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Abstract: The work in this article analyses the impact of time-delays on distributed real-time sim-
ulation stability and accuracy with respect to different decoupling points as well as the impact of
decoupling point selection on system modes. We perform analysis of the system modes and partici-
pation matrix of the system and determine suitable points that negligibly modify the system modes
to decouple the original system. From this analysis, a non-intrusive delay-based model partitioning
method for distributing real-time simulations that exploits the flexibility in the context of selecting
decoupling points is developed.

Keywords: distributed real-time simulations; power system simulations; system partitioning; model
partitioning; circuit simulations

1. Introduction

With the surge of power electronics and renewable energy sources integration in mod-
ern power systems, the need for real-time power system simulations and Power Hardware-
in-the-Loop (PHiL) studies is constantly increased [1]. Real-time simulations in modern
power systems are considered as an essential tool for the grid and device testing [2–4].
However, this constant increase of the device number and the sizes of grids simulated in
real-time environment poses a challenge to simulating models in one simulation unit.

The issue of splitting into subsystems and assigning subsystems to different processing
resources while ensuring simulation stability and the required level of simulation fidelity in
distributed real-time power system simulations is a challenging task and an open research
question. Distributed simulations are used when we want or need to have a real-time
simulation of a system that cannot be simulated on just one OPAL-RT target or RTDS rack.

This is the case even for simulations running on different CPU cores in one simulator
unit since at least a one time step delay between partitions must to be considered. The
impact of that one time step delay on the simulation performance is not negligible. In the
following, both terms—a partition and a subsystem—are going to be used interchangeably.
The contribution of this paper is the method for non-intrusive delay-based model parti-
tioning of distributed real-time simulations developed via analysis of the delay impact on
distributed real-time simulation modes at different decoupling points.

2. Literature Review and Related Work on System Partitioning

The most common real-time power system solvers fall into three main categories:
nodal analysis-based (as in Hypersim of OPAL-RT and RTDS real-time simulator), state-
space formulation solvers (as in Simscape Power System from MATLAB and eMEGAsim
from OPAL-RT) and the most recent state-space nodal (SSN) [5,6] formulation that combines
the previously mentioned two approaches. The method in this paper performs system
analysis using the state-space system formulation.
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Research efforts have previously been made to convert nodal power system represen-
tation to the state-space formulation if the method is going to be applied in an automated
manner on the nodal based power system simulators [7]. Different algorithms and methods
have been proposed in the literature for power system simulation partitioning in different
contexts. Partitioning methods can be classified based on the used methodology, applica-
tion and partitioning objective. The most commonly used methodologies are graph-based
and eigenvalue-based.

From the application perspective, three main groups are present: methods for parallel
computing of the power system solution where the partitioning objective is the reduction of
computational complexity when distributing the simulation, methods for the partitioning of
multi-rate simulations where the partitioning objectives are the stability and accuracy of the
multi-rate simulation and methods for a distributed system simulation where the focus lies
on the system simulation stability and accuracy as in methods for multi-rate simulations.

The main difference between distributed system simulations and parallel system
simulations is the inclusion of the delays between partitions in the case of distributed
system simulations. While the methods dealing with parallel computing partition the
system to parallelize the computing of a network solution on one simulation unit, assuming
no delays between partitions in one simulation time step, distributed system simulations
simulate partitions (representing one monolithic system) on different computational units.

They are, therefore, affected by time delays occurring between computational units.
The main focus of this paper is system partitioning for distributed simulations. Therefore,
our literature review focuses on the methods already existing for this application, the
explanation for why some other currently existing partitioning algorithms cannot be directly
used in this application, and papers that have similar methodologies to the one analysed in
this paper.

The standard method for power system model partitioning for real-time applications
is the travelling-wave method. Here, decoupling is achieved via a travelling-wave trans-
mission line model whose travel time is greater than or equal to the simulation time step
used [8,9]. Therefore, natural decoupling of the system is achieved. Assuming the speed
of light and simulation time step of Ts = 50 µs, the line length should be at least 15 km in
order to naturally decouple the system.

For many transmission networks, this method was sufficient. However, in distribution
networks where longer transmission lines do not exist, this method is inapplicable, and
decoupling of the system poses greater challenges. Artificially increasing the line length
brings in large capacitance and inaccurate results—for example, grid voltages becoming
unusually high [10]. The standard method for system partitioning for parallel processing
of the system solution is diakoptics, which was developed to reduce the computational
burden of the matrix inversion by tearing the power system into sub-problems that are
solved independently with the introduction of additional calculations [11,12].

In the original form, as with other parallel processing partitioning methods, diakoptics
does not include a delay that could occur between sub-problems solved independently.
Therefore, it cannot be applied directly on distributed real-time power system simulations
where at least one time step delay should be considered. In [13], partitioning was included
by optimizing the CPU load computation and communication between CPUs, and the
optimal number of portions was found in the context of parallel computing applications.
From the perspective of the methodology, this method is graph-based partitioning as in [14].

Graph-based system partitioning methods are widely used for the parallel computing
of system solutions. However, they cannot be directly used for distributed real-time
simulations without modifications needed to include the delays occurring between two
simulation units. The analysis and method developed in this paper are based on modal
analysis. Circuit latency and modal analysis have already been exploited to determine
network partitions. However, in multi-rate power system simulation applications, it is
applied to finding decoupling points and subsystems suitable for decoupling small and
large simulation time steps [7,15].
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In [16], a delay-based method for the decoupling of system equations was proposed
for offline system simulation. The idea in the paper is similar to the one used in our work
since the paper searched for variables that can be delayed one time step and enable the
matrix sparsity needed for parallel processing of the system solution, but did not address,
in the original form, distributed system simulations (delayed interface quantities between
subsystems are the combination of different system states and inputs and contribute to
different elements in a Jacobian system matrix).

