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Abstract: Waterflooding is a widely used secondary oil recovery technique. The oil and gas industry
uses a complex reservoir numerical simulation and reservoir engineering analysis to forecast produc-
tion curves from waterflooding projects. The application of such standard methods at the stage of
assessing the potential of a huge number of projects could be computationally inefficient and requires
a lot of effort. This paper demonstrates the applicability of machine learning to rate the outcome
of waterflooding applied to an oil reservoir. We also explore the relationship of project evaluations
by operators at the final stages with several performance metrics for forecasting. Real data about
several thousand waterflooding projects in Texas are used in the current study. We compare the ML
models rankings of the waterflooding efficiency and the expert rankings. Linear regression models
along with neural networks and gradient boosting on decision threes are considered. We show that
machine learning models allow reducing computational complexity and can be useful for rating the
reservoirs, with respect to the effectiveness of waterflooding.

Keywords: secondary oil recovery; waterflooding effect; machine learning; data-driven

1. Introduction

Waterflooding is a very effective oil recovery improvement technique. This technique
began at the beginning of the 20th century, but it is still popular—and widely used—in the
vast majority of oil fields. Waterflooding is a secondary oil recovery technique in which
water is injected into the reservoir formation to displace residual oil. The water from
injection wells physically sweep the displaced oil to adjacent production wells. It allows
improving the recovery of oil and maintaining reservoir pressure. The method increases
oil recovery from 20% to 40% of the original oil in place on average [1]. However, many
secondary waterflooding attempts have failed due to a paucity of data or inept assessment
failed to disclose the true nature of the prospect [2]. The effect of waterflooding is critically
affected by characteristics of the reservoir (geological structure, internal architecture, prop-
erties of reservoir rock and fluids) and the specifics of the oilfield development scheme.
For successful investment it is necessary to assess the prospects of the project in advance
and choose the most potentially successful ones.

The success and efficiency of waterflooding depends on many characteristics of both
the reservoir and development parameters. It could strongly depend on the previous
reservoir performance, lateral and vertical permeability, porosity distribution, residual oil,
mobility ratio, well spacing, and other parameters. Nowadays, various methods are used in
practice for oil recovery performance forecast. All commonly used methods can generally
be divided into reservoir numerical simulations and reservoir engineering analyses [3,4].

To consider all of the effects of the physics process, a full-scale 3D reservoir numerical
simulation could be used. This approach allows simulating the process as realistic as
possible, solving differential equations numerically. However, in order to obtain accurate
results, much effort is required to collect data to build and validate a sufficiently accurate
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reservoir model. For a large-scale or complex reservoir simulation model, a single forward
simulation run can take from several hours to several days to complete [5]. To accelerate
the simulation, recent studies have considered replacing the full-scale reservoir simulation
model with a far more computationally efficient surrogate or proxy model, such as reduced
order modeling (ROM) [6] or methods based on deep neural networks [7]. However,
the development of such a model requires comprehensive geological modeling and fine
tuning to obtain acceptable accuracy.

The reservoir engineering methods are used to speed up the simulation. One can
use models based on the material balance equation for the entire reservoir or its hydro-
dynamically isolated parts [5,8]. Another example is the capacitance–resistance model
(CRM) [9,10]. CRM model estimates interwell connectivity between each water injection
well. These methods typically require production and injection history as well as bottom-
hole pressure. Fine-tuning made by a highly experienced specialist is usually necessary to
obtain satisfactory results.

The application of such standard methods at the stage of assessing the potential of a
project requires a lot of effort. There may be insufficient data in the early stages to apply
complex physics-based models. In addition, the forecast of the production curves may
be unnecessary. This is especially evident where, among hundreds of potential projects,
the most promising ones should be selected. Often, all available information represents the
averaged reservoirs characteristics. Such parameters refer to reservoir geometry, geology,
transport, and fluid properties. Using these data, project effects need to be assessed as
accurately as possible.

To select the most successful candidates, it is necessary to rank the potential IOR
projects according to the efficiency metrics estimated with some models. These effect
metrics are various. The most commonly used is secondary ultimate oil/primary ultimate
oil [11]. Substitution Index (SI), expected ultimate recovery (EUR), and similar, are also
mentioned in the literature [12–14]. The data-driven ML approach, having relatively
rich historical training data, is suitable for estimating valuable performance metrics for
waterflooding projects. One can build a model that takes a given set of parameters as
input and predict various target values that can be useful in risk assessment analysis.
(for example oil rate leap or years to extract 80% of secondary oil). Data-driven models are
starting to be used for similar tasks. A number of studies confirmed the effectiveness of
ML models in application to oil recovery factor estimation [14–16]. Several other studies
have reported the successful application of ML models to estimate the effects of hydraulic
fracturing [17–20]. Kornkosky et al. applied multivariate linear regression to estimate the
waterflooding effect [11]. The authors demonstrated low accuracy of the linear model.

