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Abstract: In wind energy, the accuracy of the estimation of the wind resource has an enormous effect
on the expected rate of return of a project. For a given project, the wind resource assessor is faced
with a difficult choice of a wide range of simulation tools and workflows with varying accuracies (or
“skill”) and costs. There is currently no guideline or process available in the industry for helping with
the decision of the most “optimal” choice—and this is particularly challenging in mountainous (or
“complex”) terrain. In this work, a new decision process for selecting the Wind Resource Assessment
(WRA) workflow that would expect to deliver the best compromise between skill and costs for a
given wind energy project is developed, with a focus on complex terrain. This involves estimating
the expected skill and cost scores using a set of pre-defined weighted parameters. The new process is
designed and tested by applying seven different WRA workflows to five different complex terrain
sites. The quality of the decision process is then assessed for all the sites by comparing the decision
made (i.e., choice of optimal workflow) using the expected skill and cost scores with the decision
made using the actual skill and cost scores (obtained by comparing measurements and simulations
at a validation location). The results show that the decision process works well, but the accuracy
decreases as the site complexity increases. It is therefore concluded that some of the parameter
weightings should be dependent on site complexity. On-going work involves collecting more data
from a large range of sites, implementing measures to reduce the subjectivity of the process and
developing a reliable and robust automated decision tool for the industry.

Keywords: wind energy; decision process; Wind Resource Assessment; risks; costs; skill

1. Introduction
1.1. The Choice of Wind Resource Assessment Tools and Workflows

In wind energy, the accuracy of the estimation of the wind resource has an enormous
effect on the expected rate of return of a project. Wind Resource Assessments (WRAs)
involve a number of steps that are combined together in order to estimate the expected
Annual Energy Production (AEP) of a planned project, as well as its associated uncertainty.
These steps include wind measurements, wind data processing, correction and analysis,
long-term wind resource extrapolation, wind resource vertical extrapolation, wind resource
horizontal extrapolation, energy production calculation, estimation of the wake effects
and estimation of the losses. Many different international standards and country-specific
guidelines exist describing the requirements to make a WRA “bankable”, that is, accepted
by investors (e.g., [1]).
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For a given project, a choice has to be made between different simulation tools with
varying accuracies and costs, and with differing functionalities. For example, the entire
wind climate (all wind directions) and the AEP can be calculated automatically with some
tools, whereas others have to be extended manually in order to extract this information.
Some tools focus just on microscale features, whereas some include mesoscale nesting
or forcing. As well as tools developed specifically for the wind energy industry, such as
WAsP, WindFarmer and WindSim, generic Computational Fluid Dynamics (CFD) tools
such as ANSYS CFX and ANSYS Fluent combined with internally-developed scripts are
used. Furthermore, some companies use tools that have been developed internally, such as
E-Wind from Enercon [2].

If the choice of model is made incorrectly, either many resources are wasted in need-
lessly high accuracy simulations, or the rate of return is inaccurate and investors risk
losing large amounts of money. Today, this choice is often made based on gut feeling,
experience and/or internal organisation recommendations and lessons learned. A decision
process or tool would help the wind energy industry make fact-based decisions rather than
solely relying on human judgement. This could significantly reduce planning uncertainties
and risks.

1.2. Wind Resource Assessment in Complex Terrain

There are several complex weather and wind flow phenomena that pose challenges
to measuring and modelling the wind resource correctly. This is especially the case in
mountainous terrain, which accounts for approximately 30% of the world’s land surface [3].
Complex wind effects over mountainous terrain include flow separation, sudden wind
speed and direction changes and high turbulence, all of which negatively impact wind
turbine performance and can be difficult to model. In some cases, these negative effects
may be offset by benefits such as katabatic winds and gravity-driven downslope winds
in stable atmospheric conditions [4]. As well as this, mountainous terrain can lead to
weather conditions such as storms or icing, which are difficult to forecast. Furthermore,
mountainous locations are often more difficult and more expensive to develop due to
restrictions such as steep slopes, narrow roads or poor infrastructure. For the purpose
of this paper, such terrain will be referred to as “complex”, although there is no holistic
agreed-upon definition in the community.

Some metrics do exist for the definition of “complex terrain”. The industry-standard
linear modelling tool WAsP is said to be applicable reliably for slopes up to 30% [5], because
flow separation is likely to occur above this value [6]. The WAsP tool includes a calculation
module that quantifies the extent to which the terrain exceeds this requirement, using the
Ruggedness Index (RIX), which is defined as the proportion of the surrounding terrain
steeper than 30%. The orographic performance indicator ∆RIX is defined as the difference
in the values of RIX between the predicted and reference locations. If the reference and
predicted locations are equally rugged (∆RIX = 0%), the prediction errors are relatively
small. This method of defining “complex terrain” is used widely in the industry by WAsP
users, but is limited to a binary classification (either “complex” or “not complex”). There
have been some attempts to assess flow complexity objectively using streamlines and other
features, for example, [7], but these methods are computationally demanding or require
functionality that is not available in wind energy sector tools.

The performance of different wind models and WRA workflows—in terms of cost
as well as accuracy—is highly dependent upon the complexity of the site, because this
strongly influences the resulting flow phenomena and weather conditions that are to be
simulated. Therefore a decision process requires some sort of site complexity classification.
As part of the present work, a new method for classifying site complexity is introduced
and tested.
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1.3. Assessing the Accuracy of Different Tools

The assessment of tool accuracy is a topic that is relevant to the CFD community in
general. In this section, some previous studies on the evaluation of CFD tools are described,
followed by some previous studies directly related to wind energy.

