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Abstract: This article presents an improved linear active disturbance rejection control (LADRC)
method for interior permanent magnet synchronous motor (IPMSM) drives. The proposed method
adopts a dual LADRC structure. The outer LADRC-based speed regulator adopts position feedback
instead of speed feedback so that the low-pass filter for speed calculation can be eliminated. The
inner LADRC-based current regulator incorporates a maximum torque per ampere (MTPA) operation
scheme to improve the torque output capacity and the efficiency of the motor. In addition, considering
the variation of load inertia in real applications, a systematic modelling and analysis on the effect of
inertia mismatch is presented. To enhance the robustness of the drive system to inertia mismatch,
an inertia identification method is proposed, in which the inertia information is extracted from the
estimated disturbance of speed loop LESO. Finally, the effectiveness of the proposed method is
verified on a 1.0-kW IPMSM drive platform.

Keywords: interior permanent magnet synchronous motor (IPMSM); linear active disturbance
rejection control (LADRC); speed regulation; inertia identification

1. Introduction

Interior permanent magnet synchronous motors (IPMSMs) are increasingly used in
household and industrial applications due to their advantages of simple structure, high-
torque density, low cost, and good dynamic response [1]. To guarantee a good driving
performance, the output speed of the motor should not only be able to track the reference
speed accurately and promptly, but also recover to steady state quickly under the influence
of disturbance. The typical filed-oriented control (FOC) topology for IPMSM is designed
to be a double-loop structure, where the outer speed loop is in cascade with the inner
current loop. Then, the speed and the current can both be controlled through closed-loop
regulation. For this control topology, the speed and current regulators play a key role in
the performance of the whole IPMSM drive system.

The proportional-integral (PI) control, owing to the advantage of relatively simple
structure, high stability, and low steady-state error, is already widely applied in speed
and current regulation of IPMSM drives [2]. However, the IPMSM drive system is a
typical nonlinear system. The internal model parameter variations resulting from crossing
coupling, magnetic saturation, temperature change, and especially the load inertia change,
will induce time-varying and nonlinear characteristics to the model. In this case, the PI
control scheme cannot achieve a satisfying dynamic performance in the entire operation
range [3]. To this end, substantial efforts have been devoted to developing nonlinear control
schemes, such as sliding mode control [4,5], predictive control [6], robustness control [7],
backstepping control [8], and artificial intelligence-based control [9].

The abovementioned control schemes possess their own advantages in handling non-
linear plants. Nevertheless, the various disturbances in the IPMSM drive system still bring
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challenges for controllers to achieve better performance. In practical applications, IPMSM
drive systems are inevitability confronted with various unmeasured disturbances, which
may come internally, such as unmodelled dynamics and parameter mismatches, or exter-
nally, such as load disturbance. However, the abovementioned schemes are all feedback-
based schemes, which means they can only generate the control command through feedback
regulation, rather than react directly and promptly to attenuate these disturbances. Al-
though these schemes can finally eliminate the adverse influence of disturbances, it is in a
relatively slow way, resulting in the degradation of dynamic performance.

An efficient way to enhance the robustness of the drive system against disturbances
and to further exploit the fast dynamic capacities of IPMSM is to introduce an additional
feedforward path into the controller besides the traditional feedback path. The newly
formulated controller is also known as the two-degree-of-freedom controller [10], which can
counteract the influence of disturbances by using the estimated disturbances to compensate
for them in the feedforward path. Among those two-degree-of-freedom methods, active
disturbance rejection control (ADRC) shows great prospects due to its unique advantages
in handling systems with various uncertainties and disturbance [11]. The original ADRC is
a nonlinear structure with a nonlinear state feedback function, which is designed to achieve
a higher convergence rate [12]. However, this leads to the algorithm being difficult to
implement, and makes the stability analysis rather complicated. To this end, Gao simplified
this method into a linear version with linear state feedback, known as LADRC [13]. For
the LADRC, the issue of parameter tuning is reduced to the adjustment of bandwidth.
Moreover, since the controller is linearized, the conventional frequency-domain method
can be adopted to analyze the stability of the controller, which facilitates its application.

In recent years, LADRC has been widely applied in motor drive systems. The
LADRC-based regulator can be utilized for current control [14], speed control [15–18],
or both [11,19,20]. In [20], a dual LADRC-based control scheme is proposed, in which the
speed LADRC considers the disturbance induced from iron losses, and the current LADRC
minimizes the torque ripple by estimating the disturbance corresponding to the back-EMF.
In [21], a higher-order LADRC is studied, in which the conventional dual loop structure is
replaced by a single loop structure. Thus, the speed can be directly controlled with faster
dynamics. The successful application of LADRC further stimulates the theoretical analysis
to go deeper. In [18], the theoretical comparisons among the PI controller, the disturbance
observer (DOB)-based controller, and the LADRC are conducted to show the superiority
of LADRC. In [22], a frequency-domain interpretation of the second-order LADRC is pro-
posed to reveal the association between the LADRC and the PID. In [23], the relationship
between the high-order LADRC and the cascaded low-order LADRCs are explored.

Numerous applications have proved the effectiveness of LADRC in motor control
systems. However, for speed control in practical IPMSM drives, there are still some
problems that have not yet been fully investigated. Firstly, to achieve closed-loop speed
control, the feedback information of rotational speed should be obtained. However, in most
application scenarios, the motion sensors mounted on the shaft of the motor are position
sensors, such as Hall sensors, optical encoders, or resolvers. Therefore, a low-pass filter is
mandatory for suppressing the noise in the process of extracting speed information from the
position. Secondly, the rotor magnetic saliency of IPMSM increases the q-axis inductance
and results in a reluctance torque in addition to the permanent magnet torque [24]. In
this case, an MTPA operation scheme is usually adopted to exploit the torque output
capability [1,25,26]. Therefore, it would be necessary to improve the conventional LADRC
method so as to achieve MTPA operation. Thirdly, to guarantee high performance control
of speed, the inertia information of the IPMSM drive system is required. However, in
some applications, such as CNC machine tools or winding machines, the inertia may be
time-varying. Even though the LADRC can deal with such uncertainties by estimating
and compensating for them using linear extended state observer (LESO), it does not mean
that the overall performance of the system remains intact. In fact, the kernel of LADRC’s
disturbance rejection capability lies in timely and accurate estimation of disturbance. Any
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mismatch between the actual inertia and the modeled inertia will be regarded as internal
disturbance, thereby increasing the estimation burden of LESO, and further degrading the
system performance. In [18], the influence of inertia mismatch on the performance of a
surface-mounted PMSM (SPMSM) drive system is discussed. However, the influence of
low-pass filter for feedback speed calculation is ignored.

