Application of Fourier Sine Transform to Carbon Nanotubes Suspended in Ethylene Glycol for the Enhancement of Heat Transfer
Abstract
:1. Introduction
2. Setting of the Problem via Fractional Modeling Based on Carbon Nanotubes
3. Solutions via Non-Singular Kernel
3.1. Use of Non-Singular Kernel for Energy Equations
3.2. Use of Non-Singular Kernel for Momentum Equations
4. Results with Parametric Discussion and Conclusions
5. Conclusions
- The simulation for testing the different Prandtl numbers Pr dominates the behavior in both cases for the momentum diffusivity.
- A ripple visualization of temperature distribution presented the dependency of temperature distribution with respect to spatial and time domain.
- The comparison of single and multi-walled carbon nanotubes via fractional differential parameter observed the quite similar and identical dispersion and wettability of carbon nanotubes.
- The volume fraction on temperature distribution has enhancing trends for temperature.
- The comparative analysis for temperature and velocity profiles for single and multi-walled carbon nanotubes in which defectiveness of the multi-walled carbon nanotubes results the lowering profiles of temperature distribution and velocity field.
- Fractional velocity field with single walled carbon nanotubes has larger velocity in comparison with other fractional and non-fractional velocity field models.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Nanofluid | Density | ||
Dynamic viscosity | Electrical conductivity | ||
Thermal conductivity | Thermal expansion | ||
Thermal expansion | Heat capacitance | ||
Applied magnetic field | Porosity | ||
Permeability | Ambient temperature of the plate | ||
Wall temperature | Inclined angle | ||
Gravitational acceleration | Letting parameters | ||
Atangana-Baleanu time-fractional differential operator |
Appendix A
References
- Hone, J.; Llaguno, M.C.; Biercuk, M.J.; Johnson, A.T.; Batlogg, B.; Benes, Z.; Fischer, J.E. Thermal properties of carbon nanotubes and nanotube-based material. Appl. Phys. A 2002, 74, 339–343. [Google Scholar] [CrossRef]
- Xie, H.; Lee, H.; Choi, M. Nanofluids containing multiwall carbon nanotubes and their enhanced thermal conductivities. J. Appl. Phys. 2003, 94, 4967–4971. [Google Scholar] [CrossRef]
- Abro, K.A.; Gomez-Aguilar, J.F. Role of Fourier sine transform on the dynamical model of tensioned carbon nanotubes with fractional operator. Math. Methods Appl. Sci. 2020, 1–11. [Google Scholar] [CrossRef]
- Wen, D.; Ding, Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes. J. Thermophys. Heat Transf. 2004, 18, 481–485. [Google Scholar] [CrossRef]
- Abro, K.A.; Laghari, M.H.; Gomez-Aguilar, J.F. Application of Atangana-Baleanu fractional derivative to carbon nanotubes based non-Newtonian nanofluid: Applications in nanotechnology. J. Appl. Comput. Mech. 2020, 6, 1260–1269. [Google Scholar] [CrossRef]
- Halelfadl, S.; Estelle, P.; Aladag, B.; Doner, N.; Mare, T. Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature. Int. J. Therm. Sci. 2013, 71, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Halelfadi, S.; Mare, T.; Estelle, P. Efficiency of carbon nanotubes water based nanofluids as coolants. Exp. Therm. Fluid Sci. 2014, 53, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Kandasamy, R.; Mohamad, R.; Ismoen, M. Impact of chemical reaction on Cu, Al2O3, and SWCNTs-nanofluid flow under slip conditions. Eng. Sci. Technol. Int. J. 2016, 19, 700–709. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, M.; Junaid, K.A. Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects. AIP Adv. 2015, 5, 077148. [Google Scholar] [CrossRef] [Green Version]