1.3.1. Evaluation of CFD Tools

Work on the evaluation of the quality of CFD tools has previously been done in the
COST Action 732 [8], with the objective of determining and improving model quality
of microscale meteorological models for the prediction of flow and dispersion processes
in urban and industrial environments. The work was based on the AIAA guideline for
the verification and validation of CFD simulations [9], which consists of a framework
containing the three environments: reality, computerised model and conceptual model
(which contains all the relevant equations). The phrases “model validation”, “model
qualification” and “model verification” refer to the difference between reality and the
computerised model, the difference between reality and the conceptual model and to the
difference between the conceptual and computerised models, respectively. The COST
Action involved defining the following evaluation process: (1) Scientific evaluation process;
(2) Verification process; (3) Provision of validation datasets; (4) Model validation process;
(5) Operational evaluation process. As part of the model validation process, a range of
different metrics were defined, including: correlation coefficient, Fractional Bias, Figure of
Merit and Hit Rate. This can be evaluated using a statistical evaluation tool, comparing
model predictions with observations (reference states). These metrics can only be used if
the number of data points is high enough to allow statistical analysis. For wind energy
applications, ten-minute averages are usually sufficient, and therefore these metrics are not
necessarily applicable here. However, some of the general ideas have been used to develop
the method in this work.

Another relevant project on CFD evaluation was the SMEDIS Project [10], which
involved developing a methodology for the scientific evaluation of dense gas dispersion
models. A large part of this methodology involved a questionnaire that had to be filled out
by the modellers, which asked them questions regarding pre-defined evaluation criteria.
These included topics such as the purpose of the model as well as the physical and chemical
processes modelled. A similar study involved the development of a guideline for the
scientific evaluation CFD studies, focusing on factors such as the domain description and
the grid set-up, the input data, the turbulence closure, the equation system and solver
applied, the boundary conditions, the initial conditions and the output data, as well as
various parameterisations important for microscale modelling [11].

1.3.2. Evaluation of Wind Energy Tools

Several previous studies examine and compare the accuracy of different wind mod-
elling tools, including the Bolund Hill Blind Test [12,13], the Askervain Hill Blind Test [14]
and the Perdigão field test [15,16]. However, they are all limited to comparisons of wind
speeds for chosen wind directions, or to time periods that are much shorter than those re-
quired for WRA. Additionally, the results haven’t been assessed in terms of site complexity,
and no attempt has been made to estimate model accuracy in advance to help with the
choice of model without having to carry out any simulations in advance.

Due to the large number of separate steps, data types and organisations involved in
WRAs, it is challenging to accurately and robustly evaluate the accuracy of different tools
or workflows. A key obstacle is the lack of availability and suitability of relevant validation
data. The authors are only aware of four substantial previous studies directly related to
WRA for wind energy applications:

The first study is the New European Wind Atlas (NEWA) Meso-Micro Challenge for
Wind Resource Assessment as part of the IEA Wind Task 31 “Wakebench”, which aimed
to determine the applicability range of meso-micro methodologies for WRA within the
NEWA validation domain https://iea-wind.org/task31/, accessed on 1 December 2021).

https://iea-wind.org/task31/
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It did consider the relationship between tool accuracy and cost; however, no attempt was
made to predict these parameters in advance in order to help modellers choose the best
tool for a given project. Also as part of IEA Wind Task 31, a Wind Energy Model Evaluation
Protocol (WEMEP) has been developed https://wemep.readthedocs.io/en/latest/index.
html, accessed on 1 December 2021). WEMEP addresses quality assurance of models
being used for research and to drive wind energy applications. This is achieved through a
framework to conduct formal verification and validation (V&V) that ultimately determines
how model credibility is built upon. It is based on the AIAA guide for the V&V of CFD as
described in the previous section.

The second study involves a literature review of the AEP assessment errors in the
global wind energy industry as well as a summary of how the wind energy industry
quantifies and reduces prediction errors and AEP losses [17]. In this work, a long-term
trend indicating a reduction in the over-prediction bias was identified. However, the
results were not assessed in terms of site complexity and the details of the individual WRA
procedures are limited due to confidentiality issues.

The third study involves the blind comparison of a series of AEP estimations carried
out by different participants in the so-called “CREYAP” project (“Comparison of Resource
and Energy Yield Assessment Procedures”), run by Ørsted and the Technical University
of Denmark. In the most recent exercise, AEP estimations were made for the Walney
Extension wind farm (https://windeurope.org/tech2021/creyap-2021/, accessed on 1
December 2021). A summary of the findings from the previous exercises concludes that
most of the steps involved in WRA require significant improvement, and the study needs
extending for complex terrain effects [18]. These comparisons are highly valuable; however,
the details and scientific content are limited due to confidentiality issues.

The fourth study involves recent work by the current authors, which compared the
accuracy of simulations using seven different WRA workflows at five different complex sites
in terms of wind speed and AEP [19]. The wind speed accuracy was assessed by averaging
the absolute difference between simulated and measured wind speeds for each 12 simulated
wind direction sectors. The AEP accuracy was assessed by comparing the theoretical
gross AEP (obtained from combining wind measurements at a validation location with a
theoretical power curve) with the gross AEP obtained from the simulation results. This
does not provide a true comparison of the predicted AEP with the actual measured AEP;
however, it allows the expected errors in wind speeds to be propagated to errors in AEP
and avoids difficulties with obtaining and correcting measurement data from operating
wind turbines. It was found that the wind speed accuracies do not correlate well with the
AEP accuracies, due to the uncertainties and differences between various AEP calculation
methods, as well as the strong dependency of AEP on wind speed magnitude and frequency.
It was concluded that it is vital to include the AEP estimation step in any assessment of
WRA workflow suitability. This will therefore be done in the present work.

1.4. A Compromise between Accuracy and Cost

In an industrial setting, it is not just the tool or workflow accuracy that contributes to
the choice of most suitable tool or workflow, but also the costs—or time—involved with
applying it. The overall costs, taking into account computational power as well as the
preparation, set-up and post-processing time, also need to be considered. Previous work
by the current authors showed that in particular the costs due to the simulation set-up
and post-processing effort need to be considered when evaluating the total costs of a WRA
process [20]. The authors are not aware of any previous studies with an application to wind
energy that study this compromise between workflow accuracy and cost. Therefore, the
consideration of accuracy and costs will be a central part of the present work.