A detailed explanation of multi-core simulations of power system transients and
methods for system partitioning can be found in [17]; however, none of them address
the distributed simulation partitioning issue. Coupling point analysis and motivation for
methods for decoupling point selection in distributed real-time simulations can be found
in [18], where it is shown how the location of the coupling point can affect the fidelity of
the distributed simulation.

3. Motivation
3.1. Distributed Real-Time Power System Simulations

A real-time simulation is a distributed real-time power system simulation if we divide
a monolithic model of the system. In the literature, this is also called a naturally coupled
system (NCS), on subsystems simulated on different simulation units. The simulation
decoupling point is where the monolithic system partitioning is made, and delays occur
when interface variables are exchanged. This point is known in the literature as the point
of connection (POC).

In this paper, the ideal transformer model (ITM) [19] is assumed to be used as an
interface algorithm because of its simplicity and accuracy, as represented in Figure 1, and
all further analysis is done assuming ITM as the interface algorithm between subsystems.
Though a highly accurate interface algorithm, ITM is proven to have stability issues when
used in distributed simulation applications [19]. The model partitioning methodology in
this paper aims to determine appropriate decoupling points to preserve the simulation
stability while using the ITM interface and acting non-intrusive.

+

–
Subsystem 1

delay

delay

Subsystem 2
2

21 1

Figure 1. Distributed simulation or PHiL.

Subsystems in the Figure 1 visualizing partitioning problem can represent simulators
or real devices based on the application—distributed simulation or PHiL. The main focus
of the paper is the first application. Digital real-time power system simulators use a fixed-
step solver with a common simulation time step in electromagnetic transient programs
(EMTPs) of 50 µs. The term time step is used to describe the time between two consecutive
instantaneous outputs of the solver.

The time step is related to the sampling frequency of the simulation and determines
the frequency bandwidth of signals that can be accurately reproduced. With this time
step up to 2–3 kHz can be simulated based on a common rule of thumb that suggests a
time step size of a 10-times smaller value of the period of the fastest frequency following
disturbance [20]. The delay between two subsystems t1 = t2 = k · Ts in this work is always
deterministic and a multiple of the simulation time step.
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A variable that is transferred from one subsystem to another is referred to as an
interface variable. The interface variable is sampled and delayed before being applied to the
receiving subsystem. The sampling period is the time difference between two consecutive
sending samples of interface variables from one subsystem to another. In this paper, only
delays occurring between two subsystems are considered, and the sampling period is
assumed to be equal to the simulation time step of the subsystems. Both subsystems are
simulated with the same time step Ts = 50 µs.

3.2. Simulation Examples Explaining Paper Motivation

Let us observe the example system (simple circuit) in Figure 2 with two possible points
in which the system can be decoupled: A and B.

V

L

C1

LRx1 x3

x2

R1 21 2

C1 3x4 R4C2

LR x53 3

x6

A B
Figure 2. System decoupling example 1.

Let us assume our circuit has the following parameters L1 = 1 mH, C1 = 1 mF,
L2 = 10 mH, C2 = 10 mF, L3 = 10 mH, C3 = 10 mF, R1 = 1 Ω, R2 = 1 Ω, R3 = 1 Ω and
R4 = 1 Ω. This system was partitioned in two decoupling points making a distributed
system simulation. The system was simulated with a defined d = k · Ts fixed delay between
two subsystems, where Ts = 50 µs is the simulation time step that is the same for both
subsystems. Decoupling the system in decoupling point A leads to stability issues for the
distributed system simulation for k = 10 or delay 0.5 ms. For decoupling point B, the
simulation stays stable up to the last simulated delay of k = 50, thus, 2.5 ms. Let us observe
the example system two in Figure 3, with two possible points in which the system can be
decoupled: A and B.

V

L

C1

LRx1 x3

x2

R1 21 2

C x1 2 4
R3

A B

Figure 3. System decoupling example 2.

Let us assume our circuit has the following parameters L1 = 8 mH, C1 = 0.2 mF,
L2 = 80 mH, C2 = 2 mF, R1 = 1 Ω, R2 = 1 Ω and R3 = 1 Ω and that distributed versions
are made as in the previous example. Decoupling the system in decoupling point A leads
to stability issues for the distributed system simulation, even for k = 2 or delay 0.1 ms. For
decoupling point B, the simulation stays stable up to the last simulated delay of k = 75
or 18.7 ms. These motivation examples show that distributed simulations have stability
issues in specific decoupling points. In contrast, another decoupling point would not have
a stability problem for the predefined delay and would, therefore, be a better decoupling
point candidate in terms of the distributed simulation stability.
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4. Mathematical Background of Analysis and Methodology
4.1. State-Space Representation of Partitioned System Model

In the case of distributed real-time simulations, both digital simulator units solve the
system in the discrete time-domain. It is, thus, a straightforward approach to perform
analysis of the distributed system model in the discrete time-domain. To perform modal
analysis on the distributed system simulation model, the time-invariant state-space model
of the two connected subsystems with the inclusion of delays is derived.

The implicit integration method typically used in real-time power system simulators
is the trapezoidal method, which is numerically A-stable. If this method is applied to the
set of stable linear system equations, the time step of the simulation influences only the
accuracy of the system simulation and not the numerical stability. In the modelling of the
two coupled subsystems in this section, trapezoidal integration was applied to discretize the
state-space subsystem models. Let us first assume that we have two state-space subsystem
models represented in Figure 4.

SS model
subsystem 1

SS model
subsystem 2

y1

u2
SS1

u1
SS2

u2

u1

y2

y1
ext

y2
ext

Figure 4. Coupled subsystem state-space representation without delayed outputs.