In this study, our goal was to relate several waterflooding project metrics to real op-
erator effect evaluations made in the final stages of waterflooding projects; to show the
flexibility and practical applicability of advanced machine learning techniques, to assess
the potential of secondary oil recovery projects. We used an open database with 8600 IOR
projects of Texas oilfields. In the Methodology Section 2, we describe in detail the dataset,
its features, and available data. Next, we describe an approach to recover production curves
from data to calculate additional effect metrics and analyze the operator’s evaluations.
Finally, we describe the applied ML models and how we measured the accuracy. In the
Results Section 3, we report on the restored production curve accuracy analysis, the com-
parison of the operator’s evaluations with curve shapes and the project’s effect metrics,
and an evaluation of ML models. In the Sections 4 and 5, we highlight the most interesting
findings, discuss the pros and cons of a data-driven approach, limitations of the results,
and state future research directions.

2. Materials and Methods

In this section, we describe the data and methods. The first subsection is devoted
to the data we used to train the ML models to predict the waterflooding project effects.
We briefly demonstrate the organization of tables and their relationships and what types
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of projects the database contains. We also illustrate the typical timeline of the project
and what data are available at each stage. In the following subsection, we explain which
effect metrics we chose to predict and how we investigated as to whether the operator’s
effect evaluation was consistent with the chosen metrics. We also describe the method of
restoring production curves from database parameters (it helped us analyze the nature of
the operator’s evaluation and calculate several useful effect metrics to predict). In the last
subsection, we discuss the process of filtering data to form a training sample and describe
the applied ML models and tuning details. Finally, we explain how we measured the
quality of the data-driven models: how we measured the accuracy of the models and the
method to compare the model with the operator’s assessment of the project.

2.1. Dataset Description

In this study, we used data from the Texas Secondary & Enhanced Recovery Database
(Bulletin 82) [11,21]. The database has records on more than 8600 improved oil recovery
projects in Texas from 1950–1982. It includes more than 80 different types of data on each
one. Not all items are complete for each project. The average missing value rate for one
item is about 50%. However, there are items with even 90–100%. The data are organized
into five separate files, with only the project number common to each file.

We considered projects related to waterflooding only. We also considered areas where
only one project was made in order to exclude the influence of other projects on the effect.

2.2. Waterflooding Project Timeline

Waterflooding projects were launched at various times and the last database update
was in 1982. It is necessary to distinguish at what stages of the project certain data were
available. We divided all parameters we used into two group: known before the project
was launched and known during the project (mainly related to 1982). The first group
contains parameters related to reservoir location, averaged parameters related to geometry,
geology, transport properties, and fluid properties. It also contains several development
parameters, which were known at the planning stage of the project. The second group
contains parameters related to project performance. Figure 1 demonstrates the typical
waterflooding project timeline data availability at every stage.

Secondary recovery project
planning

Waterflooding project timeline and related data

County

Field name

Reservoir name

Date discovered

Operator


Depth

Acres in the whole reservoir

Porosity (avg)

Permeability (avg)

API gravity

Drive mechanism

Formation type

Op's estimate of oil in place


Daily oil production from the project when injection began

Cumulative from discovery to beginning of injection

Operator’s estimate of oil recovery by primary means


Acres in the specific project

Primary purpose of the project
Type of injection
Date of earliest injection
Initial injection pressure
Bottomhole pressure at beginning of injection
Well pattern
Well spacing
Number of production wells

Number of injection wells
Source of injection fluid
Depth of formation or location of surface source
Type of fluid being injected
 

Date of first response to injection 1981 oil production from the project

Cumulative oil from discovery to 1981


Operator’s evaluation of the effectiveness of the injection

Amount of oil operator attributes to injection response

1981 oil production that operator attributes to injection response

Operator’s est. of oil ultimately produced due to injection

Time

Field discovery First injection response
1982


The year database has been created


Oil

WaterInjection
well

Production
well

Project launch

Figure 1. Timeline of the waterflooding project. Scheme depicts which parameters from the database
are available for each stage of the project. We strictly separate the parameters known before the start
of the project and after.

Parameters from the first group can be used as input parameters for the ML model to
predict the effect of the project. We used parameters from the second group to calculate
waterflooding effect metrics.
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2.3. Waterflooding Effect Metrics

The main purpose of this study was to develop and evaluate the data-driven model to
estimate the effects of waterflooding projects using parameters known before the project
started. We can express the effect of the project in the form of some metric, i.e., as a numeric
value. This metric should reflect the economic potential of the project and be useful in
decision-making. This approach could help with selecting the most cost-effective among
several potential projects.