Therefore, to deal with the above mentioned three problems, this article proposes
an improved LADRC-based controller for IPMSM drives. The main contributions of this
article are summarized as follows.

(1) Considering that the typical motion sensor of the IPMSM drive is a position sensor, a
third-order LADRC for speed regulation is proposed, in which the position is used as
the feedback state. Thus, the low-pass filter for speed calculation can be eliminated.

(2) To fully exploit the torque output capability of the IPMSM, the MTPA operation
scheme is incorporated into the proposed LADRC-based method.

(3) The effect of load inertia mismatch to the system stability, the tracking performance, and
the disturbance rejection property is systematically analyzed. To enhance the robustness
of the system to inertia mismatch, an inertia identification method is proposed.

(4) The proposed LADRC-based method and the load inertia identification method are
verified by experimental study.

The remainder of this article are organized as follows. Section 2 gives a brief descrip-
tion of the dynamic IPMSM model. Section 3 introduces the design of the LADRC-based
speed and current regulators. Section 4 analyzes the influence of inertia mismatch on the
performance of the LADRC-based drive system. Section 5 presents an improved LADRC-
based speed regulator with inertia identification. Finally, the experimental results are
shown in Section 6, and the conclusions are drawn in Section 7.

2. Dynamic Model of IPMSM

To simplify the modeling of IPMSM, it is commonly assumed that the employed
IPMSM has negligible magnetic saturation, cross-coupling, iron losses, and eddy current
losses. Moreover, the three-phase windings are symmetric, and the magnetic field in the
airgap is sinusoidal. Thus, the stator current dynamics of IPMSM can be described in the
d-q synchronous reference frame as:

.
id = − Rs

Ld
id +

1
Ld

ud + npωr
Lq
Ld

iq
.
iq = − Rs

Lq
iq +

1
Lq

uq − npωr
Ldid+ψ f

Lq

(1)

and the mechanical motion dynamics is described as:

.
ωr =

1
J

Te −
1
J

TL −
B
J

ωr (2)

where id and iq are the d-q-axis stator currents; ud and uq are the d-q-axis stator voltages;
Ld and Lq are the d-q-axis inductances; Rs is the stator winding resistance; ψ f is the flux
linkage of the permanent magnet; np is the number of pole pairs; ωr is the rotor angular
velocity (rad/s); B is the viscous friction coefficient (N·m·s/rad); J is the moment of inertia
(kg·m2); TL is the load torque (N·m); and Te is the electromagnetic torque (N·m). For the
employed IPMSM, Te is expressed as:

Te = 3
2 np

[
ψ f +

(
Ld − Lq

)
id

]
iq

=
3
2

npψ f iq︸ ︷︷ ︸
Tm

+
3
2

np
(

Ld − Lq
)
idiq︸ ︷︷ ︸

Tr

(3)

It can be seen in Equation (3) that the electromagnetic torque is comprised of two
terms. The first term is the permanent magnet torque Tm. The second term is the reluctance
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torque Tr which is proportional to Ld − Lq. To fully utilize the reluctance torque, the MTPA
operation scheme should be incorporated into the controller.

3. Design of LADRC-Based Speed and Current Regulators with MTPA Scheme

The LADRC-based IPMSM drive system with an MTPA scheme is shown in Figure 1.
The overall system is comprised of an IPMSM, a position sensor, a three-phase voltage-source
inverter, a SVPWM generator, three coordinate transformation modules, a speed regulator,
and two current regulators. Under the field-oriented control topology, the three-phase stator
currents are transformed into d-axis and q-axis currents, which respectively represent the
flux-producing component and the torque-producing component. The control loop includes a
speed loop and two current loops. The speed regulator generates the torque reference, the
MTPA scheme generates the d- and q-axis current references according to the torque reference,
and the two current regulators generate the d- and q-axis voltage references.
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The speed and current regulators play a key role to the performance of the IPMSM
drive system. In this section, a synthesized design for LADRC-based speed and current
regulators is presented.

3.1. Design of LADRC-Based Speed Regulator

The key to the application of LADRC is to reformulate the practical controlled plant to
a cascaded integral plant and to achieve the modelling of disturbance [11]. To design the
speed LADRC, the mechanical motion dynamics of the IPMSM are reformulated as:

.
ωr = f0n + f1n + bnT∗e
f0n = bn(Te − T∗e )− bnBω̂r
f1n = −bnTL − bnB(ωr − ω̂r) + nn(t)

(4)

where T∗e is the torque reference; bn is the critical gain and bn = 1/J; f0n and f1n are
respectively the known disturbance and the unknown disturbance; the sum of f0n and f1n
represents the total disturbance; ω̂r is the estimated value of angular velocity; and nn(t) is
the other unknown disturbance, such as unmodeled dynamics and noise.

In Equation (4), the unknown disturbance f1n is distinguished from the known distur-
bance f0n. It can be seen that f1n consists of the load torque term and the difference term
(ωr and ω̂r). Therefore, the load torque fluctuation and the sudden speed variation will
both be considered in the disturbance model.

