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Abstract: In recent times, wireless energy transfer has become an effective solution to charge devices
due to its efficiency and reliability. In a typical Wireless Rechargeable Sensor Networks (WRSN),
wireless energy transfer technique can solve the energy depletion problem with the aid of a Wireless
Charging Vehicle (WCV), thereby enabling the network to extend its lifetime. However, sensor
nodes in a WRSN still have their energies depleted before it gets replenished by the WCV. In this
paper, we proposed a scheme that prioritizes sensor nodes for charging and also developed efficient
algorithms to improve on existing charging schemes so as to extend the lifetime of the WRSN. Firstly,
an inspection algorithm was developed to visit and inspect sensor nodes in the network so as to
determine the sensor nodes to charge. Secondly, a greedy charge algorithm was introduced to
ascertain the shortest distance the WCV needs to travel and, lastly, an energy for nodes’ algorithm
was proposed to determine the stopping point and when the WCV needs to return to the base station.
Simulation experiments were also conducted to determine the performance of our scheme. The
simulation experiments revealed that our proposed scheme made significant improvements when
compared to other schemes in literature using several metrics.

Keywords: charging; energy efficiency; charging efficiency; WRSN; cyber-physical systems; WCV

1. Introduction

As the need for a more sustainable network continues to become more influential and
significant, Wireless Sensor Networks (WSNs) in cyber-physical systems are seen as an
ideal technology for data collection in various fields ranging from agricultural, military,
and medical services to industrial production [1]. However, the network energy constraint
and battery power drain in sensor nodes has been the key issues that prevents WSNs
to be operational for an unlimited period of time and also limits its applications [2,3].
Replacing sensor nodes when energy is depleted is not only a cumbersome task but a
very expensive venture and sometimes quite harmful to the environment [4]. A WSN that
possesses a battery recharging capabilities technique, which is a Wireless Rechargeable
Sensor Networks (WRSNs), has appeared to be a smarter technological choice as a result of
lots of recent research.

With the recent breakthrough in technology leading to the emergence of WRSNs,
Wireless Energy Transfer (WET) technology ensures that energy is easily transferred to
sensor nodes in a WRSN without difficulty. The fundamental principle of WET is dependent
upon magnetically coupled resonance [5] in which two self-resonators that possess similar
resonance frequency can easily and efficiently transfer energy over a considerable amount
of distance. This technology has been widely used in body sensor networks, transportation
systems, cellular phones, and many more. Remarkably, this innovative technology is
considered safe and not vulnerable to the surrounding environment. When matched with
similar wireless energy transfer technologies such as electro-magnetic radiation [6], it is
observed that magnetic resonant coupling has several advantageous features including no
line-of-sight requirements, higher energy conversion, and higher transmission distance.
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In a typical WRSN, wireless charging vehicles (WCVs), sometimes called mobile
charging robots (MCRs), are often relied upon to replenish energies of all rechargeable
sensor nodes [7]. Hence, it is very imperative for these WCVs to charge depleting energy
nodes before their battery energy gets exhausted. Else, sensor nodes with depleted energies
would not be able to replenish their energies with the aid of WCV, thereby reducing
the lifespan of the network. This problem can, however, be resolved by establishing
suitable scheduling algorithms to charge sensor nodes [8,9]. However, which suitable
scheduling procedure to use at different times becomes a major problem. This, however,
was behind our motivation for this paper in delivering efficient and suitable scheduling
and charging algorithms so as to effectively replenish depleting energies in sensor nodes
of a WRSN. Various works in literature have distinguished these scheduling strategies
into two different classes: deterministic and non-deterministic approaches [10–13]. In the
deterministic approach, charging individual sensor nodes in the WRSN is done periodically
and this method does require explicit network information such as energy status and
exact node location for its workability. However, this information can be very difficult
or almost impossible to obtain, making it unfit for practical applications and large-scale
deployment [3,14–16].

On the contrary, non-deterministic approaches are usually available whenever re-
quired as long as individual sensors forward their charging request to the WCV when
they are running extremely low on energy levels or when the level of energy is lower
than a certain threshold [17]. When energy-charging requests are received, WCV will
automatically reorganize the order of received charging tasks, choose the optimal sensor to
charge, and then proceed. However, the non-deterministic approaches come in various
forms but the core difference is the number of WCVs available for charging. In as much as
various solutions have been proposed to curb issues relating to non-deterministic methods,
proposed multiple WCVs’ models have, however, seemed to be quite expensive, while
singular WCVs’ models may have induced lengthy delay in practical charging.

These above detailed proposals in practicality may address only a fraction of WRSNs’
energy issues and might be unable to fulfil the frequent charging demands of the sensor
nodes in the network, which may eventually lead to a shorter lifetime of the network.

In as much as the non-deterministic approach is more feasible and advantageous,
there are still some key shortcomings that cannot be ignored. These are:

(1) Deciding on which sensor nodes to charge if all the sensor nodes cannot be charged
at that particular moment is a key problem that requires a solution so as to fulfil the
charging demands of sensors in a WRSN of a cyber-physical system.

(2) The best stopping point for a WCV to charge a sensor node to a certain level and
move to the next priority node in order to avoid the charging of one node over the
other, thereby ensuring there is enough energy left in the WCV to charge the next
node so as not to encounter a short lifetime of the WRSN.

(3) Existing disturbances in the system due to finding the ideal path for charging and
the ability for WCVs to reach locations that are difficult to access and the use of high
energy while in motion or flight.

(4) Previous approaches make use of a charging request, which is primarily tied to spatial
priority. This, however, creates a severe weight on the spatial relations, consequently
leaving some distant sensor nodes running out of battery energy.

In a typical WRSN, it is very imperative to detect which sensor nodes have low
energies and the optimal charge stopping point for the best charging approach as this will
lead to an increase in the life span of the network. This, however, strengthens the necessity
to detect the sensor nodes with the lowest energies swiftly and at a very low cost, and this
was the main motivation for this work. The key contributions of this paper are highlighted
as follows.

• We present efficient algorithms that are capable of boosting the life span of a typical
WRSN without any previous knowledge of sensor nodes’ energy levels.
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• We also developed an algorithm to ensure sensor nodes are prioritized and served
based on their importance and contribution to the inspection tasks.

• To determine the suitable sensor nodes for optimal charging by introducing a sensor
node selection algorithm that assists in reducing the running out of battery energy.

