Upgrading the Power Capacity of a Three-Conductor MVAC Line by Converting to DC
Abstract
:1. Introduction
- The ability to connect substations at the same voltage level for direct power exchange;
- Increasing the power capacity of transmission lines;
- Connection of power-intensive loads in urban environments;
- Connection of remote consumers including microgrids;
- Connection of renewable energy sources and storage units;
- Transmission of electricity by submarine cable lines at medium voltage levels.
2. Proposed Method for AC to DC Conversion
2.1. Analysis of the Increased Power Capacity of the Line Using the Proposed Method
2.1.1. Power Margin Coefficient
2.1.2. Evaluation of the Efficiency of the Proposed Method Using the Power Margin Coefficient
3. Experimental Validation and Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- IRENA. International Renewable Energy Agency Global Energy Transformation: The REmap Transition Pathway; Background Report to 2019 Edition; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Hillberg, E.; Zegers, A.A.; Herndler, B.; Wong, S.; Pompee, J.; Bourmaud, J.-Y.; Lehnhoff, S.; Migliavacca, G.; Uhlen, K.; Oleinikova, I.; et al. Flexibility Needs in the Future Power System; ISGAN: Stockholm, Sweden, 2019. [Google Scholar]
- IEA. Status of Power System Transformation 2019: Power System Flexibility; IEA: Paris, France, 2019. [Google Scholar]
- Abbey, C.; Houseman, D.; Joos, G.; Alexander, R. Smart Grid IEEE Grid Vision 2050; Simard, G., Ed.; IEEE: New York, NY, USA, 2013; ISBN 9780738183732. [Google Scholar]
- Cheng, L.; Ji, X.; Zhang, F.; Liang, C.; He, H. Internet information applied in the energy internet planning: A review and outlook. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–5. [Google Scholar]
- Zhukovskiy, Y.; Batueva, D.; Buldysko, A.; Shabalov, M. Motivation towards energy saving by means of IoT personal energy manager platform. J. Phys. Conf. Ser. 2019, 1333, 062033. [Google Scholar] [CrossRef]
- Zamyatin, E.O.; Shklyarskiy, Y.E.; Yakovleva, E.V. Concept for electric power quality indicators evaluation and monitoring stationary intellectual system development. Int. J. Appl. Eng. Res. 2016, 11, 4270–4274. [Google Scholar]
- Zhang, L.; Liang, J.; Tang, W.; Li, G.; Cai, Y.; Sheng, W. Converting AC Distribution Lines to DC to Increase Transfer Capacities and DG Penetration. IEEE Trans. Smart Grid 2018, 10, 1477–1487. [Google Scholar] [CrossRef]
- Bu, S.Q.; Du, W.; Wang, H.F.; Liu, Y.; Liu, X. Investigation on Economic and Reliable Operation of Meshed MTDC/AC Grid as Impacted by Offshore Wind Farms. IEEE Trans. Power Syst. 2016, 32, 3901–3911. [Google Scholar] [CrossRef] [Green Version]
- Moradi-Sepahvand, M.; Amraee, T. Hybrid AC/DC Transmission Expansion Planning Considering HVAC to HVDC Conversion Under Renewable Penetration. IEEE Trans. Power Syst. 2020, 36, 579–591. [Google Scholar] [CrossRef]
- Urquidez, O.A.; Xie, L. Targeted conversion of AC lines to DC lines for improved power system dispatch. In Proceedings of the 2012 North American Power Symposium, Champaign, IL, USA, 9–11 September 2012; pp. 1–6. [Google Scholar] [CrossRef]
- Hotz, M.; Boiarchuk, I.; Hewes, D.; Witzmann, R.; Utschick, W. Reducing the Need for New Lines in Germany’s Energy Transition: The Hybrid Transmission Grid Architecture. In Proceedings of the International ETG Congress 2017, Bonn, Germany, 28–29 November 2017. [Google Scholar]
- Meng, K.; Zhang, W.; Qiu, J.; Zheng, Y.; Dong, Z.Y. Offshore Transmission Network Planning for Wind Integration Considering AC and DC Transmission Options. IEEE Trans. Power Syst. 2019, 34, 4258–4268. [Google Scholar] [CrossRef]