Commonly, for the first-order plant presented in Equation (4), a second-order LESO
can be designed by regarding f1n as the extended state variable. However, the second-order
LESO requires speed feedback information. For most application scenarios, the motion
sensors mounted on the shaft of the motor are position sensors, such as Hall sensors, optical
encoders, or resolvers. Therefore, the speed information cannot be directly obtained. In
order to extract the speed from the measured position, a low-pass filter is required to
suppress the noise induced from derivate operation, i.e., ω̂r = LPF

( .
θr

)
, where θr is the

measured rotor position. To eliminate the filter, the second-order plant can be adopted:{ .
θr = ωr.
ωr = f0n + f1n + bnT∗e

(5)
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Then, a third-order LESO is designed to estimate the states and the unknown distur-
bance by using the position feedback instead of speed feedback:

e1n = z1n − θr.
z1n = z2n − β1ne1n.
z2n = z3n + f0n + bnT∗e − β2ne1n.
z3n = −β3ne1n

(6)

where z1n, z2n, z3n are the estimations of θr, ωr, f1n; e1n is the estimation error of LESO; and
β1n, β2n, β3n are the observer gains. For convenience of parameter tuning and theoretical
analysis, this article adopts a scaling- and bandwidth-parameterization method [13]. The
gains are parameterized as follows:[

β1n β2n β3n
]
=
[

3ω0n 3ω2
0n ω3

0n
]

(7)

where ω0n is a positive constant denoting the bandwidth of LESO. A higher ω0n helps
improve the response rate, but will increase the observer’s sensitivity to noise. In practical
applications, ω0n should be designed within reason so as to reach a tradeoff between the
rapidity of estimation and the immunity to noise.

The LESO presented in Equation (6) only requires position information θr. The rotor
speed is estimated through the observer, i.e., ω̂r = z2n. Therefore, the low-pass filter used
for speed calculation is eliminated.

When LESO becomes stable, the estimation error e1n will converge. The speed tracking
error of LADRC is defined as es = ω∗r − ω̂r = ω∗r − z2n. Then, the tracking error dynamic
equation can be expressed as:

.
es =

.
ω
∗
r −

.
z2n =

.
ω
∗
r − (z3n + f0n + bnT∗e ) (8)

By adopting the linear feedback control, the speed tracking error will converge in
exponential form:

.
es = −knes (9)

where kn is the proportional gain. By substituting Equation (9) into Equation (8), the control
law of speed loop LADRC can be derived as:

T∗e =
kn(ω∗r − z2n) +

.
ω
∗
r − (z3n + f0n)

bn
(10)

The control law presented in Equation (10) requires the derivative of reference speed
as input. This derivative term acts as a feedforward term to track the variation of reference
speed, thereby diminishing the oscillation and overshoot during the adjustment of speed.
In practical applications, a tracking differentiator (TD) [12] can be adopted to calculate

.
ω
∗
r .

The block diagram of the LADRC-based speed regulator is shown in Figure 2.
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3.2. Design of LADRC-Based d-q-Axis Current Regulator with MTPA
3.2.1. d-q-Axis Current Reference Generation Based on MTPA Scheme

The essence of controlling the torque is to control the d- and q-axis currents. In the dual
loop control structure, the speed regulator generates the torque reference T∗e . Therefore, it
is necessary to obtain the d-q-axis current reference according to T∗e . Commonly, the d-axis
current reference is set to zero, so that the q-axis current reference will be proportional to
T∗e . However, the rotor magnetic saliency of the IPMSM increases the q-axis inductance and
results in a reluctance torque in addition to the permanent magnet torque. To fully exploit
the torque output capability of the IPMSM, the maximum torque per ampere (MTPA)
operation scheme is adopted. The goal of the MTPA scheme is to achieve the desired torque

with a minimum stator current
√

i2d + i2q required, thereby reducing the copper losses and
improving the efficiency. The constraints between T∗e , i∗d , and i∗q under MTPA operation is
given by:  T∗e = 3

2 np

[
ψ f +

(
Ld − Lq

)
i∗d
]√

ψ f i∗d
Ld−Lq

+ i∗d
2

T∗e = 3
4 np

[
ψ f +

√
ψ2

f + 4i∗q 2
(

Ld − Lq
)2
]
i∗q

(11)

The proof for Equation (11) is presented in the Appendix A. For any given torque
reference, the d- and q-axis current references required for MPTA operation can be obtained
from Equation (11). However, the explicit solution of i∗d and i∗q cannot be derived, which
makes Equation (11) unsuitable for real-time implementation using microprocessors. To
reduce the computation burden, the MTPA scheme can be implemented by means of look-
up tables (LUT) with offline calculations [26]. In this article, the LUT method is adopted to
achieve MTPA operation.

3.2.2. Current Regulator Design

The current regulator plays a key role in the torque performance of IPMSM. To design
the LADRC-based current regulator, the current dynamics of IPMSM are reformulated as:

.
id = f0d + f1d + bdu∗d
f0d = −Rsbdid − npωrbdiq/bq
f1d = bd

(
ud − u∗d

)
+ nd(t)

(12)


.
iq = f0q + f1q + bqu∗q
f0q = −Rsbqiq − npωrbq

(
ψ f + id/bd

)
f1q = bq

(
uq − u∗q

)
+ nq(t)

(13)

where u∗d and u∗q are the d-q-axis stator voltage references; bd and bq are the critical gains, and
bd = 1/Ld, bq = 1/Lq; f0d and f1d are respectively the known disturbance and the unknown
disturbance of the d-axis; and f0q and f1q are respectively the known disturbance and the
unknown disturbance of the q-axis. nd(t) and nq(t) are the other unknown disturbance
such as unmodeled dynamics and noise.