State-space models of the subsystems one and two in the discrete time-domain can be
represented by Equations (1) and (2) respectively:

x1(k + 1)x1(k + 1)x1(k + 1) = A1 · x1(k)x1(k)x1(k) + B1 · u1(k)u1(k)u1(k) + BSS2
1 · uSS2

1 (k)uSS2
1 (k)uSS2
1 (k)

y1(k)y1(k)y1(k) = C1 · x1(k)x1(k)x1(k) + D1 · u1(k)u1(k)u1(k) + DSS2
1 · uSS2

1 (k)uSS2
1 (k)uSS2
1 (k)

yext
1 (k)yext
1 (k)yext
1 (k) = Cext

1 x1(k)x1(k)x1(k) + Dext
1 u1(k)u1(k)u1(k) + DSS2,ext

1 · uSS2
1 (k)uSS2
1 (k)uSS2
1 (k)

(1)

x2(k + 1)x2(k + 1)x2(k + 1) = A2 · x2(k)x2(k)x2(k) + B2 · u2(k)u2(k)u2(k) + BSS1
2 · uSS1

2 (k)uSS1
2 (k)uSS1
2 (k)

y2(k)y2(k)y2(k) = C2 · x2(k)x2(k)x2(k) + D2 · u2(k)u2(k)u2(k) + DSS1
2 · uSS1

2 (k)uSS1
2 (k)uSS1
2 (k)

yext
2 (k)yext
2 (k)yext
2 (k) = Cext

2 x2(k)x2(k)x2(k) + Dext
2 u2(k)u2(k)u2(k) + DSS1,ext

2 uSS1
2 (k)uSS1
2 (k)uSS1
2 (k)

(2)

where k is the current time step, k + 1 is the future time step, and uSS2
1 (k)uSS2
1 (k)uSS2
1 (k) = y2(k)y2(k)y2(k),

uSS1
2 (k)uSS1
2 (k)uSS1
2 (k) = y1(k)y1(k)y1(k). With simple manipulation over the matrices, the combined state-space

model of those two subsystem models can be described by Equation (3), where
N = (I − DSS2

1 · DSS1
2 )−1 and I is the unity matrix of the required size.[

x1(k + 1)x1(k + 1)x1(k + 1)
x2(k + 1)x2(k + 1)x2(k + 1)

]
=

[
A1 + BSS2

1 · DSS1
2 · N · C1 BSS2

1 · (I + DSS1
2 · N · DSS2

1 ) · C2
BSS1

2 · N · C1 A2 + BSS1
2 · N · DSS2

1 · C2

]
·
[

x1(k)x1(k)x1(k)
x2(k)x2(k)x2(k)

]
+[

B1 + BSS2
1 · DSS1

2 · N · D1 BSS2
1 · (I + DSS1

2 · N · DSS2
1 ) · D2

BSS1
2 · N · D1 B2 + BSS1

2 · N · DSS2
1 · D2

]
·
[

u1(k)u1(k)u1(k)
u2(k)u2(k)u2(k)

]
[

yext
1yext
1yext
1

yext
2yext
2yext
2

]
=

[
Cext

1 + DSS2,ext
1 · DSS1

2 · N · C1 DSS2,ext
1 · (I + DSS1

2 · N · DSS2
1 ) · C2

DSS1,ext
2 · N · C1 Cext

2 + DSS1,ext
2 · N · DSS2

1 · C2

]
·
[

x1(k)x1(k)x1(k)
x2(k)x2(k)x2(k)

]
+[

Dext
1 + DSS2,ext

1 · DSS1
2 · N · D1 DSS2,ext

1 · (I + DSS1
2 · N · DSS2

1 ) · D2

DSS1,ext
2 · N · D1 Dext

2 + DSS2,ext
1 · N · DSS2

1 · D2

]
·
[

u1(k)u1(k)u1(k)
u2(k)u2(k)u2(k)

]
(3)
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If we assume that delayed outputs of the state-space subsystem models are inputs of
the other state-space subsystem model, this means that uSS2

1 (k)uSS2
1 (k)uSS2
1 (k) = y2(k− k2)y2(k− k2)y2(k− k2),

uSS1
2 (k)uSS1
2 (k)uSS1
2 (k) = y1(k− k1)y1(k− k1)y1(k− k1), and their connection is visualized in Figure 5.

SS model
subsystem 1

SS model 
subsystem 2

delay t

delay t

1

2

y1

u2
SS1

u1
SS2

u2

u1

y2

Augmented SS subsystem 1 model  

Augmented SS subsystem 2 model 

y1
ext

y2
ext

Figure 5. Coupled subsystem state-space representation with delayed outputs.

We assume that time delays between two subsystems are deterministic and multiples
of the simulation time step of the subsystems t1 = k1 · Ts and t2 = k2 · Ts, where Ts is the
simulation time step.

If we augment the states and input vectors up to the output delays as in Equation (4)
for the subsystem 1 model, a new augmented state-space model of subsystem 1 can be
developed, as in Equations (5) and (6). Here, n is the number of states in subsystem 1, p is
the number of external inputs in subsystem 1 (size of vector u1u1u1), s is the number of inputs
coming from another subsystem (size of vector uSS2

1uSS2
1uSS2
1 ), m is the number of outputs going to

another subsystem (size of vector y1y1y1), In×n is a unity matrix of size n× n, and 0n×n is a zero
matrix of size n× n.

x̃1(k)x̃1(k)x̃1(k) =


x1(k)x1(k)x1(k)

x1(k− 1)x1(k− 1)x1(k− 1)
...

x1(k− k1)x1(k− k1)x1(k− k1)

, ũ1(k)ũ1(k)ũ1(k) =


u1(k)u1(k)u1(k)

u1(k− k1)u1(k− k1)u1(k− k1)
...

u1(k− k1)u1(k− k1)u1(k− k1)

, ũSS2
1 (k)ũSS2
1 (k)ũSS2
1 (k) =


uSS2

1 (k)uSS2
1 (k)uSS2
1 (k)

uSS2
1 (k− 1)uSS2
1 (k− 1)uSS2
1 (k− 1)

...
uSS2

1 (k− k1)uSS2
1 (k− k1)uSS2
1 (k− k1)