This immediately brings up the question of what exactly is meant by the “most suitable”
tool or workflow. A schematic representation of a possible variation of workflow accuracy
(or “skill”) with cost for any given application is shown in Figure 1, where different
workflows are represented by the individual points. For this purpose, it is reasonable to

https://wemep.readthedocs.io/en/latest/index.html
https://wemep.readthedocs.io/en/latest/index.html
https://windeurope.org/tech2021/creyap-2021/
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assume that the general trend might look something like this, with the accuracy increasing
with increasing costs up to a point above which no significant improvement can be seen.
The areas that could be deemed unacceptable by the modeller are marked in red. In these
regions, the accuracy is lower than the lowest acceptable values, and the cost is higher
than acceptable. The marked region is expected to vary depending on the needs and
expectations of the modeller. In terms of cost-effectiveness, the “most suitable” workflow
could then be identified as the one with the highest skill score for the lowest cost score
within the acceptable region—at the flattening-off part of the curve as marked on the figure.
It is recognised that these assumptions may not hold in every possible application, and that
the users may prefer to define “most suitable” in a different way, for example by defining
the lowest computational time. This topic will be examined further in the present work.

Figure 1. Schematic representation of the expected skill score against cost score for an example wind
energy project.

1.5. Decision Support Systems

Wind resource assessors do not have the computational resources or time to thoroughly
test and compare a wide range of tools applied to a given project in the manner of the
studies described in Section 1.3 above. It is important for wind resource assessors to be in
the position to choose the most appropriate model before carrying out any simulations. For
this, decision support is required.

Many studies have been carried out on the topic of human judgement and decision-
making from a social sciences perspective. In general, studies ranging from the 1970s to
as recently as 2020 indicate that simple random weighting schemes or linear models often
out-perform human judgement, even by experts, for different applications, e.g., [21–27].
These models involve simply estimating scores of various pre-defined and pre-weighted
assessment criteria and adding these scores up in order to get an overall prediction. For
energy applications, decision-making methods are applied for various tasks. For example,
for energy systems planning, Multi Criteria Decision Analysis (MCDA) is very common,
as described in [28]. Various Decision Support Systems (DSS) have been used for design
decision-making. For example, Ref. [29] uses a decision support evolution model using
Genetic Algorithm (GA) as the evolution algorithm and CFD as the evaluation mechanism.
In another study, the optimal values of the key factors on the performance of a micromixer
were obtained using CFD, meta-heuristic algorithms, design of experiment (DOE) and
Multi-Criteria Decision Making (MCDM) [30], with the goal of improving the mixing index
in micromixers. Multi-Objective Particle Swarm Optimization (MOPSO) was found to offer
the best performance.
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As well as this, DSS have been identified as a key element required for the successful
and efficient creation and application of digital twins, an important driver of further cost
reduction in the wind energy industry today. As pointed out in [31], the main challenge of
digital twin implementation, besides the software integration, is establishing workflows
in such dynamic systems. In digital twin technology there is a lack of a novel, holistic,
open and universal approach to objectively perform algorithmic selection and recommend
analysis approaches [32]. DSS for wind energy digital twins could include, for instance,
the use of Probabilistic Graphical Model (PGMs) to represent digital twin data [33], which
can prove to be a powerful abstraction for controlling and planning, as segments of PGM
(between two time instances) can be seen as Partially Observable Markov Decision Processes
(POMDPs). In line with this sentiment, Ref. [34] showed that solutions of the POMDPs
optimisation problem can be a powerful and rigorously proven method in identifying the
value of structural health monitoring information and optimal maintenance strategies.

However, due to the very small amount of data available for this application—even
for seven tools and five sites, there are only 35 data points involved in the decision-
making processes—DSS based on data-driven machine learning models is probably not
the most appropriate approach. On-going work involves collecting data from hundreds of
publications in order to enrich the knowledge base; however, this task is challenging due
to the lack of standardised results. The techniques developed in the social science studies
mentioned above are therefore more applicable here. Due to the general indication that
even simple models out-perform human judgement, a technique involving the estimation
of scores of various pre-defined and pre-weighted assessment criteria will be applied.

1.6. Goal of This Work

The goal of this project is to develop a new decision process based on pre-defined
and pre-weighted assessment criteria for choosing the most optimal WRA workflow for a
given project in complex terrain. This could be used as a decision tool by wind resource
assessors in the future. In order to do this, the new decision process, including the pa-
rameter definitions and weightings, was designed and tested using the simulations and
measurements from seven different Wind Resource Assessment (WRA) workflows at five
different complex terrain sites.

The paper is organised as follows: Section 2 is concerned with the design of the
decision process based on previous work, Section 3 describes the test and demonstration of
the new decision process on five complex terrain sites, Section 4 contains a discussion of
the results and Section 5 the conclusions.

2. Decision Process Design
2.1. Basic Concepts

For the decision process design, the following basic concepts introduced in Section 1
were applied:

• The decision process aims to provide a decision on the choice of optimal WRA work-
flow(s) for a given site for wind resource assessors;

• It includes a new method for the classification of site complexity;
• It involves an assessment of the expected accuracy AND expected costs of applying a

range of possible WRA workflows to a given site;
• It includes an assessment of the AEP accuracy and costs, as well as the wind speed;
• It does not require the user to carry out any simulations in order to assess the site or

the workflows;
• The estimation of the accuracy and costs of each workflow involve a simple estimation

of the scores of various pre-defined and pre-weighted assessment criteria.

For each site tested, the evaluation of the quality of the process is done by comparing
the choice of optimal workflow using the expected skill and cost scores to the choice of
optimal workflow using the actual skill and cost scores obtained by comparing simulations
to measurements at a validation location.
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2.2. Description of Decision Process

Based on the basic concepts mentioned above, a decision process was defined as
shown in Figure 2. The steps for the validation of the process, marked by the dashed box,
will not be part of a future design tool used by the wind resource assessors. This part exists
for the validation purposes in the present paper. The individual steps are described in more
detail in the next sections.

