
����������
�������

Citation: Mitrofanov, A.; Ivaschenko,

A.; Avsievich, A.; Avsievich, V.;

Golovnin, O. Indirect Fuel Rationing

for a Special Self-Propelled Rolling

Stock. Energies 2022, 15, 836. https://

doi.org/10.3390/en15030836

Academic Editor: Attilio Converti

Received: 13 October 2021

Accepted: 21 January 2022

Published: 24 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Indirect Fuel Rationing for a Special Self-Propelled
Rolling Stock
Alexander Mitrofanov 1 , Anton Ivaschenko 2,* , Alexandr Avsievich 1 , Vladimir Avsievich 1

and Oleg Golovnin 3

1 Railway Power Supply and Mechatronics, Automation and Transport Control Departments, Samara State
Transport University, 443066 Samara, Russia; almit77@mail.ru (A.M.); a.avsievich@samgups.ru (A.A.);
avsievichv@gmail.com (V.A.)

2 Computer Science Department, Samara State Technical University, 443100 Samara, Russia
3 Information Systems and Technologies Department, Samara National Research University,

443086 Samara, Russia; golovnin@ssau.ru
* Correspondence: anton.ivashenko@gmail.com

Abstract: A method of indirect rationing of diesel fuel for special self-propelled rolling stock is
presented, based on the identification of actual fuel consumption and controlled operating modes.
Based on the results of test trips using automated accounting systems for operating modes and
fuel consumption, the method allows us to assess reasonable volumes of fuel consumption in a
specific section of the railway infrastructure. We show how the methods of identifying actual fuel
consumption and operating modes can establish consumption rates of special self-propelled rolling
stock without the use of automated fuel metering. The identification method is based on solving
a multifactorial equation, the coefficients of which are determined in a program with statistical
functions. To eliminate multicollinearity problems, the use of cluster analysis methods is proposed.
Unlike traditional calculation methods, the method allows for the determination of the norming
indicators in conditions of incomplete and partially incorrect data. The study was conducted using
data on fuel consumption of special self-propelled rolling stock at a particular railway range and
the relevant regulatory documents provided by Russian Railways. The results were obtained by
applying the method to special self-propelled rolling stock used in the electrification and railway track
departments of Russian Railways. The proposed method allows for simulation of the indicator of
normalized fuel consumption with an accuracy not worse than 96%. Based on the obtained model of
normalized fuel consumption, the method and parameters for identifying abnormal and unauthorized
fuel overconsumption are shown. The criteria for identifying abnormal fuel overconsumption using
the normalized standard deviation function were determined.

Keywords: diesel fuel consumption; special self-propelled rolling stock; predicted fuel consumption;
self-propelled rolling stock functioning modes; identification method; simulation accuracy; factors of
cluster analysis

1. Introduction

Modern large railway companies utilize a wide range of special self-propelled rolling
stock (SSRS), which is designed to perform various activities of maintenance and repair of
the infrastructure, such as the railway track, the catenary network, etc. By design, SSRS is a
motorized wagon with a diesel engine, in which special equipment is installed. Through
the use of SSRS on the railways, various types of jobs are carried out in the maintenance
and repair of railway infrastructure.

The most common types of work include delivery of workers and goods to repair
sites, lifting and laying of goods, installation of railway supports, lifting of personnel to
adjust and repair the contact network, and a number of other activities [1,2]. Most of the
work on the repair and modernization of railway tracks in Russia is carried out by SSRS
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of the loading transport motor locomotive type MLT-6 (or motorized carriage loading
transport MLT-6). For work on the repair and modernization of the contact network, a
diesel mounting rail of the automotive diesel mounting (ADM-1) type is used.

In addition to these SSRS types, more than 30 other types can be used to perform
work on the railway infrastructure. The amount of fuel consumed by SSRS is one of the
key indicators when assessing the efficiency, productivity, profitability, and environmental
friendliness of the railway company.