 (4)

x̃1(k + 1)x̃1(k + 1)x̃1(k + 1) = Ã1 · x̃1(k)x̃1(k)x̃1(k) + B̃1 · ũ1(k)ũ1(k)ũ1(k) + B̃SS2
1 · ũSS2

1 (k)ũSS2
1 (k)ũSS2
1 (k)

ỹ1(k)ỹ1(k)ỹ1(k) = y1(k− k1)y1(k− k1)y1(k− k1) = uSS1
2 (k)uSS1
2 (k)uSS1
2 (k) = C̃1 · x̃1(k)x̃1(k)x̃1(k) + D̃1 · ũ1(k)ũ1(k)ũ1(k) + D̃SS2

1 · ũSS2
1 (k)ũSS2
1 (k)ũSS2
1 (k)

(5)
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Ã1 =



A1 0n×n . . . 0n×n 0n×n
In×n 0n×n . . . 0n×n 0n×n

0n×n In×n 0n×n . . .
...

... 0n×n 0n×n . . . 0n×n
0n×n . . . 0n×n In×n 0n×n

B̃1 =


B1 0n×p . . . 0n×p

0n×p 0n×p . . . 0n×p
... 0n×p . . . 0n×p

0n×p 0n×p . . . 0n×p



B̃SS2
1 =


BSS2

1 0n×s . . . 0n×s
0n×s 0n×s . . . 0n×s

... 0n×s . . . 0n×s
0n×s 0n×s . . . 0n×s

C̃1 =


0n×m

...
0n×m

C1


T

D̃1 =


0p×m

...
0p×m

D1


T

D̃SS2
1 =


0s×m

...
0s×m
DSS2

1


T

(6)

In the same way, the augmented subsystem model can be derived for subsystem 2.
Those two augmented state-space representations of subsystems 1 and 2 can be connected
in the same way as the subsystems in Figure 4 using Equation (3).

4.2. Modal Analysis

Modal analysis has been applied to various power system problems, especially in
the domain of inter-area oscillations [21] and Wide-Area Measurement System (WAMS)
applications [22–25]. The modal analysis represents small-signal stability analysis applied to
linearized system models. This analyses the stability of the power system around its equilib-
rium point before or after the disturbances and gives information about system oscillations:
how many modes the system has and their frequencies and dampings.

A systematic procedure for assigning state variables and finding the dynamical equations
of the system can be found in [26] if a dynamic system is a linear time-invariant (LTI) electric
network. An electrical grid is the interconnection of different electrical elements. With some
assumptions, all dynamic components in power systems (generators, dynamic loads, lines,
regulation and control) can be described by a set of differential and algebraic equations:

ẋxx = f (xxx, zzz, uuu)

0m0m0m = g(xxx, zzz, uuu)
(7)

where xxx is state vector of size n, uuu represents the system inputs, zzz contains algebraic
variables of the system, f is a set of differential equations, and g is set of algebraic (without
derivatives) equations based on Kirchhoff’s law. The state-space model of the system
is a linear representation of Equation (7) at some equilibrium point. If (x0x0x0, z0z0z0, u0u0u0) is an
equilibrium point of the system (given for example by the load flow calculations):

ẋ0x0x0 = f (x0x0x0, z0z0z0, u0u0u0) = 0n0n0n

0m0m0m = g(x0x0x0, z0z0z0, u0u0u0)
(8)

using the first order Taylor approximation around (x0x0x0, z0z0z0, u0u0u0) leads to:

ẋxx = f (x0x0x0, z0z0z0, u0u0u0) +
∂ f
∂xxx (x0x0x0, z0z0z0, u0u0u0)(xxx− x0x0x0) +

∂ f
∂zzz (x0x0x0, z0, u0u0u0z0, u0u0u0z0, u0u0u0)(zzz− z0z0z0) +

∂ f
∂uuu (x0x0x0, z0z0z0, u0u0u0)(uuu− u0u0u0) (9)

0m0m0m = ∂g
∂xxx (x0x0x0, z0z0z0, u0u0u0)(xxx− x0x0x0) +

∂g
∂zzz (x0x0x0, z0z0z0, u0u0u0)(zzz− z0z0z0) +

∂g
∂u (x0x0x0, z0z0z0, u0u0u0)(uuu− u0u0u0) (10)

In order to simplify Equations (9) and (10), ∆xxx = xxx− x0x0x0, ∆zzz = zzz− z0z0z0, ∆uuu = uuu− u0u0u0,
fx = ∂ f

∂xxx (x0x0x0, z0z0z0, u0u0u0), fz = ∂ f
∂zzz (x0x0x0, z0z0z0, u0u0u0), fu = ∂ f

∂uuu (x0x0x0, z0z0z0, u0u0u0) are introduced. In the same
manner, gx, gz and gu are partial derivatives of g(xxx, zzz, uuu) in (x0x0x0, z0z0z0, u0u0u0). It can be easily
derived that:

∆ẋxx = A · ∆xxx + B · ∆uuu (11)
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where A = fx − fzg−1
z gx, B = fu − fzg−1

z gu with the assumption that gz is not singular.
If we assume that observable outputs of the system yyy are represented via the function
yyy = h(xxx, zzz, uuu), and, using the same notation, it can be derived that:

∆yyy = C · ∆xxx + D · ∆uuu (12)

where C = hx − hzg−1
z gx and D = hu − hzg−1

z gu. In the state-space representation of the
system, matrix A is specific for the system for a given equilibrium point, whereas B, C and
D depend on the chosen inputs and outputs of the system. The system is characterized by
the state matrix A and, more precisely, the eigenvalues of matrix A.