The database we used contains an operator’s evaluation of the injection effectiveness.
An assessment was made by an operator after a project started. The corresponding data
field is categorical and could take one of the following values “NOT EFF”, “MODERATE”,
and “VERY”. Although this metric reflects the project’s performance, the range of values
is very narrow, which could make the decision-making process difficult. There is also
no information about what the operator was guided by when making a decision and
what characteristics were important. Therefore, we aimed to use several other numerical
values as targets. Firstly, we wanted to demonstrate that, with a date-driven approach, it
is possible to train a model for any metric, and secondly, in various economic situations,
different characteristics could be important.

Using source data, we calculated and used as a target the following metric, which is
quite natural and widely used for assessing the potential of secondary recovery projects [11]:

• Secondary ultimate oil/primary ultimate oil.

This metric represents the ratio of oil attributed to waterflooding to oil produced by
depletion drive. This metric could be valuable for comparing the economic costs of the
project with the potential profit.

The other two metrics are presented below:

• Oil rate leap.
• Years to extract 80% of oil attributed to secondary recovery.

The second one represents the largest increase in oil production. This effect metric
can be useful in predicting when it is necessary to raise oil production rates as soon as
possible. The third one reflects the duration of the project and can be valuable in long-term
economic forecasts.

2.4. Oil Production Curves Estimation

With several parameters from the database, we tried to restore production curves
using the decline curve analysis. To approximate primary production curves, we used the
exponential rate–time relationship proposed by Arps et al [22]. Similarly, we used a simple
parametric model, e.g., the diffusivity-filter, to approximate the secondary production
curves [23–25].

2.4.1. Primary Oil Recovery Curve

For oil rate attributed to the depletion drive, we used a simple exponential relationship
with a constant loss ratio D (proposed by Arps et al. [22]).

q∆t = qinite−D∆t. (1)

The expression for the rate–cumulative curve can be found by simple integration of
the rate–time relationship, as follows

Q∆t =
∫ ∆t

0
qinite−Dwdw =

qinit − q∆t
D

, (2)

where the following values are available in the database:

∆t—years between the first production year and injection start year;
q∆t—oil production in the last year before the project started;
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Q∆t—cumulative oil production at project start;

and we need to find an initial oil rate and loss ratio:

qinit—initial oil rate;
D—loss ratio.

Substituting Equation (2) into Equation (1), and then the logarithm at the left hand
side and right hand side of the equation, we obtain

− log(q∆t) + log(qinit) + ∆t
q∆t − qinit

Q∆t
= 0. (3)

We solve nonlinear Equation (3) for qinit using Newton’s method. Knowing qinit, we
can obtain D using Equation (2). Thus, we are able to estimate the primary oil rate curve
for each project with the required data available. A real example of the reconstructed curve
and the known parameters are visualized in Figure 2.

1955 1960 1965 1970 1975 1980 1985 1990

0

50,000

100,000

150,000

200,000

250,000

300,000

Oi
l r

at
e,

 b
bl

 p
er

 y
ea

r

t t inj

Q t Q inj
t inj

qinit

q t

qinj
t inj

Oil production curves estimation
Estimated primary oil rate curve
Estimated oil rate due to injection response curve

Figure 2. Plot demonstrates example of the reconstructed production oil curves for waterflooding
project. Red line—reconstructed primary rate oil curve. Blue line—reconstructed oil rate due to
injection response. The parameters available in the database are shown in bold black.

2.4.2. Secondary Oil Recovery Curve

A diffusivity filter is normally used as a continuous-time injector–producer model to
quantify how the reservoir converts the injection rate into the total production rate [23]. It
takes into account the communication delay between the injection and production wells
caused by dissipation [24]. In a number of studies, the diffusivity filter is assumed to be the
continuous-time uni-modal skewed function [23–25]. We used the diffusivity filter form
proposed in [23]. Due to the data constraints, we assume a constant injection impulse given
as the superposition of all injection wells, simultaneously. The diffusivity filter applied to
the constant injection rate remains the continuous-time uni-modal skewed function. Thus,
the oil rate–time relationship attributed to secondary forces takes a form

qinj
∆tinj = a(

∆tinj

b
)e
−∆tinj

b . (4)

Integrating Equation (4), we obtain the expression for the rate–cumulative curve

Qinj
∆tinj =

∫ ∆tinj

0
a(

winj

b
)e
−winj

b dwinj = ab(Γ(2)− Γ(2,
∆tinj

b
)), (5)

where the following values are available in the database:

∆tinj—years from project start to 1982;
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qinj
∆tinj —oil that operator attributes to injection response in 1982;

Qinj
∆tinj —cumulative amount of oil operator attributes to injection response in 1982;

and we need to find the following parameters:

a—parameter refers to curve magnitude;
b—parameter refers to curve width.