• To carry out experimental simulations of the proposed scheme and compare it with
other scheduling schemes to ascertain its performance.

It is very essential to determine the exact energy levels of sensor nodes in a WRSN
so as to effectively charge the network nodes. One of the major strengths of this paper
is the ability to swiftly detect the energy levels of nodes in the network and then charge
afterwards. Inspecting and charging sensor nodes in a WRSN based on the original energy
information collected during the time of inspection facilitates the preservation of energy
and robustness of efficient WRSN charging. This paper also takes into account that there
might exist some low-energy sensor nodes in the network that were not previously charged
or overlooked by the WCV; hence, a further inspection was carried out to identify the
lowest-energy nodes that need charging.

The structure of the paper is outlined thus: Section 2 reviews the relevant literature
related to this work; Section 3 describes the network and system models; Section 4 narrates
the energy consumption, the problem to be solved in the WRSN; and our approach in detail;
Section 5 presents the simulation analysis and discussion of our results, while Section 6
concludes the paper and suggests future works.

2. Related Work

In a bid to increase the lifetime of a WRSN, various innovative technologies have been
steadily introduced to wirelessly charge sensor nodes in the network even though these
technologies are still in their initial stages. Some of these previous efforts can be split into
several categories based on the kind of wireless deployment techniques being used and the
charging method that was adopted.

2.1. Energy Replenishment

There have been different approaches proposed in replenishing the energy levels of
sensor nodes in WRSN. As an example, the works proposed in [18–22] employed energy
harvesting strategies to charge sensor nodes in the WRSN either by solar cells, vibration,
temperature difference, or wind sources. It was, however, noticed that energy harvesting
techniques can become quite hard to control and unpredictable [23]. Wireless energy
transfer strategies from a battery-based energy source, which is more predictable and
controllable, was further researched. Among those approaches is the employment of
a wireless charging method using radio frequencies to harvest energies from dedicated
transmitters and ambient RF energies [24,25].

Employing immobile charging stations possessing partial coverage can also play a
huge role in extending the life span of WRSNs, as demonstrated in [26]. Single or multiple
base stations or charge stations can also be employed to boost the lifespan of a movable
WRSN, as outlined in [27,28], but the challenge of maximizing energy becomes a daunting
task. A single WCV can also be used in an immobile, based WRSN to periodically navigate
through the network and recharge sensor nodes in the WRSN or multiple WCVs can be
employed depending on the size of the network, as in [29]. To further replenish energy in
the network, a scheme was proposed in [30] that only needs to examine a portion of the
sensor nodes in the network, which, consequently, led to a significant decrease in energy
consumed in the network.

Several charging solutions that can collaboratively be achieved by the utilization of
WCVs for charging sensor nodes were analyzed in [13,16,31–33]. It was, however, shown
that it is imperative to opt for a cooperative charging scheme so as to fulfil the varying
demands for topology and node properties. In as much as these cooperative charging
approaches seem to efficiently tackle the effects of uncertainty factors in WRSNs, however,
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it still overlooks the authenticity of demands regarding charging information and demands
due to real-time transmission [34].

In terms of scalability in WRSNs, the employment of multiple WCVs for recharg-
ing by determining their recharging and coordination activities was carried out in [35].
Additionally, in the work by Ye et al. in [36], an approximation algorithm and scalable
heuristic solution were proposed to reduce the energy consumption in a WRSN. As a
WRSN continues to scale and grow larger, the cost of propagating data also rises; hence,
the works in [37,38] made efforts to propose algorithms to decrease the energy of sensor
nodes on reporting data to the sink. Similarly, an efficient energy exploration approach
was proposed in [39] to mitigate the problem associated to the cost of collecting energy
information in a WRSN. Unfortunately, while several WCVs were used in this approach, it
was under the assumption that every WCV in the network would require a full information
and knowledge of the sensor nodes and communication protocols in the network.

2.2. Optimizations

The optimization of energies in a WRSN is also an area of active research. In [40],
an optimization framework was proposed by cooperatively optimizing entities such as
the charging time, traveling path, and flow routing, while the same authors, in [10],
subsequently developed an optimization problem that included stopping points. However,
charging time of the WCV is considered as zero. A practical optimization problem with
flow rate was formulated in [30] so as to determine the rate of energy consumed in a WRSN.
The system was further designed to combine the period used for charging each sensor
node and the traveling path of each cycle. In [41], an optimization problem was created
in which the WCV departure time and the overall cycle time were maximized in order to
address the charging problem in a WRSN. To address the problem associated with sensor
selection and energy allocation, the authors in [42] proposed an algorithm that maximized
a monotonous submodular function, which was subjected to a general routing constraint
while achieving a higher approximation ratio in WRSNs.

In a bid to optimize the charging scheduling algorithm of a WRSN, a K-covering
redundant nodes’ inactive scheduling algorithm was proposed by utilizing numerous
WCVs to replenish energies so as to prevent exhaustion from nodes in the network [43]. A
WRSN optimizing scheduling problem was also studied based on the condition of random
events. The system’s performance was also optimized using the quantities of data transfer
protocol, WCV’s behavior, coordination control, and the likes [44,45]. In [46], the authors
developed a K-means cluster algorithm to calculate the energy core set while an optimizing
algorithm was proposed to convert the energy charging stage into a task splitting model
so as to increase its energy efficiency. Additionally, in [47], another K-means clustering
algorithm was introduced to balance the energy consumption among sensor nodes, while
a dynamic selection algorithm was proposed to charge sensor nodes in order to reduce the
charging time spent in the network. There are quite some issues in most of the models, as
mentioned above, and to solve these problems to an extent, we proposed a set of algorithms
that can inspect the network and make decisions on the best possible sensor nodes to charge.
The symbols and their interpretations as used in this article are documented in Table 1.

Table 1. Symbols and definition.

Nomenclature

N set of all the sensor nodes

Nre set of all residual energy levels

Nd Distance between sensor nodes

BS Base station

EC Sensor node’s battery capacity

Et MCV’s battery capacity
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Table 1. Cont.