The poles of the system are the eigenvalues of the matrix A. These poles can be real
and complex if matrix A is real, and the real part of all system eigenvalues needs to be
negative, to ensure the stability of the system. The real eigenvalue of A is the system mode,
and complex eigenvalues appear in conjugate pairs representing one system mode. The
eigenvalue of matrix A is a scalar parameter λi that fulfils the equation:

A ·φφφ = λi ·φφφ (13)

were φφφ is n by 1 vector, and n is the size of the square matrix A. To find the eigenvalues, we
can rewrite Equation (13) in (A− λi · I) ·φφφ = 0 form. For a non-trivial solution, that means:

det(A− λi · I) = 0 (14)

Equation (14) is a characteristic equation with n solutions that are eigenvalues of A.
For any eigenvalue λi, the n-column vector φiφiφi that satisfies

A ·φiφiφi = λi ·φiφiφi (15)

is the (right) eigenvector of A associated with λi. Similarly, n-row vector ψiψiψi that satisfies:

ψiψiψi · A = λi ·ψiψiψi (16)

is the left eigenvector associated with λi. In order to express the eigenproperties of A,
modal matrices (in the literature also called transformation matrices) are introduced:

Ψ =
[
ψT

1ψT
1ψT
1 ψT

2ψT
2ψT
2 . . . ψT

nψT
nψT
n
]T

Φ =
[
φ1φ1φ1 φ2φ2φ2 . . . φnφnφn

] (17)

It can be easily derived that matrices Ψ and Φ are orthogonal [27] and satisfy AΦ = ΛΦ,
ΨA = ΛΨ, where Λ = diag(λi). If φiφiφi is the right eigenvector, then k ·φiφiφi is as well, and the
same counts for ψiψiψi and k ·ψiψiψi, where k is scalar. Therefore, Ψ and Φ can be normalized so
that they satisfy Ψ = Φ−1 and ΨAΦ = Λ.

Using the transformation matrix Φ, we can transform the system in the new base
(ξξξ) where the modes are decoupled (∆xxx = Φξξξ) and show that the right eigenvector φiφiφi
represents the relative activity of the state variables when a particular mode is excited and
φij represents how state variable xi will be impacted by the excitation of the mode j where
magnitudes of the elements in φiφiφi represent a degree of activities of n state variables in the
ith mode, and the angles of elements show the phase shifting of the state variables with
regard to the mode.

Thus, a larger φij means that state variable xi is more impacted by mode j. The overall
variation of the mode ∆xixixi is the sum of the impacts of all system modes. The left eigenvector
ψi gives the combination of state variables displayed in the ith mode. Similarly to the case
of the right eigenvectors, if ψij is the jth element of the ψT

iψT
iψT
i , the larger the ψij value is, the

larger is the influence of the state xj on mode i.
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Analysing the connection of system modes and system states looking individually
at right and left eigenvectors can cause a problem due to scaling and the units of state
variables (the elements of the right and left eigenvectors depend on the units and scaling of
the state variables). To overcome this issue, a participation matrix [27,28] is introduced:

P = [p1p1p1 p2p2p2 p3p3p3 . . . pnpnpn] (18)

with

pipipi =


p1i
p2i
...

pni

 =


φ1i · ψi1
φ2i · ψi2

...
φni · ψin

 (19)

where φki is the kth element of the right eigenvector φiφiφi and ψik is the kth element of the left
eigenvector ψiψiψi. The element pki = φki · ψik is called the participation factor. The influence of
the specific eigenvalues (poles or modes) on the states of the system can be measured using a
participation matrix.

When Ψ and Φ are normalized and orthogonal, we have pij ≤ 1 and ∑n
j=1 pij =

∑n
i=1 pij = 1. For this paper, a relative participation matrix is used as introduced in [29],

normalizing the state influence on the modes. The relative participation of the kth state vari-
able on the ith mode is prelki

as in Equation (20), representing this influence as a percentage.

prelki
=

|φik| · |ψki|
∑k=n

k=1 |φik| · |ψki|
· 100% (20)

We assume that the ith mode has influence on the kth state if prelki
> 5% as in [30].

5. Analysis and Non-Intrusive Delay-Based System Partitioning
5.1. Analysis

As we saw in Section 3.2, certain decoupling points are more challenging than others.
Our methodology focuses on finding how challenging a specific decoupling point is in
terms of simulation stability and, if possible, suggesting other decoupling points that would
lead to stability of the simulation for the specified delay with preserved fidelity. This was
done with the application of modal analysis explained in Section 4.2 and verified on the
examples from Section 3.2 modelled using distributed the state-space modelling approach
from Section 4.1.

Considering only the simulation of stable monolithic systems, the real parts of all
eigenvalues should be negative (σi < 0). Real eigenvalue λi = σi corresponds to the
non-oscillatory mode. Each complex conjugate pair of eigenvalues is associated with
one complex conjugate mode. For complex pairs of eigenvalues λi = σi ± i · ωi, the
natural frequency of oscillation is determined by ωn,i, and the damping ratio is ζi, where

ωi = ωn,i ·
√

1− ζ2
i , and σi = −ζi ·ωn,i.

The damping ratio determines the rate of transient response decay of the amplitude
of oscillation of complex conjugate mode, and the frequency of oscillations is determined
by ωn,i as ωn,i

2π . Following the rule of thumb, the simulation time step needed to capture
oscillations of the complex conjugate mode is 10-times smaller than the period of oscillation
of the mode [20], which results in π

5ωn,i
, and this value we define as the critical time constant

of the complex conjugated mode Ticr .
The dynamic properties of the system modes determined by damping ζi and the

frequency of the oscillations determine the dynamic properties of the system, transient
response of the system and, therefore, the overall system dynamics. System modes that
influence the states in both subsystems, assuming we have two subsystems, are interaction
modes. Local modes are all the modes that are not interaction modes for a specified
decoupling point. Modes of the system were defined in the same manner but for another
application in [30].
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Modes that are interaction modes are the modes impacted by partitioning the system,
while local modes are not impacted by partitioning, and therefore delays occur between
partitions. Modes of different distributed simulation models were observed in the z-domain
to determine which modes moved in the z-domain, thereby, changing the system response
and leading to simulation instability.