For the task of assessing the efficiency of SSRS fuel use by the Russian Railways
transport company, it is customary to compare actual and standard fuel consumption.
In this case, the absolute standard value of fuel consumption is calculated based on the
duration of the SSRS operation in various modes and the values of the corresponding
coefficients. These coefficients represent specific fuel consumption and are set for different
types of SSRS and diesel engines, and, in general, are stochastic values. Actual fuel
consumption is measured either by SSRS standard measuring instruments or by additional
electronic fuel consumption meters.

The experience of operating SSRS at Russian Railways landfills shows a significant dis-
crepancy between the actual and normative values of fuel consumption. Such discrepancy
may be related to differences in the path profile of SSRS sections of travel, the mass of goods
carried, the technical condition of the diesel installation, or unauthorized fuel discharge.
However, the main problem is the accurate identification of standard fuel consumption,
which may be due to the lack of control over the actual time of SSRS operating modes and
the dynamic nature of unit flow ratios.

As a rule, only the total operating time and mileage of SSRS are regularly recorded.
In this regard, the estimation of normalized consumption is carried out either by the total
operating time of the SSRS or with errors due to the uncertainty of the modes. Thus, it
becomes relevant to develop methods for indirect identification and adaptation of standard
fuel consumption of SSRS.

The study was conducted by Samara State Transport University using SSRS fuel
consumption data at a railway test site and relevant regulatory documents provided by
Russian Railways.

2. State of the Art

To date, directions for improving the efficiency of fuel consumption have been widely
considered in the scientific literature.

Basic approaches to improving fuel efficiency should include the development of
basic requirements for the purpose and primary standards of SSRS and other railway
rolling stock, including locomotives and railway engines. However, the specific application
conditions of SSRS, as well as the operational features, give rise to special requirements
regarding maintenance, management, and control. These features motivate the introduction
of modern innovations [3].

SSRS maintenance and management have high potential for improvement. As a
criterion, the level of safety of rolling stock and infrastructure is determined through the
use of various methods and tools to improve the performance of various subsystems [4].
New models of maintenance and repair of rolling stock dynamically optimize management
decisions throughout the life cycle [5]. The main problems of diagnosing and eliminating
rolling stock breakdowns, using models and methods of data analysis and simulation
modeling, have been studied [6].

Improving energy efficiency is one of the key tasks of the operation of railway rolling
stock. Within this framework, models have been developed to assess fuel economy for
classes of trains transporting various goods [7]. Reduced power consumption and travel
time can be achieved through innovative operating modes and optimized solutions, includ-
ing schedule adjustments [8]. The issue of energy management in transport, which ensures
the reduction in economic and environmental losses [9,10], has been considered.
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As a subsystem of energy efficiency improvement, optimization of the power supply
system for locomotives and diesel internal combustion engines is considered. Various
innovative solutions for modernizing the design and operating modes can significantly
increase power and fuel efficiency [11–13].

Numerous studies have been devoted to reducing emissions and fuel consumption [14–17].
To solve environmental issues, modern modeling and data analysis technologies are used,
as well as systems that can provide automated decision support in the field of alternative
fuels [18,19]. Simulation of environmental parameters has become an effective tool to help
develop and evaluate vehicle technologies and help predict fuel consumption and vehicle
emissions [20].

One popular solution considers the modernization of diesel engines by introducing
new types of fuel [21–25]. The resulting dual-fuel or multi-fuel engines require new control
systems that involve a stack of modern microcomputing and control technologies [26–29].

Solving the problem of monitoring and managing fuel consumption includes work
on developing new methods for rationing diesel fuel consumption [30,31]. These methods
provide high accuracy in monitoring and regulating diesel fuel in almost any range of
operation, which determines the efficiency of operation.

There are several approaches to monitoring the efficiency of diesel fuel consumption.
The first and most highly developed approach is the introduction of hardware and software
for monitoring and rationing fuel supplies at stationary vehicle refueling facilities [32].