By regarding the unknown disturbance f1d and f1q as the extended states, the second-
order LESOs for d-axis and q-axis are established:

e1d = z1d − id.
z1d = z2d + f0d + bdu∗d − β1ie1d.
z2d = −β2ie1d

(14)


e1q = z1q − iq.
z1q = z2q + f0q + bqu∗q − β1ie1q
.
z2q = −β2ie1q

(15)
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where z1d, z2d, z1q, z2q are the estimations of id, f1d, iq, f1q; e1d, e1q are the estimation errors
of LESO; and β1i, β2i are the observer gains which are parameterized as follows:[

β1i β2i
]
=
[

2ω0i ω2
0i
]

(16)

where ω0i is the bandwidth of the current loop LESO.
In analogy with Equation (10), the control law of current loop LADRC can be de-

rived as:

u∗d =
kd
(
i∗d − z1d

)
+

.
i
∗
d − (z2d + f0d)

bd
(17)

u∗q =
kq

(
i∗q − z1q

)
+

.
i
∗
q −

(
z2q + f0q

)
bq

(18)

where kd and kq are the proportional gains for the d- and q-axes. The block diagram of the
LADRC-based d-q-axis current regulators are shown in Figure 3.
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4. Speed Response of the Drive System in the Presence of Inertia Mismatch

The above designed LADRC-based IPMSM drive system requires information on the
machine parameters. In particular, the accuracy of the rotor inertia is highly related to
the performance of the speed loop. In some applications, such as CNC machine tools or
winding machines, the inertia may be time-varying. Although the LADRC can deal with
such uncertainties by estimating and compensating for them by using LESO, this does
not mean that the overall performance of the drive system remains intact. In fact, the
kernel of LADRC’s disturbance rejection capability lies in timely and accurate estimation
of disturbance. Any mismatch between the actual inertia and the modeled inertia will
be regarded as internal disturbance, thereby increasing the estimation burden of LESO,
and further degrading the system performance. In this section, the speed response of
the LADRC-based IPMSM drive system in the presence of inertia mismatch are analyzed
in detail.
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4.1. Frequency-Domain Derivation of the Speed Response

Considering the inertia mismatch, the LESO and the control law of speed loop LADRC
are rewritten as: 

e1n = z1n − θr.
z1n = z2n − β1ne1n.
z2n = z3n + f̂0n + b̂nT∗e − β2ne1n.
z3n = −β3ne1n

(19)

T∗e =
kn(ω∗r − z2n) +

.
ω
∗
r −

(
z3n + f̂0n

)
b̂n

(20)

where b̂n and f̂0n are the estimated value of bn and f0n. Then, by transforming Equation (19)
into the frequency-domain, the following transfer functions are obtained:

Z1(s) =
(β1ns2+β2ns+β3n)θr(s)

λ(s) + sb̂nT∗e (s)
λ(s) + sF̂0n(s)

λ(s)

Z2(s) =
s(β2ns+β3n)θr(s)

λ(s) + sb̂n(s+β1n)T∗e (s)
λ(s) + s(s+β1n)F̂0n(s)

λ(s)

Z3(s) =
(β3ns2θr(s)

λ(s) − b̂n β3nT∗e (s)
λ(s) − β3n F̂0n(s)

λ(s)

(21)

where λ(s) is the characteristic polynomial of LESO, λ(s) = s3 + β1n s2 + β2n s + β3n. It
should be noted that a lowercase letter is used to represent a time-domain variable, whereas
the corresponding capital letter is used to represent the variable in the frequency-domain,
e.g., x(t) and X(s).

By transforming Equation (20) into the frequency-domain, and combining it with
Equation (21), we obtain:

b̂nT∗e (s) =
(s + kn)λ(s)

sG1(s)
ω∗r (s)−

G2(s)
sG1(s)

ωr(s)− F̂0n(s) (22)

where G1(s) = s2 + (β1n + kn)s + (β1nkn + β2n), G2(s) = (β2nkn + β3n)s + β3nkn.
Then, transforming Equation (5) into the frequency-domain, and combining it with

Equation (22), we obtain:

b̂n

bn
[sωr(s)− F0n − F1n] =

(s + kn)λ(s)
sG1(s)

ω∗r (s)−
G2(s)
sG1(s)

ωr(s)− F̂0n(s) (23)

Defining rb = b̂n/bn to denote the mismatch ratio of inertia, Equation (23) is rewritten as:

ωr(s) =
(s + kn)λ(s)

R(s)
ω∗r (s) +

rbsG1(s)
R(s)

F1n(s) +
sG1(s)
R(s)

[
rbF0n(s)− F̂0n(s)

]
(24)

where R(s) is the characteristic polynomial of the closed-loop control system:

R(s) = rbs4 + (β1nrb + knrb)s3 + (β2nrb + β1nknrb)s2 + (β2nkn + β3n)s + β3nkn (25)

Apparently, Equation (24) denotes the speed response with respect to the reference
speed and the unknown disturbance in the presence of inertia mismatch. By conducting
the frequency-domain analysis, the speed control performance of the LADRC-based drive
system can be evaluated.

4.2. Influence of rb on Closed-Loop Stability

To analyze the influence of rb on the closed-loop stability of the system, the generalized
root locus method is adopted. The main idea of this method is to create a new system
which owns the same closed-loop characteristic polynomial as Equation (24), and the
open-loop gain of the new system is rb. Then, by analyzing distribution of the open-loop
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zeros and poles of the new system, the closed-loop stability of system Equation (24) can be
indirectly investigated.