Nomenclature

τ Cost of centrally localizing the WCV on a sensor node

µ Target energy of a sensor node to charge

Ce Total energy consumed during charging

λ Inspection termination point

Cr Energy required to return to BS

Z Energy level of the currently inspected sensor node

Ω Optimal WRSN time increase

R Total energy consumed during moving

ψr WCV’s moving energy consumption per move

s Discharge rate for sensor node

v(n) Sensor node’s discharge function

δ Set of sensor nodes that requires charging

h Number of bits sent or received

Φ Optimal inspection terminal point

Fe Sensor node at full energy

3. Network and System Models

We considered a WRSN, which is made up of rechargeable sensors, a base station
(BS), and a wireless charging vehicle. The base station was in charge of gathering data
from sensor nodes and could also act as a charging center for the WCV. The BS employed a
Wireless Power Transfer (WPT) technology to replenish exhausted WCVs that had serviced
the sensor nodes with their energies, and these nodes were also equipped with energy-
receiving coils for receiving energy from the WCVs. We also considered a line network
topology, as illustrated in Figure 1 and also as adopted in [48], with the assumption that
when a path plan was already designed, a network topology of any kind can simply be
reformulated to a line network topology according to its path plan. We also adopted an
Unmanned Aerial Vehicle (UAV) as our WCV to charge the sensor nodes in the network.
This was more effective since our UAV could seamlessly and quickly navigate the area.
This kind of setup will also be suitable and a lot more practical when operated in line-based,
cyber-physical systems such as railways, oil lines, border protection, bridges, and power
lines. We also took into consideration the term WRSN lifespan to be the percentage of time
in which the network is in existence [49].

Figure 1. A typical WRSN with a WCV charging a low-energy sensor node.
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In this section, the framework for the WRSN is presented while the proper definition
of our problem is analyzed. In the network, there existed a BS and a set of sensor nodes up
to the number p.

N =
{

n1, n2, n3 . . . np
}

(1)

where the nodes are independent and each of the nodes ni have a residual energy level
rei and with the assumption that each of the sensor nodes in the network possesses the
same battery capacity Ec. Then, the set of sensor nodes with residual energy levels is then
represented as

Nre =
{

re1, re2, re3 . . . rep
}

(2)

The set representing the distance from a sensor node nn−1 to nn with each of the nodes
positioned at a distance di from the preceding sensor node is given as

Nd =
{

d1, d2, d3 . . . dp
}

(3)

In the system, a single WCV with a total energy of Et was employed to charge a subset
of sensor nodes. The energy required to position the WCV charging coils centrally to the
sensor node’s receiver coil is given as τ, which localizes the WCV and the sensor node
concentrically. While the target energy level of each sensor node that needs to be recharged
is given as µi, the total number of sensor nodes to be charged is W and the total localization
and charge energy is Ce, which is given as

Ce = W × τ +
W

∑
i=0

µi − rei (4)

The maximum possible subset of sensor nodes that the WCV can charge to accomplish
the maximum possible extension of life is defined as Z, while the point allowing the WCV
to get to the farthest sensor node in Z is given as Φ. Hence,

W = |Z|, while,
Z = {nt1, . . . , ntW} ⊂ N (5)

Then,

Φ =
tW

∑
i=1

di (6)

When Z is fully charged, it leads to the maximum life extension of the WRSN, given
as Ω. Hence, the total moving energy consumed by the WCV is regarded asR and this is
inclusive of the energy required to reach the farthest sensor node and return to BS, with
the assumption that the unit moving cost is ψr. Then

R = ψr ×Φ (7)

While the energy constraint formula is given as

Et ≥ Ce +R (8)

Each of the sensor nodes ni, discharges its energy at a rate denoted as s or possibly
zero, depending on the discharge probability p and discharge function v. A fixed discharge
probability was, however, used in each run, also as used in [50].

v(n) =
{

s, i f node is activated
0, otherwise.

(9)
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We can now express the lifetime of the network as the possible amount of time until b
sensor nodes finally reach a residual energy of zero:

b =
p

∑
i=1

f (ni), (10)

where

f (ni) =

{
1, i f rei = 0
0, otherwise.

(11)

The objective, however, was to create an increment in the network’s life while finding
the best possible point to cease inspecting and return to BS, λ and the best possible set of
nodes that needs to be charged δ.

4. WRSN Energy Consumption and Probability Model

In a typical WRSN model, a significant amount of energy is consumed during com-
munication activities. In this work, we implemented a simple WRSN energy consumption
model of a sensor node, as also used in [51]. When data with h number of bits are sent or
received, the energy consumption Econ, which is dissipated at a discharge rate of s, can be
given as

Econ = Etx(h, di) + Etx(h) = 2× Edip × h + Eamp × dij (12)

where Edip denotes the energy consumed in sending and receiving each bit and dij indicates
the distance between sender and receiver. Eamp indicates the transmitting amplifier’s energy
consumption while the radio dissipates 50 nJ

bits to run the transmitter and receiver circuitry.
Considering a discharge function v(n) in which the sensor nodes are not active (nodes

are asleep) or active (nodes are awake) with a consuming energy Econ, the sensor nodes’
energy levels are always decreasing. We can assume that the sensor nodes discharge
randomly and independently of each other, in which random events and usage can trigger
the discharge. We can then define Tt as the amount of time that has elapsed since the sensor
node was at full energy Fe.

With the assumptions that

(1) Every sensor node in the network starts on the same energy level Fe,
(2) Every sensor node possesses the same maximum energy capacity Ec,
(3) The energy capacity of the WCV will always be more than the total energy requested

by the sensor nodes,
(4) Every sensor node has the same discharge rate s,
(5) There is a probability p that each sensor node discharges at a unit time,
(6) The energy level of the presently inspected sensor node is at Z,

and with the discrete nature of v, we can then compute the probability that a node
exists at a different energy level in the network, the expected energy levels, and the
probability bounds.