We observed that local modes of the distributed simulations do not change the value
and move in the z-domain significantly, even with significantly increased delays between
subsystems. Interaction modes move more, even with only one time step delay if the
dynamic of the mode is comparable with the delay and, therefore, change the distributed
simulation system response as will be shown in Section 5.2.1.

5.2. Methodology

Avoiding decoupling points in which critical modes are interaction modes can allow
greater delays while preserving the stability of the real-time simulation, and since the
modes are not significantly moving, thus, preserving simulation fidelity. The method
developed in this paper focuses on selecting model decoupling points in which the critical
modes of the monolithic model are not significantly modified and proposes possible time
delays to preserve the simulation stability.

We define critical modes of the system as complex conjugate modes of the system
that have comparable dynamic properties with the time delays we expect between two
subsystems and, therefore, are sensitive to delays between subsystems in the case that they
are interaction modes. Critical modes of the system are all the complex conjugate λi modes
for which Equation (21) is fulfilled, where d = k · Ts is the expected time delay between
two subsystems.

roundTs(Ticr · ζi) ≤ d = k · Ts (21)

Value Ticr · ζi should be rounded down to the first discrete m · Ts, where m is an integer.
The stronger the coupling between two subsystems from the perspective of critical mode
is, the larger is the influence of decoupling on critical system mode and, therefore, the
distributed system simulation. If Υ is a set of the subsystem states in subsystem w, the
relative influence of system mode i on this subsystem can be defined as PrelSSw

= ∑k∈Υ prelki
.

Here it is important to define the coupling index between two subsystems m and s with
respect to the system mode i as in Equation (22) where m is the subsystem with the smaller
relative influence of the mode i, and s opposite.

COi =
PrelSSm

PrelSSs

(22)

The maximal coupling index of two subsystems for the system mode i is COi = 1, and
if the system mode is the local mode, COi = 0. The partitioning methodology of this paper
is assumed to be performed on a monolithic system model in the continuous time domain.
Since eigenvectors of the system are the same in the continuous and discrete time domain, the
participation matrix is also [31].

Therefore, performing participation matrix analysis on the monolithic system model in
the continuous time domain is possible without losing correctness. Eigenvalues of the contin-
uous and discrete time domain are connected by bilinear transformation as in Equation (23),
where zi is a discrete eigenvalue, and differential equations are discretized with the trapezoidal
rule. In the case simulation, time step Ts is small enough compared to the time constants
of the system, discretization does not influence the response of the modes, and continuous
eigenvalues can be considered without losing correctness.

λi =
2
Ts
· zi − 1

zi + 1
(23)
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The delay margin for preserving distributed simulation stability cannot be found as a
precise value observing only critical mode i properties because Ticr is determined relying
on the simulation rule of thumb. Though, empirically on different distributed system
simulations, a delay margin for the stability of the distributed system is assured from the
perspective of delays occurring between subsystems is found and looks as in Equation (24).

dstabilityassuredi
= Ticr · ζi ·

1
COi

(24)

Here, i is a critical system mode, Ticr is critical time constant of that mode, ζi is the
damping of that mode, and COi is a coupling index of the critical system mode i for the
decoupling point. As expected, with a decreasing coupling index between two subsystems,
dstabilityassuredi

increases. In the case of several critical coupling modes, the smallest of all
dstabilityassuredi

should be taken.
If the simulation is stable for greater delays, it cannot be answered using this method-

ology. However, it eliminates the possibility that the simulation is unstable because of the
critical mode that disturbances can excite. If the delay d that we expect between partitions
is larger than dstabilityassuredi

, we suggest decreasing the delay until Equation (25) is fulfilled
or changing the decoupling point in order to preserve the simulation stability.

d < dstabilityassuredi
(25)

The non-intrusive delay-based model partitioning method is explained step-by-step and
applied on examples from Section 3.2, and the methodology diagram is shown in Figure 6.

Derive monolithic system model in steady-
state 


Find modes of the system
Eq. (14)


Find relative participation
matrix

Eq. (19), (20)


NO

YES

Do we have critical modes of
the system?

Eq. (21)


Decoupled system should be stable with
respect to the delay


System stability can be jeopardized 


 


NO

YES

Is this delay bigger

than expected delay between


partitions?

NO

YES

Decrease delay?
Eq. (25)


NO

YES
Change decoupling

point?


NO

YES

 

Are the critical modes
interaction modes for

decoupling point?
Eq. (22)


Determine delay for which
distributed simulation should

remain stable
Eq. (24)


Figure 6. Logical flow of the method application.

The method developed in this paper can be applied in PHiL applications determining
how suitable and challenging the point is in which we want to connect the device from the
real-time simulation perspective if a suitable model of the device can be found.
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5.2.1. Method and Analysis Exemplification

Let us first analyse example system one in Figure 2. Following the methodology, one
should find a monolithic system model, find the modes of the system, and check if there
are some critical modes with the predefined delay of k = 10 using Equation (21). As the
first step, the monolithic system model is derived with u = V1 as the system input and all
system states as outputs. Matrix A of the system is:

A =



− R1
L1
− 1

L1
0 0 0 0

1
C1

0 − 1
C1

0 0 0
0 1

L2
− R2

L2
− 1

L2
0 0

0 0 1
C2

0 − 1
C2

0
0 0 0 1

L3
− R3

L3
− 1

L3

0 0 0 0 1
C3

− 1
C3·R4


with system states as in Figure 2,

[
x1 x2 x3 x4 x5 x6

]T
=
[
IL1 VC1 IL2 VC2 IL3 VC3

]T . From
this matrix and the parameters given in Section 3.2, we find that system has four modes
with the characteristics presented in Table 1.

Table 1. Example system 1 modes.

