic
cube that a model has not seen, even when a significant amount of training data is available
for another part of a cube if there are differences in the distributions of the two parts.

Performance comparison in terms of the prediction time is shown in Table 6. The
3D convolutional model is a robust solution, but its predictions take a long time, as it
predicts one voxel at a time. Numerical results showed that the 2-point correlation of the
data (variogram range) can be a reasonable guide to set the parameter value for the input
subcube size around the prediction voxel. The performance of the fully convolutional
dilated architecture was similar to that of the U-Net, but it was much more sensitive to
changes in hyperparameters. U-Net showed good results (~0.85 accuracy) when trained
on stratigraphic slices, and was overall consistent in its predictions. A universal robust
solution working with a small amount of training data and sparsely labeled data is yet to
be discovered.
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Table 6. Performance of architectures used measured with a Tesla V100-PCIE 32GB GPU.

Dilated FCN 3D Conv U-Net

training time 729 s
(40 ep)

115 s
(2 ep)

883.6 s
(250 ep)

prediction time (one section) 0.74 s 13 s 0.15 s
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