The discrete levels l that are required by a sensor node to reach an energy level Z is
given as

l =
(Fe − Z)

v
(13)

The probability that exactly l is discharged in a sensor node can then be represented as(
Tt
l

)
pl(1− p)(Tt−l) (14)
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Bernoulli trials’ formula is employed, with success labelled as p and failure as 1− p.
The probability that a sensor node with energy lesser than or equal to Z can be expressed as

χ =
Tt

∑
j=l

(
Tt
j

)
pj(1− p)(Tt−j) (15)

In order to ensure that the probabilistic value gives us an accurate prediction and to
also avoid mistakes in calculating each computed probability component as zero, we define
an upper probabilistic bound, which will assist in determining the maximum permissible
values without necessarily considering the exact probability and variance. Putting the
probability discharge function into consideration, each node’s expected level of charge
E(C) can be modeled as

E(C) = Fe −
Tt

∑
l=1

p(l)v(l) = Fe −
Tt

∑
l=1

(p× s + (1− p)× 0) (16)

E(C) = Fe − psTt (17)

In a bid to identify that the sensor node’s probability is at a particular level of energy,
or below a particular level of energy Z, a tail probability estimation method used in [52]
can be employed. The ideal method that can be employed in this scenario is the Chernoff
Bound [53,54] since it possesses a tighter bound when compared to Markov inequality. The
conditions for Chernoff Bound are, however, satisfied, and employing the multiplicative
form of the bound, the upper bound probability can be expressed as

Pr[C ≤ (1− ε)E(C)] ≤ re−
ε2
2 E(C) (18)

where ε can be represented as

ε =
E(C)− Z

E(C)
(19)

where Z is always less than E(C). The upper bound probability of a sensor node at a
particular level of energy ≤ Z is represented as

Pr[C ≤ Z] ≤ e
(Fe−psTt−Z)2

2(psTt−Fe) (20)

Inspection, Greedy Charge, and Energy for Nodes’ Algorithms

We developed suitable algorithms with the objectives of identifying the quickest
distance the WCV had to travel λ and the ideal set of sensor nodes that were to be charged
δ when travelling in order to ensure that the life span Ω of the WRSN was increased. We
first proposed the Inspection Algorithm 1, which can successfully inspect the nodes in a
sequential manner and makes certain decisions after exploring each sensor node in the
network. After the examination of each sensor node, the algorithm determines the subset
of the examined nodes to charge, decides when and if to examine sensor nodes in the
network or return to the BS, and subsequently charge nodes on its way back to the BS.

This Inspection algorithm also assists in directing the WCV to find suitable sensor
nodes to charge and also when to leave and return to the BS and calculate the energy
Cr required to return to the BS at all times. The algorithm can successfully create a
charging list, the energy that is needed to charge, and the new energy level. The sub-
sets of visited nodes to charge δ is calculated by introducing another algorithm (Greedy
charge algorithm). In line 8, if the WCV still has enough energy to inspect another node,
then the WCV automatically examines the next node and so on until no energy is left
and it returns to the BS with a constantly updated Cr. The inspection is then termi-
nated at λ while the WCV returns to the base station and charges the sensor nodes in δ.
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Algorithm 1: Inspection Algorithm
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To determine δ, we introduced another algorithm (Greedy Charge Algorithm), which
is our Algorithm 2. This algorithm is somewhat similar to the Greedy algorithm applied
in [55], which also used a line topology. The difference between both algorithms is in the
localization cost, discharge behavior, and knowledge requirements. In our greedy charge
algorithm, it was assumed that the WCV moves in a fast pace across the network from and
to the BS before there is a discharge between two sensor nodes. The primary aim of the
algorithm was to sort out the sensor nodes in the network, using their energy levels (line 2)
and including the lower energy nodes into the set of nodes that is needed to be charged
(line 13–15). This is carried out until the WCV runs out of energy to obtain the set of nodes
that is expected to be charged

..
δ to the next energy level.

Algorithm 3, Energy for Nodes, was implemented to determine whether further
inspection should be carried out or terminated and to also determine a stopping point λ
in which the algorithm returns False. The decision to implement Algorithm 3 in line 10
of Algorithm 1 was a function of the amount of energy left in the WCV. The energy left in
the WCV can be determined by subtracting the energy for charging Ce and the energy Cr
required to return to the BS from the energy of the WCV.
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Algorithm 2: Greedy Charge Algorithm
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This algorithm builds on the perception that there might still be low-energy sensor
nodes in the network; hence, further inspection needs to be done to identify the lowest-
energy nodes that need charging in δ. The Energy for Nodes’ Algorithm employs the
probabilistic bound equation in Equations (18) and (20) to compute the probability prLow
of a sensor node currently at an energy level that is equal to or lower than the lowest
energy level examined in δ. Hence, the main function of the prLow is to ascertain if further
inspection should be carried out or otherwise terminated.

A minimum threshold mthreshold is also created by the algorithm. This threshold
must be exceeded so as to ensure that inspection continues and to make sure that low-
energy nodes are found with a guarantee that at least a sensor node is charged. In the
algorithm process, it is ensured that the total energy for charging Ce is not lesser than the
energy required to recharge at least the lowest energy sensor node in δ, as expressed in
lines 5–6. Should the energy utilized in charging be only used in charging a single sensor
node, then the inspection process is terminated since that might not necessarily lead to an
increase in the life of the network.
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Algorithm 3: Energy for Nodes’ Algorithm
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5. Simulation Analysis and Discussion

We undertook simulation experiments so as to evaluate and analyze the performance
of our proposed scheme. We performed a comparability study of our scheme with two
other different state-of-the-art charging models in literature, which were the HCCA-TP
charging model in [46] and the DBCS charging model in [47]. These models adopted
clear and well-defined network topologies instead of complex topologies that are often
initiated by network dynamics requiring collaborative charging mechanisms and large
re-computational cost. The simulation was run on MATLAB (R2014a 64-bit) employing
real-life WRSN parameters obtained from the work in [56], and this is shown in Table 2.

Table 2. Simulation Parameters.

Parameters Values

Set of working nodes 5

Total Energy of WCV (Et) 25 WH

Sensor node Energy capacity (Fe) 2.34 WH

Sensor node energy discharge rate (s) 1.625 mWH

Energy consumption rate for WCV hovering 92.28 W

Energy consumption rate for WCV flight 121.91 W

Travelling Speed of WCV 6 m/s

Centralizing WCV with a node (τ) 92.28 W × 36 s

mThreshold 0.17
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From Table 2, the size of the set of nodes was set at 5, while the moving speed of the
WCV with a total energy of 25 WH was set at 7.33 m/s. The travelling speed was set at
6 m/s since it proved to be the optimal speed to attain an increase in the life of the network,
i.e., the optimal speed that was not too fast to quickly deplete the energy of the WCV and
not too slow to get to the sensor node to be charged. The WCV charged one node at a time
and charged several nodes on a single round trip.