We solved the system of nonlinear equations Equations (4) and (5) for a and b using
Newton’s method. The maximum value of the curve Equation (4) is reached at point b and
equal to ae−1. Therefore, parameter a refers to the curve magnitude and b refers to curve
width. A real example of the reconstructed curve and the known parameters are visualized
in Figure 2.

2.4.3. Curves Validation

To evaluate the accuracy of the oil production curves, we compared several curve
parameters that were not used to adjust the curves to the parameters in the database.
We also analyzed the consistency of the production curves with the assessment of the
project efficiency.

We validated our approach for production curve estimation by comparing the follow-
ing parameters “primary ultimate oil”, “secondary ultimate oil”, “cumulative oil as of 1982”
estimated with curves to operator estimations stored in the database. Figure 3 visualizes
the parameters mentioned above as different parts of the area under the curves. For each
parameter, we calculated the symmetric Mean Absolute Percentage Error (sMAPE).

We also performed a consistency analysis of the primary and secondary curve shapes
with the operator’s evaluation of the project. To visually assess the consistency, we depicted
all of the project’s curves for effective, moderate, and very effective projects, separately.
In addition, for each group, we calculated the percentage of the total production attributed
to the primary and secondary forces.
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Figure 3. Plot visualizes parameters “primary ultimate oil”, “secondary ultimate oil”, “cumulative oil
as of 1982” as different parts of the areas under the curves. To validate curve accuracies, we compared
parameters calculated as areas under the curves with the same parameters stored in the database.
Moreover, we expected to find some curve shape patterns among groups of projects labeled by an
operator as “NOT EFF”, “MODERATE”, and “VERY”.

2.4.4. Waterflooding Effect Metrics

The first performance metric we considered for prediction was secondary ultimate
oil/primary ultimate oil. To calculate this metric for training data, we do not need to estimate
the production curves. The database contains estimates for the numerator and denominator.
Two other metrics, oil rate leap and years to extract 80% of oil attributed to secondary recovery,
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could be calculated using oil production curves. These two metrics cannot be calculated
directly from source data. In order to estimate these parameters, we needed to approximate
the oil production curves. The curve of oil production by primary forces and secondary
forces separately for each project, which required data. Figure 4 shows the oil rate leap and
years to extract 80% of oil attributed to secondary recovery on oil production curves.

In addition, we analyzed the connection between the proposed metrics with the
operator’s evaluation. We used histograms to understand if the distributions of metrics
differed within each of the three groups of projects: assessed by an operator as not effective,
as moderate, and as very effective. This gave us a better understanding of how an operator
was guided when assessing the effect of the project. The following section describes the
ML models that we used, as well as the methodology to evaluate the prediction accuracy.
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Figure 4. The plot demonstrates how extra metrics can be calculated using production curves. Oil
rate leap is the difference between the oil rate before a project has started and the peak of total oil
production after project initiation. Years to extract 80% of oil attributed to secondary recovery can be
estimated calculating area under the secondary production curve.

2.5. Data-Driven Models
2.5.1. Training Set: Preparation and Filtration

To start training ML models, we needed to transform the data into a suitable form.
We made a series of sequential transformations for the original five tables. We joined all
tables into one by the project number, which was a unique key. We removed duplicates
with controversial data, and projects that could affect each other. We assumed that each
project was conducted within reservoir isolated from other flooding projects. Thereby we
only took projects with unique field names, reservoir names, counties, and dates of discov-
ery. Afterward, we left projects that were related to waterflooding only. For categorical
parameters, we deleted values that were too rare.

Only projects for which it was possible to calculate the target variable could be in-
cluded in the related training sample. To calculate the secondary ultimate oil/primary ultimate
oil, the primary ultimate oil and the secondary ultimate oil database fields should not be empty.
To calculate the remaining two metrics, oil rate leap and years to extract 80% of oil attributed
to secondary recovery, it is necessary to estimate the production curves. Therefore, training
samples contain projects only with the necessary curve estimation data in these cases.

In total, after all transformations and removing outliers, the training set consisted of
1028 projects for secondary ultimate oil/primary ultimate oil, 457 for the oil rate leap, and 439 for
years to extract 80% of oil attributed to secondary recovery.
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2.5.2. Input Parameters and Targets

Table 1 shows the list of uncorrelated parameters that we used as input for ML models.
Figure A1 (see Appendix A) presents more detailed input parameter descriptions.

Table 1. List of input parameters.