Another significant direction in the assessment of fuel efficiency is monitoring the
dynamics of the technical condition of railway rolling stock, for example, with regard to
changes in the condition and layout of engines. The regulation of operating modes is used
as a method of reducing fuel consumption. A common regulation method is to turn off
some cylinders of a diesel engine during operation [33,34]. With this method of increasing
efficiency, fuel consumption can be reduced by 4–30%.

As a subsystem, it is possible to consider the monitoring of environmental indicators
as a criterion for fuel efficiency, including for SSRS engines. The operational and emission
characteristics of an engine running on both diesel fuel and gas mixtures are investigated
in [35–37].

Special attention in this area is given to monitoring efficiency and environmental
emissions when using hydrogen in diesel engines. Increased efficiency by 30% has been
reported [38]. The development of rationing diesel fuel consumption in railway transport,
including SSRS [39,40], expands upon the known materials and publications. This paper
discusses ways to improve the quality of standardization of diesel fuel consumption when
equipping rolling stock with automated fuel consumption accounting systems, as well as
when SSRS is equipped only with standard equipment and there is incomplete data on the
operating modes.

3. Motivation

The motivation for improving the rationing of SSRS diesel fuel consumption is to solve
the problem of improving fuel efficiency, including by reducing deviations between actual
fuel consumption and standard values. In an earlier study [39], the authors presented
the results of fuel consumption and rationing for SSRS type MLT-6, which is used in the
economy of the track in conditions of equipment with its automation system and sensor
equipment for fuel consumption of the KVARTA type.

This equipment was developed by PJSC Electromechanics (Penza, Russia) [41], and
according to the developer it allows data on fuel consumption to be obtained with a
minimum error of 0.67%, reduced fuel consumption rates, monitoring of compliance with
regulations, and prevention of overconsumption and fuel spills.

KVARTA fuel consumption sensor equipment is installed on board SSRS to identify
fuel consumption, which increases its reliability and ensures the compatibility of SSRS
refueling volumes with the volume of fuel purchases for the company’s warehouses by
energy management methods.
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However, an accurate assessment of actual fuel consumption directly on board SSRS
does not guarantee any saving of fuel. Fuel saving can be generated in terms of significant
actual costs, but also with higher rates of expenditure.

Therefore, the conditions for the organization of real fuel economy are as follows:

• Identification of fuel consumption standards based on what they bring to actual fuel
consumption justified for the performance of work.

• Monitoring of actual fuel consumption with adjustment of significant deviations from
the normative values, including unauthorized discharge of residues or excess fuel
from SSRS tanks.

• Control of actual fuel consumption in SSRS modes according to the criterion of “not
exceeding” the identified consumption rates.

So, the purchase of fuel at unreasonably inflated rates creates a surplus in the ware-
house. In addition, the use of inflated regulatory values leads to the accumulation of
excess fuel in the SSRS tanks, which can provoke unauthorized discharge of fuel by SSRS
personnel.

Thus, the rationing of fuel consumption is aimed at solving the problem of fuel
economy. For a transport company like JSC Russian Railways, with significant numbers
and types of SSRS equipped only with standard equipment for fuel consumption metering,
a significant effect on fuel economy will be achieved when using the following:

• The results of SSRS test trips equipped with automated accounting systems for operat-
ing modes and fuel consumption.

• Correct procedures for monitoring and storing indicators of fuel consumption in
databases.

• Accurate methods of rationing fuel consumption based on identifying fuel consump-
tion according to the results of SSRS tests and operational trips.

The structure of the KVARTA complex, suitable for organizing test trips, is shown in
Figure 1. The principal difference in the equipment is the use of accurate float sensors at the
level and density of the liquid with built-in temperature sensors. This technical solution
provides an accurate direct measurement of fuel density and its specific gravity, with an
absolute error in measuring the fuel level in the tank of ±1 mm and an error in measuring
the density of ±2kg/m3.
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Figure 1. Structure of KVARTA complex.