Figure 2. Overview of the decision process.

2.2.1. Define Skill and Cost Score Parameters and Weightings

In this step, the skill and cost score parameters and their weightings are first defined.
This was done in this work based on initial studies as described in previous work by
the authors [16]. The skill and cost score parameters finally decided upon are shown in
Figure 3.

The skill score parameters are split into the following five categories: A. Model
parameters, related to the wind model set-up such as the fidelity of the aerodynamic and
thermal equations, the grid quality and the convergence criteria; B. Input data quality,
related to the quality of the data used for model set-up and calibration, including the
measurement, terrain and ground cover data; C. Wind model calibration and validation,
related to the calibration and validation methods; D. AEP calculations, related to the steps
taken to transfer the simulated wind into AEP values, and E. Other parameters, including
the skill of the user and the robustness of the model.

Each skill score parameter requires the user to enter a score between 0 and 100 in a
web-based questionnaire in which the meaning of the scale of each parameter is described
according to Figures A1–A3 in the Appendix A. These scales were designed in order to
enable the user to make an educated estimation of the value without having to carry out a
complicated calculation.
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The weightings were initially defined according to the joint expectations of the re-
searchers taking part in this project. They were improved following simulations at the
first simulated site (Site 1) by adjusting them by hand until the sum of the squares of the
differences between the expected and actual scores was minimised.

The resulting weightings according to each score listed in Figure 3 are shown in
Figure 4. The parameters with the strongest weightings are A1 (complexity of the underly-
ing aerodynamic equations, A2 (complexity of the underlying thermodynamic equations),
C2 (wind speed calibration method), C3 (input data method) and D1 (wind sector extrapo-
lation method).

Figure 3. List of skill and cost parameters.

Figure 4. Overview of the final weightings of the cost score parameters.

The cost score is estimated by summing the expected software costs, the time to learn
and training costs, the simulation set-up effort costs, the simulation run-time costs and
the post-processing effort costs. These are entered by the user via a separate web-based
questionnaire. In previous work, the total costs, or “Actual Total Costs” (ATCs) were
defined by dividing the overall costs into various categories as described in Figure 3 and
adding up the totals [20]. The individual costs are obtained as follows:

• Software costs: divide the total license and support costs by the number years of usage,
and divide this by the number of projects carried out per year;
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• Time to learn and training costs: sum the staff costs for learning the tool and training
costs, divide this by the number of projects carried out per year and the estimated
number of years of usage;

• Simulation set-up effort costs: record the number of hours needed to set up the
simulations, multiply this by the hourly staff rate (for all calculated wind directions);

• Simulation run time costs; record the simulation run-time and the number of cores,
and multiply this by the computational cost per core per hour (for all calculated wind
directions);

• Post-processing effort costs: record the number of hours needed to post-process the
results, multiply this by the hourly staff rate (for all calculated wind directions).

For a fair comparison, the following parameters are normalised over all workflows
(value chosen for this work in brackets):

• Number of years of usage of the software (20);
• Number of projects per year (8);
• Staff hourly rate ($100/h);
• Computational cost per core per hour ($0.04/hour/core);
• Processor clock speed (2 GHz).

2.2.2. Calculate Weighted “Skill Score Before” Parameters for Each Model

In this step, the weighted “skill score before” parameters are calculated for each model
by multiplying each individual skill score parameter by its weighting.

2.2.3. Average the Weighted Parameters to Get “Skill Score Before”

The weighted parameters are then averaged in order to calculate a “skill score before”.

2.2.4. Calculate Percentage “Skill Score Before” Relative to Maximum of All Models

Using the “skill score before” values estimated for each workflow, a percentage score
relative to the maximum of all models for a given project is calculated (a) for wind speed
only and (b) for the total AEP. The difference between (a) and (b) is the inclusion of the
category D scores (“D. AEP calculations”).

2.2.5. Calculate Total “Costs Before” and “Costs After” for Each Model

Both the total costs before and after are calculated using the results of the separate cost
estimations made in the web-based questionnaire mentioned in Section 2.2.1. For the “costs
before”, cost estimations are made before carrying out any simulations. For the “costs after”,
the actual costs are calculated. The main differences between these two values arise because
of incorrect estimations of computational time and of pre- and post-processing effort.

2.2.6. Calculate Percentage “Cost Score Before” and “Cost Score After” Relative to
Maximum of All Models

As for the skill scores, a percentage score relative to the maximum of all models for a
given project is calculated (a) for wind speed only and (b) for the total AEP. The difference
between (a) and (b) is the inclusion of the AEP calculation costs due to additional user effort.

2.2.7. Calculate Percentage “Skill Score After”

The values of percentage “skill score after” for wind speed and total AEP are calculated
using the simulation results for each workflow. These values are used in this project for
validating the process, but are not part of the final decision process.

For the wind speed, a linear scale is applied, relating a 3 m/s absolute error between
simulated and measured wind speed at a validation location to a skill score of 0% and
a 0 m/s error to a score of 100%. This scale was chosen based on the actual absolute
differences obtained during the project. As relative values are compared, the exact value of
this scale is not important.
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For the total AEP, the percentage difference between simulated and measured AEP is
reversed to relate a difference of 100% to a score of 0% and vice versa. This is because a
large difference gives a low skill score, and a small difference a high skill score. As relative
values are compared, the exact value of this scale is not important.