Input Parameter Name Type

Date reservoir was discovered Date
Reservoir depth Numerical
Average porosity of project Numerical
Average permeability of project Numerical
Average net pay of project Numerical
Acres in the whole reservoir Numerical
API oil gravity of project Numerical
Reservoir drive mechanism of the project Categorical
Formation type Categorical
Operator’s estimate of oil in-place of project Numerical
Operator’s estimate of oil recovery by primary means Numerical
Date fluid was first injected in this project Date
Acres in the project Numerical
Bottomhole pressure at beginning of injection Numerical
Initial injection pressure Numerical
Initial producing well count when injection began in the project Numerical
Daily oil production from the project when injection began Numerical
Cumulative oil from discovery to beginning of injection Numerical
Primary purpose of the project Categorical
Pattern used in injection Categorical
Distance between injection wells Numerical
Type of fluid being injected Categorical
Number of production wells Numerical
Number of injection wells Numerical

At the step prior to training the algorithms, we conducted several transformations
of the training set. We applied log transformation to the input parameters and the target
variable with skewed distributions (it improved linearity between dependent and inde-
pendent variables). We also applied a scaling transformation, transformed categorical
parameters to the numerical using a one-hot encoding approach, and filled missing values
using the multiple imputation by chained equations (MICE) [26,27]. Table 2 shows the list
of waterflooding effect metrics to predict.

Table 2. Waterflooding effect metrics.

Target Metric Name Source

Secondary ultimate oil/primary ultimate oil Operator’s est. at final stage
Oil rate leap Estimated oil production curves
Years to extract 80% of oil attributed to secondary recovery Estimated oil production curves

2.5.3. Machine Learning Models

In this study, we solved the regression problem. A regression problem requires the
prediction of a quantity, which, in our case, was one of the target metrics presented in
Table 2. As input, we used transformed parameters presented in Table 1. Traditionally,
X = {xi}n

i=1 ∈ Rn×d denotes the training set, where n is the number of objects (water-
flooding projects) and d the number of parameters. The column of target values presents
as Y = {yi}n

i=1 ∈ Rn×1. Generally, one needs to find an approximation f̂ (x) : X → Y
by minimizing the loss function ∑n

i=1 L( f̂ (x, θ), yi) → minθ , where f̂ (x, θ) stands for the
regression model with parameters θ.
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We applied and evaluated the following machine learning models: linear model,
shallow neural network, and gradient boosting decision trees. Generally, the linear model
attempts to find a linear relationship between a high-dimensional input and target. This
model is interpretable, the simplest, and suitable for a small amount of training data.
We also tested more complex models that were able to capture nonlinear dependencies.
The shallow neural network is able to learn continuous nonlinear surfaces from data
and it is widely used for applications. Gradient boosting decision trees allows retrieving
non-trivial dependencies and building powerful predictive models. It proves itself to be
robust to noise, immune to multicollinearity, and sufficiently accurate for engineering
applications [28]. The selected models are currently the most popular for similar regression
problems [11,17,19,29–31].

Linear Model

To train the linear model f̂ (x) = wTx + w0, we minimize the loss function with respect
to weights wT ∈ Rn×1, w0 ∈ R:

1
n

n

∑
i=1

(wTxi + w0 − yi)
2 + R(w, α)→ min

w,w0
(6)

Regularization term R(w, α) penalizes the high-value coefficients to avoid overfitting
and it can help reduce the coefficients of the features that have small effects on the target
variable. There are several types of regularization:

• Lasso R(w, α) = α ∑d
j=1 |wj| (L1 regularization);

• Ridge R(w, α) = α ∑d
j=1 w2

j (L2 regularization);

• Elastic Net R(w, α) = α1 ∑d
j=1 |wj|+ α2 ∑d

j=1 w2
j (L1 and L2 regularization).

We tuned hyperparameters α, α1, α2 related to L1 and/or L2 regularization. Scikit-learn
Lasso, Ridge, and ElasticNet implementations were chosen for experiments [32].

Shallow Neural Network

The shallow neural network can be expressed as:

f̂ (x) = a(Wka(...(W2a(W1x + b1) + b2)...) + bk), (7)

where a—activation function, k—number of layers, Wi ∈ Routi×ini weight matrix and
bi ∈ Routi bias for i-th layer.

We optimized mean squared error loss function:

1
n

n

∑
i=1

( f̂ (xi)− yi)
2 → min

W1,b1,...,Wk ,bk
, (8)

using the stochastic gradient descent modified version named Adam [33].
For the shallow neural network, we used the PyTorch framework [34] and tuned the

number of hidden layers (from 1 to 3), the number of neurons for each layer, the learning
rate within Adam optimization, and the activation function type.