Firstly, we analyzed the performance of the network using the network’s surviving
rate as an indicator and compared it with the HCCA-TP and DBCS schemes, as shown
in Figure 2. From the figure, it can be seen that, as the network stayed in operation, the
nodes’ survival rates of the HCCA-TP scheme continued to fluctuate and they were a
bit unstable, while the DBCS scheme’s were mostly on the decline. This was obviously
due to the fact that, at a specific period of time, factors such as travelling distance and
charging time brought about an increase in the energy consumed by the WCV, thereby
making it unable to charge more nodes in the network. Our scheme, however, went further
down the network to discover low-energy sensor nodes that required charging, thereby
increasing the survival rate of the sensor nodes in the network. In our scheme, no energy
was, however, wasted in charging high-energy nodes. Additionally, from the figure, it can
be observed that, at a certain point in time, the survival rate attained 100%, which indicated
that low-energy sensor nodes were charged effectively.

Figure 2. Survival rates of sensor nodes in the network.

In a bid to assess the efficiency of the network, the charging throughput was employed
as it was seen as a key and major indicator for the efficiency and schedulability of the
algorithms used. In this instance, the charging throughput was defined as the number
of sensor nodes that the WCV charged successfully per a unit time. A lower throughput
indicated a higher charging loss and a lower charging efficiency, while a higher throughput
indicated otherwise. Figure 3 shows the charging throughput of three different schemes. It
is seen that there was a gradual and steady improvement in the charging throughput of our
proposed scheme when the network was in operation. There was also a slight improvement
for both the HCCA-TP and DBCS schemes but with a lower throughput when compared to
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our proposed scheme. Generally, it was also noticed that there was a lower throughput at
the start of the network; however, as the energies of sensor nodes were replenished, the
network gradually began to maintain stability.

Figure 3. Comparing the charging throughputs of the various schemes.

In Figure 4, the average servicing time for the various schemes is shown. The average
servicing time was defined as the time taken by the WCV to complete a successful charging
task. This also encompassed the time spent to charge a current sensor node and the time
it took the WCV to travel from the previous sensor node to the current node. It can be
deduced from the figure that the average service time of our proposed scheme was lower
than that of the HCCA-TP and DBCS schemes and tended to be a lot more stable after a
certain period of time. That is to say that, while our proposed scheme got to low-energy
sensor nodes on time, it also spent less time in completing the charging task, hence greatly
improving the energy efficiency of the network.

The impact on the performance of the network when the travelling speed of the WCV
was varied and adjusted is shown in Figure 5. The travelling speed of the WCV was a
function of how many numbers of nodes it can serve within a certain period of time. Hence,
we deduced that, at a relatively fast travelling speed, there were more sensor nodes that
could be charged, which would eventually lead to an improved surviving rate of the nodes.
From Figure 5, as expected, it is seen that, as the travelling speed increased, the surviving
rates of all the schemes also increased. When the schemes were compared, it was noticed
that our proposed scheme still performed a lot better than the other two schemes. The
proposed scheme and the two other schemes initially did not get to an optimal level at
lower travelling speeds but, however, stabilized at a certain speed, of 6 m/s. That means
the speed of 6 m/s is the optimal speed in which all the schemes can flourish and perform a
lot better. The HCCA-TP and DBCS schemes were noticed to be quite sensitive to a change
in travelling speeds and this is due to the fact that, at low travelling speeds, there was a lot
of time consumed in the network, which cannot be recovered. With the employment of our
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scheme, the death rate of the sensor nodes in the WRSN can be minimized, providing an
ample time for the replenishment of energy.

Figure 4. Comparing the average servicing times of the various schemes.

Figure 5. The surviving rate at different travelling speeds of WCV.
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6. Conclusions and Future Works

Increasing the lifetime of typical Wireless Rechargeable Sensor Networks (WRSNs)
has been a daunting task in recent times since they continue to grow larger. Overcoming
this challenge, however, will not only render WRSNs a lot more practicable but extremely
adaptable and flexible to growth in the real world. In this work, a set of algorithms was
proposed to inspect which set of nodes to charge, then conveniently and effectively charge
them with the aid of an unmanned aerial vehicle (UAV), which, in this case, was a wireless
charging vehicle (WCV), in order to extend the overall lifetime of the network. We analyzed
the network model, the energy consumption, and probability models and proposed efficient
algorithms to determine and identify the quickest distance the WCV can travel and the set
of sensor nodes that requires charging. The inspection algorithm was introduced to inspect
the sensor nodes in the network and make certain decisions on when to visit and examine
sensor nodes, which subset of sensor nodes to charge, and, lastly, when to return to the
base station. The greedy charge algorithm was proposed to determine the shortest distance
the WCV had to travel and to sort out the sensor nodes based on their energy levels. To
determine whether further inspection is needed and to also determine the algorithm’s
stopping and returning points, an energy for nodes’ algorithm was also proposed. Finally,
simulations’ experiments were carried out to ascertain the performance of our scheme. It
was noticed that our scheme outperformed other schemes with respect to the survival rate,
charging output, average service time, and varying travelling speed. Our proposed scheme
is adaptable and can effectively operate under various network parameters and will be
very practicable in large-scale WRSNs employing a single WCV.

For future works, we will be evaluating our proposed algorithm on a physical wireless
charging vehicle system, implement multiple wireless charging systems with multiple
vehicles on the existing network, and determining their performance. We will also extend
this work into incoporating a larger and richer set of parameters for the sensor nodes’
energy consumption model with respect to the WRSN primary protocols.