2.2.8. Plot Relative Skill vs. Cost Scores Before and After

In the final step, plots of relative skill vs. cost scores are created both for the “before”
scores and the “after” scores, both for wind speed and AEP. As discussed in Section 1.4,
these plots can then be used to assess the “most suitable” workflow for a given site. Fol-
lowing discussions with the participants of this study, the definition of “most suitable” has
been defined in this work as being the most cost-effective workflow, that is, the workflow
highest skill-cost ratio. This is given by the workflow at the apex of the curve, just before it
flattens off. However, future work should examine how to deal with other definitions of
“most suitable” such as “minimise computational time” or “maximise the skill”.

The process can then be validated by comparing the chosen workflow using the
“before” scores and the chosen workflow using the “after” scores. A good match of chosen
workflow indicates a successful performance of the decision tool.

2.3. Classification of Site Complexity

For the classification of site complexity, a set of parameters that users have to rate
on a scale of 0 to 100 in a pragmatic way, similar to the method of estimating the skill
score parameters described in Section 2.2, were defined. This was based on previous
work on terrain classification related to lidar measurements described in more detail in
previous work [16]. The parameters were obtained via a web-based questionnaire asking
the modeller the following questions:

1. General terrain complexity—how steep are the slopes on average?
2. General terrain complexity—how many slopes are there?
3. Validation mast position—in how many 30° sectors is there a positive slope steeper

than 30° less than 250 m away from the validation position in any direction?
4. Surface roughness complexity—approximately how many different surface roughness

regions are you using?
5. Surface roughness—how rough is the surface in general?
6. Atmospheric stability—what is the average value of the vertical temperature gradient?

(if relevant);
7. Atmospheric stability—are low-level jets present?
8. Degree of turbulence—what is the approximate Reynolds number, calculated based

on the input flow velocity and the distance from the inlet to the calibration met mast?

Each parameter is equally weighted, and a simple average is taken in order to obtain
one value that characterises the site complexity.

3. Decision Process Test and Demonstration

In this section, the decision process is tested on one site and demonstrated on four
further sites based on simulations from a range of WRA workflows as described in detail
in [19]. After the tests on the first site, the weightings of the “skill score before” parameters
were adjusted to optimise the results, and then applied to the other four sites.

3.1. Sites and Workflows

Site 1 is a complex terrain, partly-forested site close to Stoetten in southern Germany,
whose central feature is a steep incline above 30% and a main wind direction of WNW. Site
2 is an existing wind farm site in Norway surrounded by a terrain of hills, lakes and forests.
The wind farm consists of seven Siemens SWT-DD-130 wind turbines with a hub height of
115 m located on a small hill. The two main wind directions are SE and NW. Site 3 is an
existing wind farm site in Spain situated in complex terrain. The wind farm consists of 15
Enercon E-40 wind turbines with a hub height of 50 m located at the top of a steep ridge.
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The two main wind directions are E and NNW. Site 4 is the existing St. Brais wind farm
site in Switzerland situated in complex terrain. The wind farm consists of two Enercon
E-82 wind turbines with a hub height of 78 m. The main wind direction is NW. Site 5 is a
planned site that cannot be described in detail here for confidentiality reasons. More details
about the sites can be found in [19].

Seven different WRA workflows based on the wind modelling tools WindPro (labelled
“WF-1”), WindSim (“WF-2”), ANSYS CFX (“WF-3”), ANSYS Fluent (RANS: “WF-4”; SBES:
“WF-5”), PALM (“WF-6”) and E-Wind (“WF-7”) were applied, as described below:

• WF-1: WindPro: The industry-leading software suite for design and planning of
wind farm projects (www.wasp.dk, accessed on 1 December 2021), containing several
physical models to describe the wind climate and wind flow over different terrains.
For horizontal and vertical extrapolation, WAsP uses a built-in linear flow model,
which performs well for flat to moderately complex terrain.

• WF-2: WindSim: An industry software using a Computational Fluid Dynamics (CFD)
model based on the PHOENICS code, a 3D Reynolds Averaged Navier Stokes (RANS)
solver from the company CHAM.

• WF-3: ANSYS CFX: An all-purpose CFD software. In this work, ANSYS CFX (version
19.2) was applied using an Unsteady RANS approach in combination with the k-ε
model, with several adaptations including an anelastic formulation using the Boussi-
nesq approximation [35], additional terms in the momentum equation to describe the
Coriolis force and a canopy model for forested areas [36].

• WF-4: Fluent RANS: ANSYS Fluent is a commercial CFD tool for modelling the flow
in industrial applications and can be set up to solve the RANS equations, as well as
for the Large Eddy Simulations (LES) or Detached Eddy Simulations (DES) approach.
In this work, Fluent was first set up to solve the RANS equations with the SST k-ω
turbulence model [37].

• WF-5: Fluent SBES: A technique within ANSYS Fluent called “Stress-Blended Eddy
Simulation” (SBES) was applied. SBES is a new model that offers improved shield-
ing of RANS boundary layers and a more rapid RANS-LES “transition”, amongst
other things. The RANS results were used to initialise SBES, which was performed
unsteadily with an adaptive time stepping procedure ensuring CFL <= 1. After an
additional unsteady initialisation, the wind speeds were averaged over 10 min.

• WF-6: PALM: The model PALM is based on the non-hydrostatic, filtered, incompress-
ible Navier-Stokes equations in Boussinesq-approximated form (an anelastic approx-
imation is available as an option for simulating deep convection). Furthermore, an
additional equation is solved for either the subgrid-scale turbulent kinetic energy using
Large-Eddy Simulations (LES) (https://palm.muk.uni-hannover.de/trac/wiki/palm,
accessed on 1 December 2021).

• WF-7: E-Wind: E-Wind solves the 3D RANS equations, with a modified k-ε turbu-
lence closure. The governing equations are implemented in the open source toolbox
OpenFOAM [2].

Further details can be found in [19].