Firstly, letting the left side and right side of Equation (25) both be divided by (β3 + β2kn)s+
β3kn, and separating rb from the equation:

R(s)
(β3n + β2nkn)s + β3nkn

= 1 + rb
s2[s2 + (β1n + kn)s + (β2n + β1nkn)

]
(β3n + β2nkn)s + β3nkn

(26)

Then, the open-loop transfer function of the new system is designed as:

Go(s) =
rbs2[s2 + (β1n + kn)s + (β2n + β1nkn)

]
(β2nkn + β3n)s + β3nkn

=
rbs2G1(s)

G2(s)
(27)

By setting kn = 50, and ω0n = 400 (β1n = 3ω0n, β2n = 3ω2
0n, β3n = ω3

0n) as an
example, the root locus plot of Equation (27) with respect to rb is obtained, as shown in
Figure 4.
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The poles and zeros have been labeled in Figure 4. It can be seen that, if rb < 0.142, a
pair of conjugate complex poles are located on the right side of the imaginary axis, which
indicates that the system is unstable. To study the influence of rb on the closed-loop stability
in a more specific way, the separation points of the root locus and the intersection points
with imaginary axis are derived in the following. Firstly, let:

dGo(s)
ds

= 0 (28)

The separation points of the root locus and the corresponding rb are derived:
[

s1 s2 s3 s4
]
=
[

0 −ω0n −ω0n − 2kn(kn+ω0n)
3kn+ω0n

]
[

rb1 rb2 rb3 rb4
]
=

[
∞ 1 1 ω2

0n(ω0n+3kn)
4

4kn(ω0n+kn)
3(3ω2

0n+6knω0n−k2
n)

] (29)

Then, let:
Re[1 + Go(jω)] = 0, Im[1 + Go(jω)] = 0 (30)

The intersection points of root locus with the imaginary axis and the corresponding rb
are derived:  ω1 = ω2 = ±

√
ω0n(3ω2

0n+9knω0n+8k2
n)

ω0n+3kn

rbc1 = rbc2 = ω0(ω0+3kn)
2

(3ω0n+kn)(3ω2
0n+9knω0n+8k2

n)

(31)



Energies 2022, 15, 1169 10 of 22

It can be easily proved that rbc1 = rbc2 ∈ (0, 1), rb4 ∈ (1,+∞). Therefore, according to
Figure 4 and Equations (29) and (31), the following conclusions can be drawn:

(1) If rb ∈ (0, rbc1), a pair of conjugate complex poles are located on the right side of the
imaginary axis, thus the system is unstable.

(2) If rb ∈ (rbc1, 1), there exists a pair of conjugate complex poles and a real dominant
pole. However, if rb is very close to rbc, the real part of the complex poles would be
very small, and the imaginary part would be very large, thus the overshoot of the
system’s step response would be very significant.

(3) If rb ∈ [1, rb4], all poles are located on the real axis, thus the step response has no
overshoot. Moreover, a larger rb leads to a faster step response.

(4) If rb ∈ (rb4,+∞), there exists two pair of conjugate complex poles, the system is
always stable in this region, and the overshoot exists but is not significant.

4.3. Influence of rb on Tracking Performance

According to Equation (24), the transfer function of speed with respect to its reference
is described as:

Gω(s) =
ωr(s)
ω∗r (s)

= (s+kn)λ(s)
R(s)

=
(s+kn)(s3+β1n s2+β2n s+β3n)

rbs4+(β1nrb+knrb)s3+(β2nrb+β1nknrb)s2+(β2nkn+β3n)s+β3nkn

(32)

Setting kn = 50, and ω0n = 400 (β1n = 3ω0n, β2n = 3ω2
0n, β3n = ω3

0n) as an example,
the Bode diagram of the transfer function Gω(s) is shown in Figure 5.
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Figure 5. Bode diagram of Gω(s) under different rb.

Figure 5 demonstrates the speed tracking performance of the LADRC-based drive
system under different rb. It can be seen that if rb = 1, the system has the desired speed
tracking performance in the whole frequency range. If rb 6= 1, a steady-state tracking
error will occur in the medium- and high-frequency range. However, in the low-frequency
range, where the reference speed varies slowly, the steady-state tracking error is negligible.
Therefore, it is concluded that the tracking performance of the LADRC-based drive system
against inertia mismatch decreases as the frequency of the reference increases.

Figure 6 shows the step response of the transfer function Gω(s) under different rb. It
can be noted that the system will not achieve the desired response as long as rb 6= 1. If rb is
too small, the step response will diverge, hence the system will be unstable. These results
are in accordance with the above frequency analysis.
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Figure 6. Step response of Gω(s) under different rb. (a) rb = [0.5 0.75 1]; (b) rb = [1 2 5 10]; (c) rb = 0.2;
(d) rb = 0.14.

4.4. Influence of rb on Disturbance Rejection Performance

According to Equation (24), the transfer function of speed with respect to the unknown
disturbance is described as:

G f (s) =
ωr(s)
F1n(s)

= rbsG1(s)
R(s)

=
rbs(s2+(β1n+kn)s+(β1nkn+β2n))

rbs4+(β1nrb+knrb)s3+(β2nrb+β1nknrb)s2+(β2nkn+β3n)s+β3nkn

(33)

Figure 7 demonstrates the disturbance rejection performance of the LADRC-based
drive system under different rb. It can be noted that as long as the system is stable, i.e.,
rb ≥ 0.2, the disturbance rejection performance increases as rb decreases. Moreover, under
the same rb, the disturbance rejection performance in the medium-frequency range is
relatively weaker than that in the low- or high-frequency range.
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According to the above analysis, it can be found that the inertia mismatch can signif-

icantly influence the performance of the LADRC-based drive system. Small br , i.e., over-

estimated inertia, can enhance the disturbance rejection performance to a certain degree, 

but may lead the system to be unstable. As for the tracking performance, it is found that 
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[28], the extended Kalman filter (EKF) [29,30], the orthogonal principle-based method 

[31,32], and the observer-based method [33]. Although these methods can be applied to 
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of the estimated unknown disturbance rather than introducing an additional identifica-

tion unit. In this section, an inertia identification method based on the speed loop LESO is 

proposed. With the identified inertia, the modeled load inertia can be automatically ad-

justed, hence improving the overall performance of the LADRC-based drive system. 

Figure 7. Bode diagram of G f (s) under different rb.