Author Contributions: Conceptualization, E.F.O. and K.A.-A.-E.; methodology, E.F.O.; software,
E.F.O.; validation, E.F.O. and K.A.-A.-E.; formal analysis, K.A.-A.-E.; investigation, E.F.O.; resources,
K.A.-A.-E.; data curation, E.F.O. and K.A.-A.-E.; writing—original draft preparation, E.F.O.; writing—
review and editing, K.A.-A.-E.; and E.F.O.; supervision, K.A.-A.-E.; project administration, K.A.-A.-E.;
funding acquisition, E.F.O. and K.A.-A.-E. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the 2021 funds of the Centre for Postgraduate Studies (CPS),
Cape Peninsula University of Technology.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank MTE Khan for all his assistance and efforts.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ali, S.; Al Balushi, T.; Nadir, Z.; Hussain, O.K. Wireless sensor network security for cyber-physical systems. In Studies in

Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2018; pp. 35–63. [CrossRef]
2. Tan, R.; Xing, G.; Liu, B.; Wang, J.; Jia, X. Exploiting data fusion to improve the coverage of wireless sensor networks. IEEE/ACM

Trans. Netw. 2012, 20, 450–462. [CrossRef]
3. Lin, C.; Zhou, Y.; Ma, F.; Deng, J.; Wang, L.; Wu, G. Minimizing charging delay for directional charging in wireless rechargeable

sensor networks. In Proceedings of the IEEE Conference on Information Communication, Baku, Azerbaijan, 29 April–2 May 2019;
pp. 1819–1827. [CrossRef]

4. Tong, B.; Li, Z.; Wang, G.; Zhang, W. On-Demand Node Reclamation and Replacement for Guaranteed Area Coverage in
Long-Lived Sensor Networks. In Quality of Service in Heterogeneous Networks. In Proceedings of the IEEE Conference on
Heterogeneous Networking for Quality, Reliability, Security and Robustness, Las Palmas de Gran Canaria, Spain, 23–25 November
2009; pp. 148–166. [CrossRef]

5. André, K.; Aristeidis, K.; Robert, M.; Joannopoulos, J.D.; Fisher, M.; Sojacic, M. Wireless power transfer via strongly coupled
magnetic resonances. Science 2007, 317, 83–86. [CrossRef]

http://doi.org/10.1007/978-3-319-75880-0_3
http://doi.org/10.1109/TNET.2011.2164620
http://doi.org/10.1109/INFOCOM.2019.8737589
http://doi.org/10.1007/978-3-642-10625-5_10
http://doi.org/10.1126/science.1143254


Energies 2022, 15, 1204 16 of 18

6. He, S.; Chen, J.; Jiang, F.; Yau, D.K.Y.; Xing, G.; Sun, Y. Energy provisioning in wireless rechargeable sensor networks. IEEE Trans.
Mob. Comput. 2013, 12, 1931–1942. [CrossRef]

7. Deng, R.; Zhang, Y.; He, S.; Chen, J.; Shen, X. Maximizing network utility of rechargeable sensor networks with spatiotemporally
coupled constraints. IEEE J. Sel. Areas Commun. 2016, 34, 1307–1319. [CrossRef]

8. Dong, Y.; Li, S.; Bao, G.; Wang, C. An Efficient Combined Charging Strategy for Large-scale Wireless Rechargeable Sensor
Networks. IEEE Sens. J 2020, 20, 10306–10315. [CrossRef]

9. Lin, C.; Guo, C.; Dai, H.; Wang, L.; Wu, G. Near optimal charging scheduling for 3-D wireless rechargeable sensor networks with
energy constraints. In Proceedings of the IEEE International Conference on Distributed Computing Systems, Dallas, TX, USA,
7–10 July 2019; pp. 624–633. [CrossRef]

10. Xie, L.; Shi, Y.; Hou, T.; Sherali, H.D. Making sensor networks immortal: An energy-renewal approach with wireless power
transfer. IEEE/ACM Trans. Netw. 2012, 20, 1748–1761. [CrossRef]

11. Lin, C.; Guo, C.; Deng, J.; Wu, G. 3DCS: A 3-d dynamic collaborative scheduling scheme for wireless rechargeable sensor networks
with heterogeneous chargers. In Proceedings of the IEEE 38th International Conference on Distributed Computing Systems,
Vienna, Austria, 2–6 July 2018; pp. 311–320. [CrossRef]

12. Lin, C.; Guo, C.; Du, W.; Deng, J.; Wang, L.; Wu, G. Maximizing energy efficiency of period-area coverage with UAVs for wireless
rechargeable sensor networks. In Proceedings of the IEEE 16th Annual International Conference on Sensors, Communications
and Networking, Boston, MA, USA, 10–13 June 2019. [CrossRef]

13. He, L.; Gu, Y.; Pan, J.; Zhu, T. On-demand charging in wireless sensor networks: Theories and applications. In Proceedings of
the IEEE 10th International Conference on Mobile Ad-Hoc Sensor Systems, Hangzhou, China, 14–16 October 2013; pp. 28–36.
[CrossRef]

14. Lin, C.; Gao, F.; Dai, H.; Wang, L.; Wu, G. When wireless charging meets fresnel zones: Even obstacles can enhance charging
efficiency. In Proceedings of the IEEE 16th Annual International Conference on Sensors, Communications and Networking,
Boston, MA, USA, 10–13 June 2019. [CrossRef]

15. Lin, C.; Wei, S.; Deng, J.; Obaidat, M.; Song, H.; Wang, L.; Wu, G. GTCCS: A game theoretical collaborative charging scheduling
for on-demand charging architecture. IEEE Trans. Veh. Technol. 2018, 67, 12124–12136. [CrossRef]

16. He, L.; Cheng, P.; Gu, Y.; Pan, J.; Zhu, T.; Liu, C. Mobile-to-mobile energy replenishment in mission-critical robotic sensor networks.
In Proceedings of the IEEE Conference on Computer Communications, Toronto, ON, Canada, 4 May 2014; pp. 1195–1203.
[CrossRef]

17. Ren, P.; Wang, Y.; Du, O. CAD-MAC:A channel-aggregation diversity based MAC protocol for spectrum and energy efficient
cognitive ad hoc networks. IEEE J. Sel. Areas Commun. 2014, 32, 237–250. [CrossRef]

18. Alippi, C.; Galperti, C. An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes. IEEE Trans.
Circuits Syst. I Regul. Pap. 2008, 55, 1742–1750. [CrossRef]

19. Weimer, M.A.; Paing, T.S.; Zane, R.A. Remote area wind energy harvesting for low-power autonomous sensors. In Proceedings of
the 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006; pp. 1–5. [CrossRef]

20. Ottman, G.K.; Hofmann, H.F.; Bhatt, A.C.; Lesieutre, G.A. Adaptive piezoelectric energy harvesting circuit for wireless remote
power supply. IEEE Trans. Power Electr. 2002, 17, 669–676. [CrossRef]

21. Stordeur, M.; Stark, I. Low power thermoelectric generator-self-sufficient energy supply for micro systems. In Proceedings of the
XVI International Conference on Thermoelectrics, Dresden, Germany, 26–29 August 1997; pp. 575–577. [CrossRef]