3.2. Test of Decision Process at Site 1
3.2.1. Skill vs. Costs Plots

Detailed simulation results can be found in [19]. The resulting skill vs. costs plots
for all sites are shown in Figure 5. For each site, the left-hand plot shows the relative
skill vs. cost scores both before and after running the simulations for each model, marked
by a coloured circle (before: empty circle; after = filled circle), for the wind speed. The
right-hand plots show the results for the AEP results.

www.wasp.dk
https://palm.muk.uni-hannover.de/trac/wiki/palm
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Figure 5. The skill score vs. cost score plots for all sites in this work.

For wind speed at Site 1, the “before” results show that WF-1 (WindPro) was predicted
to be the least accurate and least expensive model. WF-2 (WindSim) was expected to be
slightly more expensive but much more accurate. WF-3 (CFX), WF-4, (Fluent RANS) and
WF-5a and 5b (Fluent SBES) were expected to have an accuracy somewhere between the
two, but at higher costs. WF-6 (PALM) was expected to be much more expensive but not
more accurate. The weightings of the skill score parameters were adjusted by hand until a
good match was obtained.
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At the end of the day, the most optimal models appear to be WF-2 (WindSim) and
WF-4 (Fluent RANS), as they offer a good performance with low costs. A decision tool
based on the “skill score before” and “cost score before” would therefore work as expected,
choosing WF-2 (WindSim) as the most optimal model. It is important to note that that this
analysis does not rate the applicability or accuracy of just the flow models themselves, as
many different steps are included in the overall workflow.

The right-hand plot for each site is slightly different due to the conversion of wind
speeds in each sector to AEP using the process described in [19]. For Site 1, the skill scores
are much closer together, indicating that the wind modelling tool does not have a great
effect on the accuracy. This is due to the many steps that are required to carry out a WRA,
which all seem to have a relatively large effect on the results. The most interesting feature
of this plot is how close the cost and skill scores of WF-1 (WindPro) and WF-2 (WindSim)
are to each other, and that WF-4 (Fluent RANS) has the lowest relative cost score. Again,
the predictions “before” seem to predict well that WF-1 (WindPro), WF-2 (WindSim) and
WF-4 (Fluent RANS) are expected to offer the best compromise, even though the exact
scores do not match “before” and “after”.

For this site, the ability of the decision process to successfully predict the most effective
workflow for this site has therefore been given a “quality rating” of 8 out of 10 for the
wind speed and 8 out of 10 for the AEP. This “quality rating” was estimated by the authors
manually from the plots, due to the complexity of an analytical expression to make this
judgement.

3.2.2. Site Complexity Characterisation

The results of the answers to the questions presented in Section 2.3 are shown by each
research partner organisation for each site in Table 1. The specific answers to each question
for Site 1 are shown in Figure A4 in the Appendix A. This shows that the agreement
between the three organisations is fairly good; small differences can be seen in answers to
the questions “How many slopes are there?” and “How rough is the surface in general?”.
This will be examined further for the other sites.

Table 1. Summary of the answers to the complex terrain questions for each site.

Organisation Score Site 1 Score Site 2 Score Site 3 Score Site 4 Score Site 5

Meteotest 37 43 43 55 50
HSE 34 43 74 - 43
OST 40 38 42 40 -

Enercon - - 27 - -

Average 37 41 46 47 47
Standard
deviation 3 2 28 8 4

3.2.3. Summary of Test of Decision Process

For Site 1, the proposed method for estimating and comparing the skill and cost scores
for different models for choosing the optimal model for the given application appears
to work reasonably well. However, the parameter weightings were adjusted in order to
get good results. The other four sites are tested in the next section without adjusting the
parameter weightings.

It should also be noted the the differences in skill scores between the wind speeds
and the AEP indicate that the different steps contributing to the AEP calculation have a
large influence on the results, and that the skill of the wind speed prediction cannot be
transferred directly to the AEP. This topic is discussed more in [19].



Energies 2022, 15, 1110 14 of 24

3.3. Demonstration of Decision Process at Sites 2–5
3.3.1. Skill vs. Cost Score Plots

For Site 2, Figure 5 shows that WF-1 (WindPro) was predicted to be the least accurate
and least expensive model. WF-2 (WindSim) was expected to be more expensive and more
accurate. WF-4 (Fluent RANS) and WF-5 (Fluent SBES) were expected to be somewhere in
between these two workflows in terms of skill and cost scores. WF-6 (PALM) was expected
to be much more expensive and more accurate. The reality matched these expectations
quite well. The main differences were that (a) WF-1 (WindPro) performed much better than
expected and (b) WF-6 (PALM) performed much worse than expected. This leads to the
conclusion that the skill score parameters do not fully capture the accuracy of the WF-6
(PALM) method. Some resulting improvements to the skill score definitions are suggested
in Section 4. The choice of optimal workflow is not entirely clear for the “before” scores, as
there is no sudden flattening-off of the curve. The best compromise between cost and skill
is probably WF-2 (WindSim). This means that a decision tool based on these predictions
would choose WF-2 (WindSim) as the most suitable workflow. However, the most suitable
workflow in reality (“after”) is clearly WF-1 (WindPro). This means that the skill score
definitions need to be improved, as suggested in Section 4. For AEP, small differences in
the predictions (“before”) lead to WF-5a (Fluent RANS) probably being the most optimal
workflow for this application. The larger differences in the “after” results, leading to much
closer performance of WF-2 (WindSim) and WF-4 and WF-5 (Fluent) compared to WF-1
(WindPro), lead to the most optimal workflow being WF-4 (and WF-1) as well. In this case,
the decision tool has worked effectively. The ability of the decision process to successfully
predict the most effective workflow for Site 2 has therefore been given a quality rating of 5
out of 10 for the wind speed and 7 out of 10 for the AEP.