- Alassi, A.; Bañales, S.; Ellabban, O.; Adam, G.; MacIver, C. HVDC Transmission: Technology Review, Market Trends and Future Outlook. Renew. Sustain. Energy Rev. 2019, 112, 530–554. [Google Scholar] [CrossRef]
- Sun, J.; Rensselaer Polytechnic Institute; Li, M.; Zhang, Z.; Xu, T.; He, J.; Wang, H.; Li, G.; State Grid Corporation of China; China Electric Power Research Institute. Renewable energy transmission by HVDC across the continent: System challenges and opportunities. CSEE J. Power Energy Syst. 2017, 3, 353–364. [Google Scholar] [CrossRef]
- Boeke, U.; Wendt, M. DC power grids for buildings. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 7–10 June 2015; pp. 210–214. [Google Scholar] [CrossRef]
- Li, Q.; Tang, X.; Shi, X.; Liu, H.; Li, Z.; Yan, J. Demonstration and Application of AC/DC Hybrid Power Supply System in Building. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Koh, L.; Soe, N.P.; Ong, H.; Zhang, Z.; Wang, J. DC renewable connected building grid for intelligent LED lighting system. In Proceedings of the 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 19–21 June 2017; pp. 970–974. [Google Scholar] [CrossRef]
- Mackay, L.; Hailu, T.G.; Mouli, G.C.; Ramirez-Elizondo, L.; Ferreira, J.; Bauer, P. From DC nano- and microgrids towards the universal DC distribution system–A plea to think further into the future. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Li, H. Isolated Modular Multilevel DC–DC Converter With DC Fault Current Control Capability Based on Current-Fed Dual Active Bridge for MVDC Application. IEEE Trans. Power Electron. 2017, 33, 2145–2161. [Google Scholar] [CrossRef]
- Engel, S.P.; Stieneker, M.; Soltau, N.; Rabiee, S.; Stagge, H.; De Doncker, R.W. Comparison of the Modular Multilevel DC Converter and the Dual-Active Bridge Converter for Power Conversion in HVDC and MVDC Grids. IEEE Trans. Power Electron. 2014, 30, 124–137. [Google Scholar] [CrossRef]
- Bernacchi, R.; Global Product Manager; ABB Power Grids. MVDC and Grid Interties: Enabling New Features in Distribution, Sub-Transmission and Industrial Networks. 2019. Available online: https://library.e.abb.com/public/5fea768c835b4daeb8258bf950ddb05c/ABB%20MVDC_White%20paper.pdf?x-sign=X9LOXylnUBkKlMUPttFtrNFlHfODv7TYMZjoITkYE332BdplwYEgUSztjC9z/l58 (accessed on 1 December 2021).
- Reed, L.; Morgan, M.G.; Vaishnav, P.; Armanios, D.E. Converting existing transmission corridors to HVDC is an overlooked option for increasing transmission capacity. Proc. Natl. Acad. Sci. USA 2019, 116, 13879–13884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbuli, N.; Xezile, R.; Motsoeneng, L.; Ntuli, M.; Pretorius, J.-H. A literature review on capacity uprate of transmission lines: 2008 to 2018. Electr. Power Syst. Res. 2019, 170, 215–221. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.; Fu, M. The Upgrading Renovation of an Existing XLPE Cable Circuit by Conversion of AC Line to DC Operation. IEEE Trans. Power Deliv. 2015, 32, 1321–1328. [Google Scholar] [CrossRef]
- Clerici, A.; Paris, L.; Danfors, P. HVDC conversion of HVAC lines to provide substantial power upgrading. IEEE Trans. Power Deliv. 1991, 6, 324–333. [Google Scholar] [CrossRef]
- Häusler, M.; Schlayer, G.; Fitterer, G. Converting AC Power Lines to DC for Higher Transmission One Way of Avoiding Transmission Bottlenecks Caused by a Shortage of. 1997, Volume 3. Available online: https://library.e.abb.com/public/8345ed00181dda7bc1256ecc0034c069/04-11%20ENG%209703.pdf (accessed on 1 December 2021).
- Lundberg, P.; Jacobson, B.; Kumar, A.; K., V.; Kasal, G.-K.; MS, S. Convert from AC to HVDC for Higher Power Transmission. Available online: https://new.abb.com/news/detail/11828/convert-from-ac-to-hvdc-for-higher-power-transmission (accessed on 3 August 2020).