- Kashif, A.A.; Ilyas, K. Effects of CNTs on magnetohydrodynamic flow of methanol based nanofluids via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. Therm. Sci. 2019, 23, 883–898. [Google Scholar] [CrossRef] [Green Version]
- Kandasamy, R.; Muhaimin, I.; Mohammad, R. Single walled carbon nanotubes on MHD unsteady flow over a porous wedge with thermal radiation with variable stream conditions. Alex. Eng. J. 2016, 55, 275–285. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Saqib, M.; Alqahtani, A.M. Channel flow of fractionalized H2O-based CNTs nanofluids with Newtonian heating. Discret. Contin. Dyn. Syst.-S 2019, 13, 769–779. [Google Scholar] [CrossRef] [Green Version]
- Abro, K.A.; Jose, F.G.A. Fractional modeling of fin on non-Fourier heat conduction via modern fractional differential operators. Arab. J. Sci. Eng. 2021, 46, 2901–2910. [Google Scholar] [CrossRef]
- Syed, T.S.; Kashif, A.A.; Sikandar, A. Role of single slip assumption on the viscoelastic liquid subject to non-integer differentiable operators. Math. Methods Appl. Sci. 2021, 44, 6005–6020. [Google Scholar] [CrossRef]
- Kashif, A.A. Fractional characterization of fluid and synergistic effects of free convective flow in circular pipe through Hankel transform. Phys. Fluids 2020, 32, 123102. [Google Scholar] [CrossRef]
- Adesanya, S.O.; Souayeh, B.; Rahimi-Gorji, M.; Khan, M.N.; Adeyemi, O.G. Heat irreversibiility analysis for a couple stress fluid flow in an inclined channel with isothermal boundaries. J. Taiwan Inst. Chem. Eng. 2019, 101, 251–258. [Google Scholar] [CrossRef]
- Abro, K.A.; Imran, Q.M.; Ambreen, S. Thermal transmittance and thermo-magnetization of unsteady free convection viscous fluid through non-singular differentiations. Phys. Scr. 2020, 96, 015215. [Google Scholar] [CrossRef]
- Imran, Q.M.; Kashif, A.A.; Muhammad, A.S.; Asif, A.S. Functional shape effects of nanoparticles on nanofluid suspended in ethylene glycol through Mittage-Leffler approach. Phys. Scr. 2020, 96, 025005. [Google Scholar] [CrossRef]
- Abro, K.A.; Mehwish, S.; Abdon, A.; Jose, F.G.A. Thermophysical properties of Maxwell Nanoluids via fractional derivatives with regular kernel. J. Therm. Anal. Calorim. 2020. [Google Scholar] [CrossRef]
- Aziz, U.A.; Samia, R.; Samina, S.; Kashif, A.A. Fractional Modeling and Synchronization of Ferrouid on Free Convection Flow with Magnetolysis. Eur. Phys. J. Plus 2020, 135, 841–855. [Google Scholar] [CrossRef]
- Qasim, A.; Samia, R.; Aziz, U.A.; Kashif, A.A. A mathematical model for thermography on viscous fluid based on damped thermal flux. Zeitschrift für Naturforschung A 2021, 76, 285–294. [Google Scholar] [CrossRef]
- Qasim, A.; Samia, R.; Aziz, U.A.; Abro, K.A. Thermal investigation for electrified convection flow of Newtonian fluid subjected to damped thermal flux on a permeable medium. Phys. Scr. 2020, 95, 115003. [Google Scholar] [CrossRef]
- Kashif, A.A. Role of fractal-fractional derivative on ferromagnetic fluid via fractal-Laplace transform: A first problem via fractal–fractional differential operator. Eur. J. Mech. B Fluids 2021, 85, 76–81. [Google Scholar] [CrossRef]
- Muhammad, B.R.; Abro, K.A.; Khadijah MAbualnaja Akgul, A.; Aziz, U.R.; Muhammad, A.; Hamed, Y.S. Exact solutions involving special functions for unsteady convective flow of magnetohydrodynamic second grade fluid with ramped conditions. Adv. Differ. Equ. 2021, 2021, 408. [Google Scholar] [CrossRef]