For Site 3, Figure 5 shows that WF-1 (WindPro) and WF-4 and WF-5 (Fluent) are
expected to have similarly low cost and skill scores, whereas WF-2 (WindSim) is expected
to be most expensive and WF-6 (PALM) most accurate. There are several differences that
can be observed between the predicted and actual scores. Firstly, all the skill scores are
similar, meaning that all the workflows performed very similarly. However, WF-7 (E-
Wind) cost less and performed much better than expected. This means that some of the
expected inacurracies due to the low resolution of the grid and sub-optimal set-up did not
actually translate into a lower actual accuracy. This needs to be investigated further. Some
resulting improvements to the skill score definitions are suggested in Section 4. The choice
of optimal workflow is not entirely clear for the “before” scores, as there is no sudden
flattening-off of the curve. The best compromise between cost and skill is represented by
WF-1 (WindPro), WF-4 (Fluent RANS) and WF-5 (Fluent SBES), which all show similar
results. A decision tool based on these predictions would choose WF-1 (WindPro) as the
most suitable workflow. However, the most suitable workflows in reality (“after”) are
clearly WF-7 (E-Wind) and WF-4 (Fluent RANS), although WF-1 (WindPro) comes next.
This means that the skill score definitions need to be improved, as suggested in Section 4.
For AEP, the predicted most optimal workflows are WF-1 (WindPro), WF-4 (Fluent RANS)
and WF-3 (CFX). In reality, the most optimal workflows for this application are either WF-7
(E-Wind), WF-1 (WindPro) or WF-4 (Fluent RANS). Therefore the decision tool has not
worked particularly well, with some improvements required. This will be discussed later
in Section 4. The ability of the decision process to successfully predict the most effective
workflow for this site has therefore been given a quality rating of 3 out of 10 for the wind
speed and 3 out of 10 for the AEP.

For Site 4, Figure 5 shows a very nice shaped curve, with WF-2 (WindSim) clearly
expected to be the most optimal workflow. Note that this plot looks different to the others
because WF-6 (PALM) is not included, which has relatively high costs and therefore causes
the relative cost scores of the other workflows to be used. At this site, the most expensive
workflow is expected to be WF-5 (Fluent SBES). There are several differences that can
be observed between the predicted and actual scores. The shape of the “after” curve is
similar to the “before” curve; however WF-1 (WindPro), WF-2 (WindSim) and WF-4 (Fluent
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RANS) have swapped places. The results indicate that WF-1 (WindPro) would be the
optimal workflow for this application, whereas the decision tool predicts WF-2 (WindSim).
Therefore further work is required on the optimisation of the skill score predictions. For
AEP, the results indicate that the AEP estimation procedure does not have a large influence
on the accuracy or on the costs. This is contrary to the other sites, which showed a large
variation between the wind speed and AEP charts. This will be discussed further in
Section 4. The ability of the decision process to successfully predict the most effective
workflow for this site has therefore been given a quality rating of 5 out of 10 for the wind
speed and 3 out of 10 for the AEP.

For Site 5, Figure 5 shows that WF-1 (WindPro) was predicted to be the least accurate
and least expensive model. WF-2 (WindSim) and WF-4 (Fluent RANS) were both expected
to be more expensive and more accurate. WF-5 (Fluent SBES) was expected to be much
more expensive and slightly more accurate. The reality matched these expectations quite
well. The main differences is that WF-1 (WindPro) performed much better than expected,
and cost slightly more. For this site, the skill score parameters captured the behaviour of the
workflows quite well. The predicted choice of optimal workflow was WF-2 or WF-4, which
are both positioned towards the top left-hand part of the plot. This means that a decision
tool based on these predictions would choose WF-2 (WindSim) or WF-4 (Fluent RANS) as
the most suitable workflow. The most suitable workflow in reality (“after”) was clearly
WF-1 (WindPro), followed by WF-4 (Fluent RANS) and then WF-2 (WindSim). This means
that the skill score definitions need to be improved, as suggested in Section 4. For AEP, the
predictions (“before”) are very similar to those for the wind speed. The optimal predicted
workflow is probably WF-2, or perhaps WF-4, depending on the relative importance of
skill and cost to the deciding person. However, as discussed further in [19], there are
some differences between the actual (“after”) accuracy of the AEP and the accuracy of the
wind speed predictions due to the fact that the RMSE calculation does not “cancel out”
over-predictions and under-predictions as the AEP calculation does. This leads to the much
higher skill scores for WF-4 (Fluent RANS) and WF-5 (Fluent SBES) compared to WF-1
(WindPro) and WF-2 (WindSim). In reality, therefore, WF-4 turned out to be the optimal
compromise between skill and cost. The ability of the decision process to successfully
predict the most effective workflow for this site has therefore been given a quality rating of
6 out of 10 for the wind speed and 6 out of 10 for the AEP.

3.3.2. Site Complexity Characterisation

The results for Site 2 in Table 1 and Figure A5 in the Appendix A show that the
agreement between the four organisations is not particularly good. There is a maximum
deviation from the average value of 50%. The main differences are in the answers to the
questions “In how many 30° sectors is there a positive slope steeper than 30° less than 250 m
away from the validation position in any direction?”, and “How many slopes are there?”
As well as it being difficult to put a number to subjective questions, this shows that the
question can easily be misunderstood or interpreted differently between different people. It
is therefore clear that this classification method needs to be improved, as discussed further
in Section 4.

The results for Site 3 in Table 1 and Figure A6 in the Appendix A show that the
agreement between the three organisations is fairly good. The main difference is in the
answer to the question “How steep are the slopes on average?”, and small differences
can be seen in answers to the questions “How many slopes are there?”, “Approximately
how many different surface roughness regions are you using?” and “How rough is the
surface in general?” This shows that, although the final result agrees well between the
three organisations, it is difficult to put a number to such a subjective question.

The results for Site 4 and Site 5 in Table 1 and Figure A7 in the Appendix A show that
it is difficult to assess the results because data is only available from two organisations. In
both cases, the variation between the predictions is quite low. In Section 4, we examine
how the classification estimations can be used in the decision process in the future.
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4. Discussion
4.1. Dependency of Decision Process Quality on Site Complexity

In the previous section, the quality of the decision process was assessed for each site
by comparing the choice of optimal workflow that was made using the predicted skill
and cost scores with the choice of optimal workflow that was made using the actual skill
and cost scores (calculated by comparing simulations to measurements), both for wind
speed and AEP. As well as this, site complexity was quantified for each site by averaging
predictions from the different research partners in the project.