Figure 8 shows the step response of the transfer function G f (s) under different rb. It
can be noted that as long as the system is stable, the external step unknown disturbance
will be quickly rejected by the LADRC. The overshoot decreases as rb decreases, which
means that the disturbance rejection performance increases. These results are in accordance
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with the above frequency analysis. Finally, it is concluded that the overestimation of inertia,
i.e., rb < 1, is beneficial for the disturbance rejection performance of the LADRC.
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According to the above analysis, it can be found that the inertia mismatch can signifi-
cantly influence the performance of the LADRC-based drive system. Small rb, i.e., overesti-
mated inertia, can enhance the disturbance rejection performance to a certain degree, but
may lead the system to be unstable. As for the tracking performance, it is found that the
system will not achieve the desired response as long as rb 6= 1. Therefore, to obtain a good
tracking performance as well as guarantee the system’s stability, it is necessary to identify
the load inertia.

5. Improved LADRC-Based Speed Regulator with Load Inertia Identification

Currently, various methods have been proposed for load inertia identification, such as
the speed response-based method [27], the model reference adaptive system (MRAS) [28],
the extended Kalman filter (EKF) [29,30], the orthogonal principle-based method [31,32],
and the observer-based method [33]. Although these methods can be applied to the
LADRC-based drive system, the additional identification unit will complicate the system,
and increase the computational burden to the controller. In fact, the unknown disturbance
estimated by the speed loop LESO already contains the inertia mismatch information.
Therefore, it would be more efficient to identify the inertia by directly making use of the
estimated unknown disturbance rather than introducing an additional identification unit.
In this section, an inertia identification method based on the speed loop LESO is proposed.
With the identified inertia, the modeled load inertia can be automatically adjusted, hence
improving the overall performance of the LADRC-based drive system.

5.1. Design of the LESO-Based Inertia Identification Method

The mechanical motion equation is rewritten as follows by taking the inertia mismatch
into consideration: (

J0 + J̃
) .

ωr = Te − TL − Bωr (34)

where J0 + J̃ = J, J0 is the initial value, and J̃ is the error between the initial value and the
actual value of inertia. Through defining bn0 = 1/J0, Equation (4) is rewritten as:

.
θr = ωr.
ωr = f0n + f1n + bn0T∗e
f0n = bn(Te − T∗e )− bn0Bω̂r
f1n = −bn0TL − bn0B(ωr − ω̂r) + nn(t)− bn0 J̃

.
ωr

(35)
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It can be seen in Equation (35) that the unknown disturbance f1n contains the infor-
mation of J̃. Therefore, it is possible to identify the inertia by making use of the estimated
unknown disturbance obtained by the speed loop LESO.

In order to identify the inertia, the coefficient of J̃ in Equation (35) should not be
zero. Therefore, the IPMSM should be actuated in a speed-varying operation, i.e.,

.
ωr 6= 0.

A simple way to conduct the identification process is to force the IPMSM to operate at two
different constant accelerations for a short period of time. Meanwhile, the external load
torque TL remains the same.

The speed reference of the LADRC-based drive system is shown in Figure 9. During
the operation, the estimated unknown disturbances at the acceleration moment t1 and
deceleration moment t2 are stored:{

z3n(t1) = −bn0TL(t1)− bn0B[ωr(t1)− ω̂r(t1)] + nn(t1)− bn0 J̃
.

ωr(t1)

z3n(t2) = −bn0TL(t2)− bn0B[ωr(t2)− ω̂r(t2)] + nn(t2)− bn0 J̃
.

ωr(t2)
(36)
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According to the analysis in Section 4.3, the tracking performance of the LADRC-based
speed regulator has a good tolerance for inertia mismatch in low-frequency range. Therefore,
the regulator can track the ramp speed reference in Figure 9 accurately, i.e., ωr(t1) = ω̂r(t1),
and ωr(t2) = ω̂r(t2). Furthermore, the external load torque remains the same during the
speed transition, i.e., TL(t1) = TL(t2). Moreover, the difference between the unmodeled
dynamics nn(t1) and nn(t2) can be neglected. Then, J̃ is obtained as:

J̃ = − z3n(t2)− z3n(t1)

bn0
[ .
ωr(t2)−

.
ωr(t1)

] = −J0
z3n(t2)− z3n(t1)

.
ωr(t2)−

.
ωr(t1)

(37)

Finally, the identified inertia is expressed as:

Ĵ = J0 + J̃ = J0

[
1− z3n(t2)− z3n(t1)

.
ωr(t2)−

.
ωr(t1)

]
(38)

5.2. Improved LADRC-Based Speed Regulator

With the inertia identified, the estimated critical gain b̂n can be automatically adjusted,
hence improving the overall performance of the LADRC-based drive system. The block
diagram of the improved LADRC-based speed regulator is shown in Figure 10. In practical
applications, the initial inertia J0 is required. Since the accurate inertia will finally be
identified by the proposed method, the initial inertia does not have to be set as accurately
as possible. According to the analysis in Section 4.2, it is suggested that a large J0 be chosen
so as to guarantee the stability of the system.
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6. Experimental Results

In this section, experimental results of the proposed LADRC-based IPMSM drive
system are presented. Figure 11 shows the experimental platform. The target machine
under test is a three-phase IPMSM, the parameters of which are listed in Table 1. The
IPMSM is driven by a two-level VSI. The control algorithm is implemented on a dSPACE
MicroLabBox real-time platform. The dSPACE controller is connected to the VSI through
a modulation board. The load torque is provided by an induction machine, which is
mechanically coupled with the test machine and controlled by an AC driver. A photoelectric
encoder with 2500 threads is utilized to acquire the actual rotor position. The experimental
data is transmitted from dSPACE to a desktop computer in digital form through an 100 M
ethernet cable. Then, the data is saved to a local directory by ControlDesk (dSPACE GmbH,
Paderborn, Germany), the desktop software for dSPACE. Finally, the data is imported to
OriginPro software and plotted.
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In the following experiments, the sampling and PWM switching frequency are both
set to 5 kHz. The deadtime of PWM is set to 1 µs. The DC-link voltage is set to 240 V. The
IPMSM is operated in MTPA mode. To reduce the computation burden, the MTPA scheme
is implemented by means of look-up tables with offline calculations. The relationship
between the torque reference and the d-q-axis current references under MPTA operation
mode is shown in Figure 12.
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Table 1. IPMSM Parameters.