Mode i Value ζiζiζi ωn,iωn,iωn,i Ticr [ms]Ticr [ms]Ticr [ms]

mode1 −451.63 ± 904.73 · i 0.44663 1011.2 0.62137
mode2 −77.33 ± 146.50 · i 0.46683 165.65 3.7931
mode3 −140.91 1 140.91 -
mode4 −101.18 1 101.18 -

If the expected delay between subsystems can go up to k = 10, for d = k · Ts, where
Ts = 50 µs, using Equation (21), mode1 can be classified as a critical mode of the system.
The next step in our distributed system analysis is finding the relative participation matrix
of the system using Equation (20):

Prel =



44.625 0.967 7.094 3.869
49.947 0.844 5.236 3.126
5.374 8.107 54.803 31.975
0.053 30.530 17.702 30.517
0.001 40.926 2.174 0.004

0 18.626 12.991 30.508

%

From the relative participation matrix, it follows that mode1 influences state x1 of the
system with 44.625%, state x2 with 49.947% and state x3 with 5.374% and has a negligible im-
pact on states x4, x5 and x6. In the case of decoupling point A, this mode is interaction mode.
For decoupling point A, the influence of critical mode1 on the states is divided between the
subsystems on 44.625% and 55.375%. Therefore, for decoupling point A, the coupling index
between subsystem with respect to critical mode1 is CO1 = 44.625%

55.375% = 0.806. In the case of
decoupling point A, critical mode is interaction mode, and one can say that the stability
of distributed system simulation can be assured for delays smaller than dstabilityassured1

=

0.62137 · 0.44663 · 1
0.806 = 0.3443 ms. Since this delay dstabilityassured1

= 0.3443 ms is smaller
than the d = k · Ts = 10 · 50 µs = 0.5 ms, we suggest to decrease the delay in order to
preserve the stability of the simulation or change the decoupling point, and use decoupling
point B for example.

In the case of decoupling point B, critical mode1 is not the interaction mode. There-
fore, following the methodology, it is expected that critical mode will not be sensitive to
delays occurring between subsystems, since it is localized in one of the subsystems, and a
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decoupled system should be stable with respect to the delay. Distributed simulations of
this system were done up to the delay of d = k · Ts, k = 50, and Ts = 50 µs, and decoupling
points A and B. A distributed system (partitioned system) is simulated with V1 = 5 V and
transience is made in ts = 1 s with input change to V1 = 4 V.

Distributed simulations showed that, in the case of decoupling point A, the system
becomes unstable for k = 10, while, for decoupling point B, the system remained stable
up to the last simulated delay of k = 50. In order to analyse the delay impact on the
distributed system modes, the distributed system model was derived as in Section 4.1, and
in Table 2, we can observe the value of critical system mode mode1 with respect to delays
between partitions.

Since the model of the distributed system is made in the discrete time domain mode,
values in the continuous time domain in the table are made using Equation (23). In the
further analysis, we use the term ’decoupled system’, for a system that is made, as in
Section 4.1, without delays occurring between subsystems (Figure 4), but with the separate
discretization of the two subsystems (partitions). This model is made to see how the
separate discretization of the subsystems influenced the system modes before applying
delays between subsystems.

Table 2. Example system 1, mode 1, for decoupling point A.

Mode Value ζiζiζi ωn,1ωn,1ωn,1

Monolithic model-continuous −451.63 + 904.73 · i 0.447 1.01 × 103

Monolithic model-discrete −451.27 + 904.51 · i 0.446 1.01 × 103

Decoupled model −426.01 + 919.75 · i 0.420 1.01 × 103

d = 50 µsd = 50 µsd = 50 µs −373.91 + 941.87 · i 0.369 1.01 × 103

d = 100 µsd = 100 µsd = 100 µs −318.14 + 957.58 · i 0.315 1.01 × 103

d = 150 µsd = 150 µsd = 150 µs −262.99 + 963.08 · i 0.263 9.98 × 102

d = 250 µsd = 250 µsd = 250 µs −162.27 + 952.21 · i 0.168 9.66 × 02

d = 500 µsd = 500 µsd = 500 µs 184.81 + 859.60 · i −0.21 8.79 × 102

The critical system mode that is the interaction mode in the case of decoupling point A,
is highly impacted via decoupling in this point and leads to the distributed system instability.
It is interesting to observe that the damping ζi and ωn,1 of the coupling mode mode1 decrease
with the increased delay. For decoupling point B, critical mode mode1 is localized with
coupling index CO1 = 0. In the case of decoupling point B, mode1 = −451.63 + 904.73 · i for
the monolithic model in the continuous and discrete domain, decoupled system model and
distributed system model for delays up to k = 50.

This example shows that the critical system mode leads to instability of the distributed
system simulation for the decoupling point, in which this mode was the interaction mode. In
contrast, the same critical mode does not change its value with the increased delay between
subsystems when it is the local mode for some other decoupling point. Therefore, in avoiding
the critical modes as interaction modes, one can preserve the distributed system stability,
and indirectly, since the critical mode is not moving and changing the distributed system
response the simulation fidelity as well. The system is simulated for both decoupling points
A and B and delay k = 5 to show simulation fidelity. In Figure 7 is presented x1 response for
both decoupling points after transient at ts = 1 s, showing that not only the stability of the
simulation is preserved in the case of decoupling point B. This point shows greater fidelity of
the simulation as well.
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Figure 7. Response of x1 in system example 1 after the disturbance—decoupling points A and B.

The fidelities of the output variables are calculated using Equation (26) for each
variable i and every simulation point k.

FIDELITYi =
ysimulation(i,k) − ymonolithic(i,k)

ymonolithic(i,k)
· 100% (26)

Since the critical interaction mode is the one changing its value with decoupling in
decoupling point A, the fidelity of the partitioned system simulation in decoupling point B
is better even for d = 1 · Ts as can be seen in Figure 8. From Figure 8, it can be concluded that,
for all simulation points, decoupling point B shows better simulation fidelity compared to
decoupling point A, and the monolithic system response is preserved. In the case that we
have highly underdamped or an extremely fast critical system mode acting as the coupling
mode, this can lead to instability of the simulation even after relatively small delays of
k = 1 and k = 2, and this is observed on example system two from Figure 3.