The results are summarised in Figure 6, which shows the quality rating of the decision
process vs. the complex terrain classification average (upper plot) and maximum deviation
(lower plot), both for wind speed (red) and AEP (blue). This shows that the tool quality
is negatively correlated with both the site complexity average and the maximum devia-
tion. This indicates that the score estimations need adjusting depending on the complex
terrain classification score. This makes sense, as some parameters such as grid quality,
aerodynamic equations solved, input data quality and user experience are likely to become
more important the more complex the site. This dependence is currently under further
investigation.

Figure 6. Quality of tool vs. flow complexity score average (top) and standard deviation (bottom) for
all five sites (wind speed in red, AEP in blue).



Energies 2022, 15, 1110 17 of 24

4.2. Suggested Improvements

In general, the decision process works fairly well for sites with lower complexity (even
though the complexity classification scores themselves are associated with some inaccura-
cies). However, several improvements are required before this can be used in a commercial
decision tool, which is the subject of on-going work. The following improvements to the
the decision process are suggested in the following sections.

4.2.1. General Method

The process of defining the skill of the model set-up using a web-based questionnaire
and then estimating the skill and cost score parameters in a separate questionnaire turned
out to be sub-optimal. It requires the user to firstly enter the set-up details, and then to
estimate the skill parameters related to these details. This is not only time-consuming and
sometimes confusing, but it also leaves a large room for interpretation and subjectivity. The
final decision tool will therefore only collect parameters related to the set-up, and then
automatically convert this to a skill score in a consistent way.

As well as this, the values entered into the web-based questionnaire were transferred
to an Excel template by hand. This template then had to be adjusted for each project. The
commercial decision tool will do these steps automatically.

Furthermore, the quantification of the “quality rating” of the decision process could
be improved. The rating was estimated by the authors manually from the plots, but
more robust methods for obtaining this value are being worked on in connection with the
development of the final decision tool.

4.2.2. Skill Score “Before” Estimation

The definition of the scales of the skill score parameters were designed in order to
enable the user to make an educated estimation of the value without having to carry
out a complicated calculation. However, it is recognised that this is only a first attempt
and that improvements are possible, either manually or using regression techniques, for
example [38].

Many of the parameters can only be estimated once the simulations have been fully
set up. However, the whole point of this method is to be able make an estimation of
the most optimal model without carrying out any simulations. Therefore the skill score
parameters need to be adjusted so that the user can estimate their values. As well as this,
each parameter should have a confidence score associated with it, so that the tool can be
applied even if very little information about the set-up is known.

Furthermore, the weightings could be improved using multiple regression techniques
rather than informed guesses. Some of them should be dependent upon the terrain com-
plexity classification.

Finally, some of the parameter descriptions were confusing or unclear, and could be
improved as listed in more detail in [39].

4.2.3. Cost Scores “Before” and “After”

It turned out to be very difficult to define the Actual Total Costs related to carrying
out a WRA project. For example, it was not always clear if an activity was contributing
to learning the tool or to the set-up of a particular project. Also, in this project, there
were some tasks carried out by one organisation (e.g., the roughness definition), which
contributed to their cost scores but were used by the other partners and did not contribute
to their cost scores. Furthermore, the staff hourly cost and number of projects per year
had to be normalised for a fair comparison. These parameters therefore require further
consideration for the final version of the tool.

As well as this, it was very interesting that the set-up effort costs dominated for most
of the projects and tools. These costs actually decreased during the project as we became
more efficient. This effect skews the results and reduces the accuracy of any comparisons
between different sites.
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4.2.4. Complex Terrain Classification

Although the new complex terrain classification showed some promise, it was difficult
to define questions that the participants could easily answer. Many of the questions
were difficult to understand and interpret. Therefore these definitions need to be worked
on further.

5. Conclusions

In this work, a new decision process based on pre-defined and pre-weighted assess-
ment criteria for choosing the most optimal Wind Resource Assessment workflow for a
given project in complex terrain was developed. The ultimate goal is to use the resulting
process in a commercial tool that reduces the uncertainties and risks of Wind Resource
Assessment.

The decision process includes a new method for the classification of site complexity. It
involves an assessment of the expected accuracy AND expected costs of applying a range
of possible workflows to a given site, and includes an assessment of the AEP accuracy and
costs, as well as the wind speed. It does not require the user to carry out any simulations
in order to assess the site or the workflows. The estimation of the accuracy and costs
of each workflow involves a simple estimation of the scores of various pre-defined and
pre-weighted assessment criteria. The evaluation of the quality of the process is done by
comparing the choice of optimal workflow using the expected skill and cost scores to the
choice of optimal workflow using the actual skill and cost scores.

The process was tested on Wind Resource Assessment carried out on five complex
terrain sites with seven different workflows. The results showed that the decision process
works well, but the accuracy decreases as the site complexity increases. It was therefore
concluded that some of the parameter weightings should be dependent on site complexity.

On-going work involves collecting more data from a large range of sites, implementing
measures to reduce the subjectivity of the process and developing a reliable and robust
automated decision tool for the industry.
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Appendix A

Figure A1. Scales assigned to each skill parameter (Skill A).
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Figure A2. Scales assigned to each skill parameter (Skills B and C).
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Figure A3. Scales assigned to each skill parameter (Skills D and E).

Figure A4. Answers to the ten complex terrain questions for Site 1.
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Figure A5. Answers to the ten complex terrain questions for Site 2.

Figure A6. Answers to the ten complex terrain questions for Site 3.

Figure A7. Answers to the ten complex terrain questions for Site 4.
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Figure A8. Answers to the ten complex terrain questions for Site 5.
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