22. Sudevalayam, S.; Kulkarni, P. Energy Harvesting Sensor Nodes: Survey and Implications. IEEE Commun. Surv. Tutor. 2011, 13,
443–461. [CrossRef]

23. Kansal, A.; Hsu, J.; Zahedi, S.; Srivastava, M.B. Power Management in Energy Harvesting Sensor Networks. ACM Trans. Embed.
Comput. Syst. 2007, 6, 32–41. [CrossRef]

24. Nimo, A.; Beckedahl, T.; Ostertag, T.; Reindl, L. Analysis of Passive RF-DC Power Rectification and Harvesting Wireless RF
Energy for Micro-watt Sensors. AIMS Energy 2015, 3, 184–200. [CrossRef]

25. Xie, L.; Shi, Y.; Hou, Y.T.; Lou, W.; Sherali, H.D.; Midkiff, S.F. Multi-node Wireless Energy Charging in Sensor Networks.
IEEE/ACM Trans. Netw. 2015, 23, 437–450. [CrossRef]

26. Chiu, T.C.; Shih, Y.Y.; Pang, A.C.; Jeng, J.Y.; Hsiu, P.C. Mobility-aware charger deployment for wireless rechargeable sensor
networks. In Proceedings of the 2012 14th Asia-Pacific Network Operations and Management Symposium (APNOMS), Seoul,
Korea, 25–27 September 2012; pp. 1–7. [CrossRef]

27. Dai, H.; Xu, L.; Wu, X.; Dong, C.; Chen, G. Impact of mobility on energy provisioning in wireless rechargeable sensor networks.
In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 7–10 July
2013; pp. 962–967. [CrossRef]

28. Wan, P.; Wu, B.; Cheng, Y.; Wang, G. Charging base Stations Deployment Algorithms for Wireless Rechargeable Sensor Networks.
In Proceedings of the 2019 IEEE Wireless Power Transfer Conference (WPTC), London, UK, 18–21 June 2019; pp. 475–478.
[CrossRef]

29. Wang, C.; Li, J.; Ye, F.; Yang, Y. Multi-vehicle Coordination for Wireless Energy Replenishment in Sensor Networks. In Proceedings
of the 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, Boston, MA, USA, 20–24 July 2013;
pp. 1101–1111. [CrossRef]

http://doi.org/10.1109/TMC.2012.161
http://doi.org/10.1109/JSAC.2016.2520181
http://doi.org/10.1109/JSEN.2020.2990641
http://doi.org/10.1109/ICDCS.2019.00068
http://doi.org/10.1109/TNET.2012.2185831
http://doi.org/10.1109/ICDCS.2018.00039
http://doi.org/10.1109/SAHCN.2019.8824918
http://doi.org/10.1109/MASS.2013.51
http://doi.org/10.1109/SAHCN.2019.8824816
http://doi.org/10.1109/TVT.2018.2872890
http://doi.org/10.1109/INFOCOM.2014.6848051
http://doi.org/10.1109/JSAC.2014.141205
http://doi.org/10.1109/TCSI.2008.922023
http://doi.org/10.1109/pesc.2006.1712213
http://doi.org/10.1109/TPEL.2002.802194
http://doi.org/10.1109/ICT.1997.667595
http://doi.org/10.1109/SURV.2011.060710.00094
http://doi.org/10.1145/1274858.1274870
http://doi.org/10.3934/energy.2015.2.184
http://doi.org/10.1109/TNET.2014.2303979
http://doi.org/10.1109/APNOMS.2012.6356102
http://doi.org/10.1109/WCNC.2013.6554694
http://doi.org/10.1109/wptc45513.2019.905562
http://doi.org/10.1109/IPDPS.2013.22


Energies 2022, 15, 1204 17 of 18

30. Zhang, Q.; Cheng, R.; Zheng, Z. Energy-efficient renewable scheme for rechargeable sensor networks. EURASIP J. Wirel. Commun.
Netw. 2020, 74, 74. [CrossRef]

31. Mo, L.; Kritikakou, A.; He, S. Energy-aware multiple mobile chargers’ coordination for wireless rechargeable sensor networks.
IEEE Internet Things J. 2019, 6, 8202–8214. [CrossRef]

32. Liu, Y.; Lam, K.-Y.; Han, S.; Chen, Q. Mobile data gathering and energy harvesting in rechargeable wireless sensor networks. Inf.
Sci. 2019, 482, 189–209. [CrossRef]

33. Ren, X.; Jia, X.; Liang, W.; Xu, W.; Lin, X. Maintaining large-scale rechargeable sensor networks perpetually via multiple mobile
charging vehicles. ACM Trans. Sens. Netw. 2016, 12, 14–17. [CrossRef]

34. Chen, J.; Yu, Q.; Chai, B.; Sun, Y.; Fan, Y.; Shen, X. Dynamic channel assignment for wireless sensor networks: A regret matching
based approach. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 95–106. [CrossRef]

35. Hu., C.; Wang, Y. Minimizing the number of mobile chargers in a large scale wireless rechargeable sensor network. In Proceedings
of the IEEE Wireless Communication and Networking Conference, New Orleans, LA, USA, 9–12 March 2015; pp. 1297–1302.
[CrossRef]

36. Ye, X.; Liang, W. Charging utility maximization in wireless rechargeable sensor networks. Wirel. Netw. 2016, 23, 2069–2081.
[CrossRef]

37. Li, J.; Zhao, M.; Yang, Y. OWER-MDG: A novel energy replenishment and data gathering mechanism in wireless rechargeable
sensor networks. In Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7
December 2012; pp. 5350–5355. [CrossRef]

38. Zhao, M.; Li, J.; Yang, Y. Joint Mobile Energy Replenishment and Data Gathering in Wireless Rechargeable Sensor Networks. In
Proceedings of the 23rd International Teletraffic Congress, San Francisco, CA, USA, 6–9 September 2011; pp. 238–245.