Gradient Boosting Decision Trees

Decision tree is a supervised learning method that predicts values of responses by
learning decision rules derived from data. The decision tree constructing algorithm works
top–down at every node, by choosing the best variable that best splits the current training
subset according to homogeneity of the target variable within the subsets. The process
is recursively repeated until there is only one item in the subset of the node or if some
condition is satisfied. The terminate nodes are called leaves. After the tree is built, it can be
determined as to which leaf the new item belongs to using logical rules. The prediction for
it will be the mean of the training subset targets of this leaf. Gradient boosting decision
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trees is an ensemble method, which combines several decision trees bk to produce better
predictive performance than utilizing a single decision tree:

f̂ (x) =
T

∑
k=1

ωkbk(x). (9)

In gradient boosting, the base estimators are trained sequentially. Each new one
compensates for the residuals of the previous ones by learning the gradient of the loss
function [28]. After the new base estimator has trained the appropriate weight, ωk is
selected with a simple one-dimensional optimization of the loss function.

As gradient boosting decision trees XGBoost implementation was chosen [35], we
tuned the parameters related to complexity of the model (max_depth, n_estimators), ro-
bustness (learning_rate, colsample_bytree, colsample_bylevel), and regularization (lambda,
alpha).

Hyperparameters Tuning

For each algorithm, it is required to select the appropriate hyperparameters. We used
an open-source hyperparameter optimization framework Optuna [36] to automate the
hyperparameter search with the five-fold cross-validation method.

2.5.4. Evaluation

To estimate how accurately predictive models perform, we calculated the following
regression error metrics on a five-fold cross-validation.

MAE—mean absolute error, has the same dimension as the target variable
(Equation (10)).

sMAPE—symmetric Mean Absolute Percentage Error is a regression metric used to
measure accuracy on the basis of relative errors (Equation (11)).

R2—coefficient of determination (Equation (12)).

MAE(ŷ, y) =
1
n

n

∑
i=1
|yi − ŷi|. (10)

sMAPE(ŷ, y) =
100%

n

n

∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)/2

. (11)

R2(ŷ, y) = 1− ∑n
i=1(yi − ŷi)

2

∑n
j=1(

1
n ∑n

k=1 yk − yj)2
. (12)

To evaluate the applicability of the model in practice and compare it with the operator’s
evaluation of the effectiveness of the injection, we conducted the following computational
experiment. We split the sample into train (75%) and test (25%) and trained the model
to predict the secondary ultimate oil/primary ultimate oil. We chose this scheme for the
experiment since the corresponding dataset contained more objects, and this metric was
the most natural for evaluating projects [11]. The task was to break the test sample into
three groups using the model and compare this partition with the operator’s partition;
not-effective, moderate, and very effective, by analogy with the operator’s grades. We split
the test projects in two ways—the first one according to the operator’s evaluations, in which
the operator’s evaluations delivered at the time of the creation of the base, i.e., when the
project was likely coming to an end. The second way was to predict the secondary ultimate
oil/primary ultimate oil using the model for all test projects, sort projects by the predicted
value, and select three groups in the same proportions. We calculated the total percentage of
oil attributed to waterflooding within each group. We made 50 train/test splits randomly to
calculate the mean and dispersion within each group, and after that, compared them. Thus,
this experiment makes it possible to check the consistency of the model with the operator’s
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evaluations and whether partitioning reflects the actual valuation of the effectiveness of
projects expressed in the percentage of cumulative oil attributable to that project.

3. Results

This section presents the production curve accuracy analysis and a comparison of oper-
ator evaluations in terms of curve shapes versus the presented project’s effect metrics. This
is followed by a report on the performance of ML models to predict several waterflooding
project metrics.

3.1. Accuracy of Production Curves

To assess how accurate the estimated production curves are, we compared the param-
eters that could be calculated from the curves versus those which were available in the
database and were not used to adjust the production curves. We compared the following
three parameters: Primary ultimate oil, secondary recovery curve, and total cumulative
production by 1982.

The sMAPE values presented in Table 3 show that the values calculated from the
production curves and the values estimated by the operator were close. The error metrics
can be interpreted as follows. The estimated curves can be used for further analysis, but it
must be underlined that we use pretty simple methods to evaluate the production curves.

Table 3. Production curve accuracy estimation: symmetric Mean Absolute Percentage Error (sMAPE)
for total cumulative production by 1982, primary ultimate oil and secondary recovery curve.