Parameters Symbols Values

Rated Power PN 1.0 kW
Rated Speed ωN 1500 rpm

Rated Current IN 8 A
Number of Pole Pairs np 3
Rotor Flux Linkage ψ f 0.142 V·s

Stator Resistance Rs 0.75 Ω
d-axis Inductance Ld 3.5 mH
q-axis Inductance Lq 9.8 mH

Load Inertia J 0.0174 kg·m2

Viscous Friction Coefficient B 0.00075 N·m·s/rad
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It should be noted that this article mainly concentrates on researching the speed
control performance of the LADRC-based drive system. Hence, during the experiments,
the parameters for the current loop LADRC are fixed to kd = kq = 200π, ω0i = 1200π.
Furthermore, considering the driving capability of the power converter, the torque limit for
the speed loop output is set to T∗emax = 6 N·m.

6.1. Experimental Results of the LADRC-Based IPMSM Drive System with Accurate Inertia

In this experiment, the tracking performance and the disturbance rejection perfor-
mance of the LADRC-based IPMSM drive system with accurate inertia are evaluated.

Figure 13 shows the experimental results of the speed response with step speed
reference from 0 rpm to 1500 rpm. From top to bottom, the plotted signals are ωr, iq,
and id. In Figure 13a, three groups of experiment results with the same ω0n and different
kn are presented and compared, where ω0n = 80π, kn = [5π, 10π, 20π]. In Figure 13b,
three groups of experiment results with the same kn and different ω0n are presented and
compared, where kn = 10π, ω0n = [40π, 80π, 120π]. It can be seen that the speed tracking
performance is mainly dependent on kn. A larger kn brings a faster response. It should be
noted that since there is a limitation for the speed loop output, the maximum acceleration of
speed is restricted. Therefore, the speed response with the step speed reference is actually a
ramp response rather than a step response.

Figure 14 shows the experimental results of the speed response with sinusoidal speed
reference. The offset, the amplitude, and the frequency of the sinusoidal reference are 1500
rpm, 20 rpm, and 15 Hz, respectively, i.e., ω∗r = 1500 + 20 sin 30π rpm. From top to bottom,
the plotted signals are ωr, iq, id, e1n, and z3n. In Figure 14a, three groups of experiment
results with the same ω0n and different kn are presented and compared, where ω0n = 160π,
kn = [40π, 80π, 120π]. In Figure 14b, three groups of experiment results with the same kn
and different ω0n are presented and compared, where kn = 80π, ω0n = [80π, 120π, 160π].
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Obviously, the speed tracking performance is mainly dependent on kn. A larger kn brings a
lower tracking latency and a smaller amplitude attenuation.
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Figure 14. Experimental results of the speed response with sinusoidal speed reference. (a) Under
different kn, where ω0n = 160π, kn = [40π, 80π, 120π]; (b) under different ω0n, where kn = 80π,
ω0n = [80π, 120π, 160π].
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Figure 15 shows the experimental results of the speed response with step load dis-
turbance. The test IPMSM operates at 1500 rpm. The load IM provides an external step
load torque of 3 N·m at 0.3 s. From top to bottom, the plotted signals are ωr, iq, id, e1n,
and z3n. In Figure 15a, three groups of experiment results with the same ω0n and different
kn are presented and compared, where ω0n = 80π, kn = [5π, 10π, 20π]. In Figure 15b,
three groups of experiment results with the same kn and different ω0n are presented and
compared, where kn = 10π, ω0n = [40π, 80π, 120π]. It can be seen that a larger kn or a
larger ω0n are both helpful for improving the disturbance rejection performance, and the
improvement is relatively more significant when increasing ω0n.
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Figure 15. Experimental results of the speed response with step load disturbance. (a) Under
different kn, where ω0n = 80π, kn = [5π, 10π, 20π]; (b) under different ω0n, where kn = 10π,
ω0n = [40π, 80π, 120π].

6.2. Experimental Results of the LADRC-Based IPMSM Drive System with Mismatched Inertia

In the following experiment, the tracking performance and the disturbance rejec-
tion performance of the LADRC-based IPMSM drive system with mismatched inertia
are evaluated.

Figure 16 shows the experimental results of the speed response with step speed
reference. Three groups of experiment results with different rb are presented and compared,
where ω0n = 120π, kn = 10π, rb = [0.5, 1, 2]. It can be seen that the speed responses in the
three experiments are almost the same. This can be explained according to the analysis in
Figure 5. Since there is a limitation for the speed loop output, the maximum acceleration of
speed is restricted. Therefore, the speed response with the step speed reference is actually a
ramp response. The ramp speed lies in the low-frequency range in Figure 5. Therefore, the
inertia mismatch has little effect on the speed tracking performance.
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Figure 16. Experimental results of the speed response with step speed reference from 0 rpm to
1500 rpm under different rb, where ω0n = 120π, kn = 10π, rb = [0.5, 1, 2].

Figure 17 shows the experimental results of the speed response with sinusoidal speed
reference. Three groups of experiment results with different rb are presented and compared,
where ω0n = 120π, kn = 80π, rb = [0.5, 1, 2]. It can be seen that rb = 2 leads to amplitude
amplification and phase delay, while rb = 0.5 leads to amplitude attenuation and phase
advance. This is because the 15 Hz sinusoidal reference lies in the middle-frequency range
in Figure 5. As for the high-frequency range, the corresponding experiments are unable to
conduct due to the current limitation of the power converter.
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Figure 18 shows the experimental results of the speed response with step load distur-
bance. Three groups of experiment results with different rb are presented and compared,
where ω0n = 120π, kn = 10π, rb = [0.5, 1, 2]. It can be seen that the speed fluctuation
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during the loading/unloading process decreases as rb decreases, which indicates that the
system’s disturbance rejection performance increases as rb decreases. These results accord
with the analysis in Figure 6.