39. Wang, C.; Li, J.; Ye, F.; Yang, Y. Recharging schedules for wireless sensor networks with vehicle movement costs and capacity
constraints. In Proceedings of the Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking,
Singapore, Singapore, 30 June–3 July 2014; pp. 468–476. [CrossRef]

40. Xie, L.; Shi, Y.; Hou, T.; Lou, W.; Sherali, H.; Midkiff, S. On renewable sensor networks with wireless energy transfer: The
multi-node case. In Proceedings of the 2012 9th annual IEEE Communications Society Conference on Sensor, Mesh and Ad-hoc
Communications and Networks (SECON), Seoul, Korea, 18–21 June 2012; pp. 10–18. [CrossRef]

41. Xie, L.; Shi, Y.; Hou, T.; Shi, T.; Lou, W.; Sherali, H. On traveling path and related problems for a mobile station in a rechargeable
sensor network. In Proceedings of the 14th ACM international symposium on mobile ad hoc networking and computing
(MobiHoc), Bangalore, India, 29 July 2013; ACM: New York, NY, USA; pp. 109–118. [CrossRef]

42. Wu, T.; Yang, P.; Dai, Y.; Rao, X.; Huang, J.; Ma, T. Joint Sensor Selection and Energy Allocation for Tasks-Driven Mobile Charging
in Wireless Rechargeable Sensor Networks. IEEE Internet Things J. 2020, 7, 11505–11523. [CrossRef]

43. Wang, K.; Wang, L.; Lin, C.; Obaidat, M.S.; Alam, M. Prolonging lifetime for wireless rechargeable sensor networks through
sleeping and charging scheduling. Int. J. Commun. Syst. 2020, 33, 43–55. [CrossRef]

44. Fu, L.; Cheng, P.; Gu, Y.; Chen, J.; He, T. Minimizing charging delay in wireless rechargeable sensor networks. In Proceedings of
the IEEE Conference on Information and Communications, Turin, Italy, 14–19 April 2013; pp. 2922–2930. [CrossRef]

45. Dai, H.; Jiang, L.; Wu, X.; Yau, D.K.; Chen, G.; Tang, S. Near optimal charging and scheduling scheme for stochastic event
capture with rechargeable sensors. In Proceedings of the IEEE 10th International Conference on Mobile Ad-Hoc Sensor Systems,
Hangzhou, China, 12 December 2013; pp. 10–18. [CrossRef]

46. Lin, C.; Wu, G.; Obaidat, M.; Yu, C. Clustering and Splitting Charging Algorithms for Large Scaled Wireless Rechargeable Sensor
Networks. J. Syst. Softw. 2016, 113, 381–394. [CrossRef]

47. Dong, Y.; Wang, Y.; Li, S.; Cui, M.; Wu, H. Demand-based charging strategy for wireless rechargeable sensor networks. ETRI J.
2019, 41, 326–336. [CrossRef]

48. Zhang, S.; Wu, J.; Lu, S. Collaborative mobile charging for sensor networks. In Proceedings of the 2012 IEEE 9th International
Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012), Las Vegas, NV, USA, 8–11 October 2012; pp. 84–92. [CrossRef]

49. Najimi, M.; Ebrahimzadeh, A.; Andargoli, S.M.H.; Fallahi, A. Lifetime Maximization in Cognitive Sensor Networks Based on the
Node Selection. IEEE Sens. J. 2014, 14, 2376–2383. [CrossRef]

50. Wang, C.; Yang, Y.; Li, J. Stochastic mobile energy replenishment and adaptive sensor activation for perpetual wireless rechargeable
sensor networks. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC), Shanghai,
China, 7–10 April 2013; pp. 974–979. [CrossRef]

51. Zhang, J.; Wu, C.-D.; Zhang, Y.-Z. Energy-efficient adaptive dynamic sensor scheduling for target monitoring in wireless sensor
networks. ETRI J. 2011, 33, 857–863. [CrossRef]

52. Adamczak, R. A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electron. J.
Probab. 2008, 13, 1000–1034. [CrossRef]

53. Chernoff, H. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations. Ann. Math. Stat.
1952, 23, 493–507. [CrossRef]

54. Hoeffding, W. Probability Inequalities for Sums of Bounded Random Variables. J. Am. Stat. Assoc. 1963, 58, 13–30. [CrossRef]

http://doi.org/10.1186/s13638-020-01687-4
http://doi.org/10.1109/JIOT.2019.2918837
http://doi.org/10.1016/j.ins.2019.01.014
http://doi.org/10.1145/2898357
http://doi.org/10.1109/TPDS.2014.2307868
http://doi.org/10.1109/WCNC.2015.7127656
http://doi.org/10.1007/s11276-016-1271-6
http://doi.org/10.1109/GLOCOM.2012.6503971
http://doi.org/10.1109/SAHCN.2014.6990385
http://doi.org/10.1109/SECON.2012.6275766
http://doi.org/10.1145/2491288.2491291
http://doi.org/10.1109/JIOT.2020.3019451
http://doi.org/10.1002/dac.4355
http://doi.org/10.1109/INFCOM.2013.6567103
http://doi.org/10.1109/MASS.2013.60
http://doi.org/10.1016/j.jss.2015.12.017
http://doi.org/10.4218/etrij.2018-0126
http://doi.org/10.1109/MASS.2012.6502505
http://doi.org/10.1109/JSEN.2014.2311154
http://doi.org/10.1109/WCNC.2013.6554696
http://doi.org/10.4218/etrij.11.0111.0027
http://doi.org/10.1214/EJP.v13-521
http://doi.org/10.1214/aoms/1177729330
http://doi.org/10.1080/01621459.1963.10500830


Energies 2022, 15, 1204 18 of 18

55. Peng, Y.; Li, Z.; Zhang, W.; Qiao, D. Prolonging Sensor Network Lifetime Through Wireless Charging. In Proceedings of the 2010
31st IEEE Real-Time Systems Symposium, San Diego, CA, USA, 30 November–3 December 2010; pp. 129–139. [CrossRef]

56. Detweiler, C.; Eiskamp, M.; Griffin, B.; Johnson, J.; Leng, J.; Mittleider, A.; Basha, E. Unmanned Aerial Vehicle-Based Wireless
Charging of Sensor Networks. In Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication
Networks; Nikoletseas, S., Yang, Y., Georgiadis, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 433–464.

http://doi.org/10.1109/RTSS.2010.35

	Introduction 
	Related Work 
	Energy Replenishment 
	Optimizations 

	Network and System Models 
	WRSN Energy Consumption and Probability Model 
	Simulation Analysis and Discussion 
	Conclusions and Future Works 
	References