Parameter Name sMAPE

Cumulative oil as of 1982 14.5%
Primary ultimate oil 27.5%

Secondary ultimate oil 46%

3.2. Estimated Oil Production Curves vs. Operator’s Waterflooding Evaluation

Oil production curve visualization of the waterflooding projects within each of the
“not effective”, “moderate effective”, and “very effective” groups are presented in Figure 5.
The average production curves are highlighted in bold. It can be seen that the better
the operator’s assessment, the more oil attributes to the secondary oil recovery method.
The total percentage of oil produced by primary and secondary methods within each group
are also presented. One can see that the greater the bias towards the secondary method,
the more positively the operator evaluates the project. This indicates that the operator’s
estimate is in agreement with the ratio of oil produced by primary and secondary forces. It
can be seen that, in general, for “not effective”, only 5.7% of oil is produced by secondary
forces, for “moderate”, it is 47.4%, and for “very effective” more than 50%. One can also
notice that the curve that corresponds to secondary production for successful projects is
wider and has a more sharp peak. The results confirms the validity of the curve fitting
method. On the other hand, the consistency of the secondary ultimate oil/Primary ultimate oil
metric with the operator’s effect evaluation is shown.
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Figure 5. The figure shows the estimated oil production curves for waterflooding projects within
“not effective”, “moderate”, and “very effective” group.

3.3. Operator’s Estimation of the Effect and Its Consistency with Target Metrics

Figure 6 shows the histograms obtained during the analysis of the consistency of the
target metrics with the operator’s effect evaluations. The distributions of the secondary
ultimate oil/primary ultimate oil metric are the most distinguishable, which confirm the earlier
conclusion that the employed metric is the most consistent with the operator’s evaluation.
The histograms for the other two metrics are less distinguishable. This may indicate that
these two are less significant for the operator. However, these metrics are calculated using
the estimated production curves, thereby it is difficult to make an unambiguous conclusion.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
log scale

Secondary ultimate oil/Primary ultimate oil
NOT EFF
MODERATE
VERY

0.5 1.0 1.5 2.0 2.5 3.0
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Years to extract 80% of secondary ultimate oil
NOT EFF
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Figure 6. Histogram plot of target metrics for very effective (green), moderate effective (yellow),
and not effective (red) waterflooding projects.

3.4. Data-Driven Model Evaluation

After all the transformations and target value calculations, the number of projects in
the training samples for predicting secondary ultimate oil/primary ultimate oil, oil rate leap,
years to extract 80% of oil attributed to secondary recovery are 1028, 457, and 439, respectively.
The histograms of the target metrics are shown in Figure 7. All computational experiments
were conducted on a laptop (Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz and 8 GB mem-
ory). The trained models generate the predictions for several hundreds of waterflooding
projects within a second on just a modern office laptop, which is orders of magnitudes
faster than the most advanced 2D and 3D reservoir simulators.

Tables 4–6 contain error metrics obtained for three different ML models with optimized
hyperparameters. The secondary ultimate oil/primary ultimate oil gradient boosted decision
trees (GBDTs) showed the most accurate predictions in terms of sMAPE and R2. For the
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other two effect metrics, the accuracies for all three models were approximately the same,
which indicates a linear relationship. Figure A2 (see Appendix A) shows correlations
between the input and output parameters. Comparison of target metrics distribution with
the error metrics on cross-validation allows making the conclusion that, for all three effect
metrics, machine learning models capture the dependence on the input parameters.
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Figure 7. The histograms of the target metrics.

Table 4. ML models sMAPE(%) on five-fold cross-validation. Metrics on training data in brackets.

Target Linear Model Neural Network GBDT

Sec. ult. oil/Prim. ult. oil 68.3 (61.5)% 66.1(59.3)% 65.8 (59.1)%
Oil rate leap 55.6 (51.1)% 56.9 (52.3)% 56.6 (52.4)%

Years to extract 80% of sec. ult. oil 36.6 (32.1)% 36.8 (31.8)% 37.5 (33.6)%

Table 5. ML models MAE on five-fold cross-validation. Metrics on training data in brackets.

Target Linear Model Neural Network GBDT

Sec. ult. oil/Prim. ult. oil 1.3 (0.95) 1.15 (0.88) 1.22 (0.85)
Oil rate leap 4.2 (3.6) 4.3 (3.6) 4.3 (3.5)

Years to extract 80% of sec. ult. oil 5.6 (4.7) 5.5 (4.5) 5.5 (4.6)

Table 6. ML models R2 on five-fold cross-validation. Metrics on training data in brackets.