Assuming a delay between subsystems up to k = 1, d = k · Ts, using Equation (21)
critical system mode mode1 = 57.465± 826.83 · i, with T1cr = 0.758 ms, and ζ1 = 0.06933
can be found. In the case of decoupling point A, the critical system mode is coupling system
mode with CO1 = 45.38%

54.62% = 0.8308. Using Equation (24), one can say that the stability of
distributed system simulation in decoupling point A is assured for delays smaller than
dstabilityassured1

= 0.758 · 0.06933 · 1
0.8308 = 0.0633 ms; thus, k = 1.

The distributed system was simulated with V1 = 5 V, and transient is made in ts = 1 s
with input change to V1 = 4 V. Indeed, in the case of decoupling point A, the distributed
system simulation was stable for one time step delay; therefore, k = 1, and for k = 2, the
distributed system simulation was unstable. In the case of decoupling point B, critical mode
mode1 is localized with CO1 = 0, and the distributed system simulation in decoupling point
B showed extreme resiliency towards the delays (the last simulated delay was d = 75 · Ts).
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Figure 8. The fidelity of x1 in example 1 after a disturbance—decoupling points A and B.

6. Testing of the Method on the Realistic Power System Model

The previously analysed non-intrusive delay-based model partitioning method is
verified in power system applications on the part of the CIGRE low voltage European grid
benchmark [32], presented in Figure 9. This grid is a representative distribution system
benchmark used as the benchmark system for Hardware-in-the-Loop testing of distributed
energy resources [1].

Figure 9. Part of the CIGRE European low voltage topology.

The lines of the benchmark are shorter than 15 km; therefore, natural decoupling into
subsystems is not possible for the simulation time step of Ts = 50 µs. Part of the grid until
node R11 is taken for this use-case, and the inverter is placed in node R11 representing a
renewable energy source or battery system. The grid is modelled as a single phase balanced
network with L-R lines using parameters from the report [32].
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Loads are modelled as constant impedance loads represented as L-R elements, while
the inverter is modelled with its L-C filter. Therefore, this work focuses on the physical
properties and modes introduced with filter dynamics. In Table 3 are the parameters of the
inverter where Srated is the rated power of the inverter, fs is the switching frequency of the
inverter, C f ilter is the inverter filter capacitance, and Linv is the inverter inductance.

Table 3. Inverter parameters.

Parameter Value Parameter Value

fs 40 kHz Srated 8.5 kVA
Linv 0.535 mH VLL 400 V
VDC 700 V C f ilter 9.3846 µF

The parameters of the inverter are calculated using Equations (27), where ∆IL is 10%
current ripple, Prated is the rated active power for a power factor of 0.9, and adopting a 5%
capacitor is assumed.

Linv =
VDC

24 · ∆IL
(27)

C f ilter = 0.05 · Prated

2 · f · π ·V2
LL

(28)

In the literature, system models are usually developed focusing on individual sys-
tem components, such as inverters, lines and transformers [33,34] or merged micro-grid
models [35], which are inapplicable for the modelling of a distribution system. In this
paper, the overall distribution system model in the state-space domain is made using the
approach from [36]. Following the partitioning methodology, one should find if the system
has critical system modes using Equation (21). If we determine that the expected delay
between partitions can be up to delay d = 1 · Ts, this system has one critical mode—that is
mode1 = −14, 650.946± 21, 439.5972 · i with ζ1 = 0.5642, and T1cr = 0.0242 ms.

Observing the relative participation matrix, the critical mode is purely influencing the
inverter filter dynamics and line R1–R11 connecting that inverter. In the case of decoupling
point R11, that mode is the coupling mode with a coupling factor between subsystems
CO1 = 0.53. Using Equation (24), the stability of the simulation with respect to the delay is
assured for d < dstabilityassured1

= 0.03 ms. Therefore, in the case of d = 1 · Ts, it is suggested
to change the decoupling point, since the delay cannot be decreased.

The partitioning methodology would suggest that one should choose a decoupling
point for which the inverter and line connecting the inverter are in one subsystem, local-
izing the critical system mode. The power system model described here is simulated in
decoupling point R11 and for delays d = k · Ts. Indeed, in the case of decoupling point R11,
the distributed system simulation never reaches a stable operating point after a disturbance
for one time step delay.

In contrast, choosing decoupling point R1 leads to a stable and accurate distributed
system simulation even for the larger delays, and thus it is shown that the partitioning
methodology developed in this paper suggests a better decoupling point. A comparison
of time responses of the inductance Linv current for decoupling point R1 and a monolithic
system simulation for d = 1 · Ts and in one of the sinusoidal peaks can be seen in Figure 10.

The behaviour that inverter modes are not only influencing the inverter but also
the line connecting that inverter was noticed in applying modal analysis and looking
at the participation matrix on different power system models. This can be a helpful
finding for researchers who want to extend or use this analysis for PHiL and multi-rate
simulations applications.
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Figure 10. Time response of ILinv for decoupling point R1 and monolithic system simulation.

7. Conclusions

Partitioning a system for distributed real-time simulation applications poses challenges
in terms of the stability and accuracy of the simulation, and these issues were addressed
in this paper. In this paper, we developed and analysed analytical models of distributed
real-time simulations. We found that interaction system modes were more impacted by
the partitioning of the systems and delays occurring between partitions. With localizing
critical system modes, one can preserve the distributed system simulation stability.

The paper showed that the stability of the distributed simulations can be analysed by
observing the critical modes of the system, and stable partitioning with regard to delays can
be made using the non-intrusive delay-based method developed in the paper. The method
acts non-intrusively on the monolithic system model and preserves the simulation fidelity.
Verification results of the method on the representative grid are useful for developing
automatized partitioning solutions for benchmark distribution system models.
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