- Barthold, L.; Hartmut, H. Conversion of AC transmission lines to HVDC using current modulation. In Proceedings of the 2005 IEEE Power Engineering Society Inaugural Conference and Exposition in Africa, Durban, South Africa, 11–15 July 2005. [Google Scholar] [CrossRef]
- Xu, F.; Xu, Z.; Zheng, H.; Tang, G.; Xue, Y. A Tripole HVDC System Based on Modular Multilevel Converters. IEEE Trans. Power Deliv. 2014, 29, 1683–1691. [Google Scholar] [CrossRef]
- Peng, C.; Huang, A.Q. Converting HVAC to HVDC grids: A novel switched conductor HVDC scheme. In Proceedings of the 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), Dallas, TX, USA, 3–5 May 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Kalair, A.; Abas, N.; Khan, N. Comparative study of HVAC and HVDC transmission systems. Renew. Sustain. Energy Rev. 2016, 59, 1653–1675. [Google Scholar] [CrossRef]
- Long, C.; Wu, J.; Smith, K.; Moon, A.; Bryans, R.; Yu, J. MVDC link in a 33 kV distribution network. CIRED Open Access Proc. J. 2017, 2017, 1308–1312. [Google Scholar] [CrossRef] [Green Version]
- Solovev, S.; Bardanov, A. Efficiency estimation method of three-wired AC to DC line transfer. J. Phys. Conf. Ser. 2018, 1015, 032137. [Google Scholar] [CrossRef]
- Kolar, J.W.; Huber, J.E. Solid-State Transformers: Key Design Challenges, Applicability, and Future Concepts. In Proceedings of the 2016 IEEE International Power Electronics and Motion Control Conference (PEMC 2016), Varna, Bulgaria, 25–28 September 2016; pp. 25–30. [Google Scholar]
- Kolar, J.W.; Friedli, T. Comprehensive evaluation of three-phase ac-ac PWM converter systems. In Proceedings of the IECON 2010—36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010; pp. 1–2. [Google Scholar] [CrossRef]
- Krishna, T.N.V.; Sathishkumar, P.; Himasree, P.; Punnoose, D.; Raghavendra, K.V.G.; Himanshu; Naresh, B.; Rana, R.A.; Kim, H.-J. 4T Analog MOS Control-High Voltage High Frequency (HVHF) Plasma Switching Power Supply for Water Purification in Industrial Applications. Electronics 2018, 7, 245. [Google Scholar] [CrossRef] [Green Version]
- Krishna, T.N.V.; Himasree, P.; Srinivasa Rao, S.; Kumar, Y.A.; Kundakarla, N.B.; Kim, H.J. Design and Development of a Digital Controlled Dielectric Barrier Discharge (DBD) AC Power Supply for Ozone Generation. J. Sci. Ind. Res. India 2020, 79, 1057–1068. [Google Scholar]
- Ma, Z.; Yang, L.; Bhutta, M.S.; Bian, H.; Khan, M.Z. Effect of Thickness on the Space Charge Behavior and DC Breakdown Strength of Cross-Linked Polyethylene Insulation. IEEE Access 2020, 8, 85552–85566. [Google Scholar] [CrossRef]
- Larruskain, D.; Zamora, I.; Abarrategui, O.; Iraolagoitia, A.; Gutiérrez, M.; Loroño, E.; De La Bodega, F. Power transmission capacity upgrade for overhead lines. Renew. Energy Power Qual. J. 2006, 1, 221–227. [Google Scholar] [CrossRef]
- Xia, J.; Shi, N.; Xu, X.; Zhao, Y.; Zhang, J.; Zhang, D.; Sun, J. Study on AC Resistance Characteristics of Stranded Conductors by a High Precision Measuring System. In Proceedings of the 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), Beijing, China, 7–9 September 2019; pp. 1372–1376. [Google Scholar] [CrossRef]
- Sabin, D.D.; Bollen, M.H.J. Overview of IEEE Std 1564–2014 Guide for Voltage Sag Indices. In Proceedings of the 2014 16th International Conference on Harmonics and Quality of Power (ICHQP), Bucharest, Romania, 25–28 May 2014; pp. 497–501. [Google Scholar] [CrossRef] [Green Version]
- Abramovich, B.N. Uninterruptible power supply system for mining industry enterprises. J. Min. Inst. 2018, 229, 31. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardanov, A.I.; Solovev, S.V.; Alvarez, R.; Munoz-Guijosa, J.M.; Jiménez Carrizosa, M.J.; Mora, A. Upgrading the Power Capacity of a Three-Conductor MVAC Line by Converting to DC. Energies 2022, 15, 1080. https://doi.org/10.3390/en15031080
Bardanov AI, Solovev SV, Alvarez R, Munoz-Guijosa JM, Jiménez Carrizosa MJ, Mora A. Upgrading the Power Capacity of a Three-Conductor MVAC Line by Converting to DC. Energies. 2022; 15(3):1080. https://doi.org/10.3390/en15031080
Chicago/Turabian StyleBardanov, Aleksey I., Sergei V. Solovev, Ricardo Alvarez, Juan M. Munoz-Guijosa, Miguel Jiménez Jiménez Carrizosa, and Andrés Mora. 2022. "Upgrading the Power Capacity of a Three-Conductor MVAC Line by Converting to DC" Energies 15, no. 3: 1080. https://doi.org/10.3390/en15031080
APA StyleBardanov, A. I., Solovev, S. V., Alvarez, R., Munoz-Guijosa, J. M., Jiménez Carrizosa, M. J., & Mora, A. (2022). Upgrading the Power Capacity of a Three-Conductor MVAC Line by Converting to DC. Energies, 15(3), 1080. https://doi.org/10.3390/en15031080