Target Linear Model Neural Network GBDT

Sec. ult. oil/Prim. ult. oil 0.52 (0.6) 0.55 (0.64) 0.56 (0.66)
Oil rate leap 0.4 (0.44) 0.4 (0.45) 0.42 (0.48)

Years to extract 80% of sec. ult. oil 0.2 (0.25) 0.2 (0.26) 0.22 (0.28)

Although error metrics indicate the ability of models to capture dependency, the prac-
tical value is not evident. Error metrics only give a quantitative understanding of how
accurate the model is. In order to demonstrate a successful practical application, we per-
formed a numerical experiment that simulated the selection of the most successful projects
from a list of potential ones. In this experiment, we used the GBDT model to predict sec-
ondary ultimate oil/primary ultimate oil. This effect metric is the most consistent with operator
evaluations and is calculated directly. Based on the model’s predictions, we classified the
objects from the test sample into three classes and compared them with the operator’s
classification (see Section 2.5.4). Note that the project efficiency evaluations were made by
the operators at the final stage of the project, i.e., the operator had access to the parameters
that directly showed the performance of the project, while the machine learning model
uses only a set of input parameters presented in the table, which are known before the start
of the project. The results of comparing the resulting groups by percentage of oil attributed
to waterflooding is shown in Figure 8.
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Figure 8. Chart shows percentage of oil attributed to waterflooding within groups. The green bars
are related to the ML model classification. The blue bars are related to the operator’s classification.
The height of a bar reflects the average percentage of oil attributed to waterflooding for a related
group by 50 train/test partitions. The black error bars indicate +− standard deviation.

Accordingly, the partitioning of the test set of projects, according to the ML model
into three groups by effectiveness level, is consistent with the qualitative evaluation of
projects made by operators at the final stages of the projects. Thus, we demonstrated the
capability of the model in providing effect estimates for potential waterflooding projects
that are similar to the operator evaluations at the end of the project life.

4. Discussion

In this paper, we showed that experts, in assessing the effectiveness of waterflooding
project, are guided by oil recovery from waterflooding over oil recovery from primary meth-
ods ratio. Analyses of the oil production curves, reconstructed from the data separately for
oil recovery by primary forces and by secondary forces, showed that, for projects evaluated
by an operator as “not effective”, about 5% of the oil was produced with waterflooding.
While projects marked as “moderate effective” and “very effective” gave 30–50% and 40–
60%, respectively (see Figure 5). An analysis of the histograms (see Figure 6) showed that
the operator’s effect evaluations are consistent with secondary ultimate oil/primary ultimate
oil. The consistency with the other two presented effect metrics oil rate leap and years to
extract 80% of oil attributed to secondary recovery is not clearly traced. However, these metrics
can be useful in practice for assessing a waterflooding project, taking into account the
economic environment.

The experiments have shown the ability of ML models to capture the dependence
between a waterflooding project’s performance metrics on its averaged characteristics,
known before the project start. To demonstrate the potential usefulness in practice, we
showed that the ranking of projects from the test sample, according to the predicted
secondary ultimate oil/primary ultimate oil, and further classification (by analogy with the
operator’s assessment) are consistent with the factual project performance. Moreover,
the classification of projects by the operator, who, when making his/her assessment, has
access to data on the production of the project for several decades after its start, is consistent
with the proposed ML model ranking, using data known only before the start of the
project. It suggests that the use of ML models has great potential in practice and can reduce
risks. In addition, it has been shown that a wide range of performance metrics can be
predicted that can be useful at the stage of project evaluation and could help facilitate the
decision-making process.

However, this study is limited to historical data from Texas. To generalize the results,
a wider training sample and additional research are required. Our research confirms the po-
tential of a data-driven approach to predict the effect of IOR projects. Nevertheless, the ML
models presented in the experiments provide a point estimate and do not give confidence
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in the predictions. For practical use, one can apply conformal predictors [14,37] or Bayesian
models [29,38] to estimate the uncertainty of the predictions. Such approaches allow
making predictions for the best and the worst scenarios, which is useful for risk assessment.

5. Conclusions

In this study, we showed that an expert’s effect evaluation made after the start of the
project is most consistent with the secondary ultimate oil/primary ultimate oil effect metric.
We also considered two other metrics that could be useful for assessing: oil rate leap
and years to extract 80% of oil attributed to secondary recovery. For all three metrics, we
trained machine learning models and demonstrated the ability to capture the dependency
on characteristics of the reservoir and the specifics of the oil field development scheme.
Regarding a simulation of a possible practical application scenario: ranking and selecting
the most successful potential waterflooding projects demonstrated huge potential for real
application. However, it should be noted that this study was conducted using historical
data from Texas waterflood projects. It was limited by a certain set of parameters in the
database and the geological features of the area.

There is active research into the application of machine learning in the oil and gas
industry. Our study confirms the positive impact of ML in the oil industry and shows
the potential for this approach for optimization. Nowadays, many IOR/EOR projects are
being carried out worldwide. There are already examples of successful ML applications in
the literature for hydraulic fracturing [17–19]. For such projects, it is crucial to assess the
potential and risks in advance; however, this is not easy to do. It is of practical interest to
optimize, in advance, possible control parameters for waterflooding and other IOR/EOR
projects [39,40]. Future research should focus on applying predictive ML models for more
advanced types of IOR/EOR projects.
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Figure A1. Input parameters distribution.
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