- Abro, K.A.; Atangana, A. A computational technique for thermal analysis in coaxial cylinder of one-dimensional flow of fractional Oldroyd-B nanofluid. Int. J. Ambient Energy 2021, 1–17. [Google Scholar] [CrossRef]
- Aziz, U.A.; Mashal, A.; Naeem, U.; Sohail, N.; Kashif, A.A. Thermal analysis of oblique stagnation point low with slippage on second-order fluid. J. Therm. Anal. Calorim. 2021. [Google Scholar] [CrossRef]
- Imran, S.; Shah, N.A.; Abro, K.A. Thermography of ferromagnetic Walter’s-B fluid through varying thermal stratification. S. Afr. J. Chem. Eng. 2021, 36, 118–126. [Google Scholar]
- Saqib, M.; Kasim, A.R.M.; Mohammad, N.F.; Ching, D.L.C.; Shafie, S. Application of fractional derivative without singular and local kernel to enhanced heat transfer in CNTs nanofluid over an inclined plate. Symmetry 2020, 12, 768. [Google Scholar] [CrossRef]
- Kashif, A.A.; Abdon, A. Synchronization via fractal-fractional differential operators on two-mass torsional vibration system consisting of motor and roller. J. Comput. Nonlinear Dyn. 2021. [Google Scholar] [CrossRef]
- Abro, K.A.; Abdon, A. Strange Attractors and Optimal Analysis of Chaotic Systems based on Fractal-Fractional Differential Operators. Int. J. Model. Simul. 2021, 1–9. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Kashif, A.A. Numerical study and chaotic oscillations for aerodynamic model of wind turbine via fractal and fractional differential operators. Numer. Methods Part. Differ. Equ. 2020, 1–15. [Google Scholar] [CrossRef]
- Ali, K.A.; Atangana, A. Numerical and mathematical analysis of induction motor by means of AB–fractal–fractional differentiation actuated by drilling system. Numer Methods Part. Differ. Equ. 2020, 1–15. [Google Scholar] [CrossRef]
- Ullah, A.; Selim, M.M.; Abdeljawad, T.; Ayaz, M.; Mlaiki, N.; Ghafoor, A. A magnetite-water-based nanofluid three-dimensional thin film flow on an inclined rotating surface with non-linear thermal radiations and couple stress effects. Energies 2021, 14, 5531. [Google Scholar] [CrossRef]
- Mostafizur, R.M.; Rasul, M.G.; Nabi, M.N. Energy and exergy analyses of a flat plate solar collector using various nanofluids: An analytical approach. Energies 2021, 14, 4305. [Google Scholar] [CrossRef]
- Kashif, A.A.; Abdon, A.; Jose, F.G.A. An analytic study of bioheat transfer Pennes model via modern non-integers differential techniques. Eur. Phys. J. Plus 2021, 136, 1144. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souayeh, B.; Ali Abro, K.; Alfannakh, H.; Al Nuwairan, M.; Yasin, A. Application of Fourier Sine Transform to Carbon Nanotubes Suspended in Ethylene Glycol for the Enhancement of Heat Transfer. Energies 2022, 15, 1200. https://doi.org/10.3390/en15031200
Souayeh B, Ali Abro K, Alfannakh H, Al Nuwairan M, Yasin A. Application of Fourier Sine Transform to Carbon Nanotubes Suspended in Ethylene Glycol for the Enhancement of Heat Transfer. Energies. 2022; 15(3):1200. https://doi.org/10.3390/en15031200
Chicago/Turabian StyleSouayeh, Basma, Kashif Ali Abro, Huda Alfannakh, Muneerah Al Nuwairan, and Amina Yasin. 2022. "Application of Fourier Sine Transform to Carbon Nanotubes Suspended in Ethylene Glycol for the Enhancement of Heat Transfer" Energies 15, no. 3: 1200. https://doi.org/10.3390/en15031200
APA StyleSouayeh, B., Ali Abro, K., Alfannakh, H., Al Nuwairan, M., & Yasin, A. (2022). Application of Fourier Sine Transform to Carbon Nanotubes Suspended in Ethylene Glycol for the Enhancement of Heat Transfer. Energies, 15(3), 1200. https://doi.org/10.3390/en15031200