Energies 2022, 15, 1169 20 of 24 
 

 

250

20rpm

6A

2A

0.4rad

Time(0.05s/div)

(A
)

(A
)

0

0

0

0

1460

(r
a
d
)

(r
p
m

) =1500+20sin30π rpm

2 1 0.5

 

Figure 17. Experimental results of the speed response with sinusoidal speed reference under differ-

ent br , where 0 120n  , 80nk  ,  0.5,  1,  2br  . 

Figure 18 shows the experimental results of the speed response with step load dis-

turbance. Three groups of experiment results with different br  are presented and com-

pared, where 0 120n  , 10nk  ,  0.5,  1,  2br  . It can be seen that the speed fluctua-

tion during the loading/unloading process decreases as br  decreases, which indicates 

that the system’s disturbance rejection performance increases as br  decreases. These re-

sults accord with the analysis in Figure 6. 

100

8rpm

2.4A

0.6A

0.1rad

Time(0.05s/div)

(A
)

(A
)

0

0

0

0

1484

(r
a
d
)

(r
p
m

)

=1500 rpm

2 1 0.5

Load on

 

100

8rpm

2.4A

0.6A

0.1rad

Time(0.05s/div)

(A
)

(A
)

0

0

0

0

1484

(r
a
d
)

(r
p
m

)

=1500 rpm

2 1 0.5

Load off

 
(a) (b) 

Figure 18. Experimental results of the speed response with step load disturbance under different br

, where 0 120n  , 10nk  ,  0.5,  1,  2br  . (a) Loading; (b) unloading. 

  

Figure 18. Experimental results of the speed response with step load disturbance under different rb,
where ω0n = 120π, kn = 10π, rb = [0.5, 1, 2]. (a) Loading; (b) unloading.

6.3. Experimental Results of the Proposed Inertia Identification Method

During this experiment, the IPMSM makes a speed transition from 300 rpm to
1000 rpm, and then back to 300 rpm. The controller parameters are set to ω0n = 120π,
kn = 10π. Figure 19a,b shows the experimental results with initial inertia respectively set
to 0.5J and 2J. It can be seen that the identified inertia converges quickly within 0.3 s, and
the identified value is close to the actual value, which is 0.0174 kg·m2.
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7. Conclusions

In this article, an improved LADRC scheme for an IPMSM drive system is proposed.
The proposed LADRC for speed regulation adopts position feedback instead of speed
feedback so that the low-pass filter can be eliminated. Moreover, the MTPA scheme is incor-
porated into the purposed LADRC to improve the IPMSM drive performance by making
full use of its reluctance torque. In addition, considering that the load inertia may vary in
some applications, the stability, the tracking performance, and the disturbance rejection
performance of the LADRC-based control system with mismatched inertia are analyzed in
detail. It is found that the overestimation of inertia can enhance the disturbance rejection
performance, but may lead the system to be unstable. As for the tracking performance,
it is found that the system will not achieve the desired response as long as the inertia
is mismatched. Then, to pursuit a good tracking performance as well as guarantee the
system’s stability, an inertia identification method is proposed, which extracts the mismatch
information from the estimated disturbance. Extensive experimental results validate the
correctness of the theoretical analysis and the effectiveness of the proposed scheme.

However, the designed controller in this article is based an ideal IPMSM model, where
the iron losses, the non-sinusoidal back-EMF, the cross-coupling, and the core saturation
effect are not considered. In real applications, these unmodelled parts will bring additional
disturbance to the drive system and increase the estimation burden of LESO. Thus, the
overall performance of the LADRC-based drive system will be degraded. In further
research, a more accurate model of IPMSM should be adopted.
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Appendix A

The goal of MTPA scheme is to achieve the desired torque with minimum stator
current required. Such a scheme can be described as: Te =

3
2 np

[
ψ f +

(
Ld − Lq

)
id

]
iq

is = min
(√

i2d + i2q
) (A1)

To solve the problem described in Equation (A1), the Lagrange multiplier method can
be adopted. This method is commonly used for obtaining the maximum/minimum value
of a function with specific constraints. The Lagrange auxiliary function for Equation (A1) is
constructed as:

L
(
id, iq, λ

)
=
√

i2d + i2q + λ ·
{

Te −
3
2

np

[
ψ f +

(
Ld − Lq

)
id

]
iq

}
(A2)

where λ is the Lagrange multiplier. Let the partial derivatives of L with respect to id, be iq,
and λ is equal to zero:

∂L
∂id

=
id√

i2d + i2q
− 3

2
λnp

(
Ld − Lq

)
iq = 0 (A3)

∂L
∂iq

=
iq√

i2d + i2q
− 3

2
λnp

[
ψ f +

(
Ld − Lq

)
id
]
= 0 (A4)
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∂L
∂λ

= Te −
3
2

np

[
ψ f +

(
Ld − Lq

)
id

]
iq = 0 (A5)

Combining Equations (A3) and (A4), the relationship between id and iq under MTPA
operation can be derived:

iq =

√
ψ f id

Ld − Lq
+ i2d (A6)

Substituting Equation (A6) into Equation (A5), the relationship between Te and id
is derived:

Te =
3
2

np

[
ψ f +

(
Ld − Lq

)
id

]√ ψ f id

Ld − Lq
+ i2d (A7)

On the other hand, the inverse function of Equation (A6) is derived as:

id =
−ψ f +

√
ψ2

f + 4i2q
(

Ld − Lq
)2

2
(

Ld − Lq
) (A8)

Substituting Equation (A8) into Equation (A5), the relationship between Te and iq
is derived:

Te =
3
4

np

[
ψ f +

√
ψ2

f + 4i2q
(

Ld − Lq
)2
]

iq (A9)
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