As an example of using the results of SSRS test trips equipped with automated account-
ing systems for operating modes and fuel consumption, we consider the data obtained in
2016 at a JSC Russian Railways polygon.

Table 1 presents a portion of the initial data obtained in an assessment of the fuel
consumption efficiency of an SSRS type MLT-6 with KVARTA sensor equipment. Figure 2
shows graphs of actual and normalized fuel consumption, as well as SSRS mileage over
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trips. It is evident from the graph and table that in individual journeys, the discrepancy
between actual and standard fuel consumption values can be as high as 135%.

Table 1. Data on actual and regulatory fuel consumption of SSRS MLT-6 in 2016.

Date Run (km) FC(Fact) (kg) FC(Norma) (kg)
Saving (−)/

Overspending (+)
(kg)

ABS
(Fact-Norma)/Norm

(%)

1 August 2016 90.9 36.0 40.5 −4.5 12.5%
3 August 2016 58.7 34.0 51.3 −17.3 50.9%
4 August 2016 93.5 32.0 56.5 −24.5 76.6%
5 August 2016 3.3 24.0 33.7 −9.7 40.4%
8 August 2016 1.9 4.0 9.4 −5.4 135.0%

. . . . . . . . . . . . . . . . . .
28 September 2016 156.0 74.0 83 −9 12.2%
29 September 2016 196.6 71.0 76.4 −5.4 7.6%

Mean 88.8 39.9 51.3 −11.4 27.9%
Std. deviation 68.8 23.3 26.0 9.0 15.5%
Coef. variation 77.5% 58.4% 50.6% −78.7% 55.5%

Max 238.2 96.0 112.1 9.0 66.7%
Min 0.8 0.6 0.5 −36.1 6.0%
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Figure 2. MLT-6 operating modes and fuel consumption in 2016.

In general, during the experimental period from 1 August 2016 to 29 September 2016,
27 trips were made. During that time, the average actual fuel consumption, FC(Fact), was
39.9 kg per trip with a norm, FC(Norma), of 51.3 kg per trip. Thus, the excess of the norm
was 11.4 kg on average, which is 27.9% of the actual consumption. The maximum range
between the actual and standard flow rate for individual trips can be up to 135%.

The average distance of the SSRS trip to the repair sites was 88.8 km, with a standard
deviation of 68.8 km. The normalized coefficient of standard deviation (coefficient of
variation = standard deviation/mean) for all factors ranges from 50% to 78%. Because
this indicator exceeds 33%, it allows us to characterize all analyzed processes as variable
and heterogeneous.

As an example of using SSRS test trips of another type, the results of an assess-
ment of the fuel consumption efficiency of another type of SSRS, ADM-1, were analyzed.
ADM-1 is used in the electrification and power supply of JSC Russian Railways and differs
significantly from type MLT-6 in its functioning (Figure 3). A study of the fuel consump-
tion process of SSRS type ADM-1 was carried out in the same period (1 August 2016
to 29 September 2016). ADM-1 was also equipped with the KVARTA system (Figure 1).
Figure 2 shows graphs of actual and normalized fuel consumption, as well as SSRS mileage
over trips.
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Figure 3. ADM-1 operating modes and fuel consumption in 2016.

It can be seen from Figure 2 and Table 1 that, on some trips, the discrepancy between
actual and standard fuel consumption can be as high as 75%. In general, during the
experimental period from 1 August 2016 to 29 September 2016, 25 trips were carried out.
At the same time, the average actual fuel consumption was 34 kg per trip and the norm was
34.83 kg per trip. Thus, the average excess of the norm was no more than −0.8 kg, which
does not exceed −2.3% of actual consumption. However, the maximum span between
actual and normalized fuel consumption can be up to 150%. The average duration of the
trip to places of repair was 51 km, with a standard deviation of 60.6 km. All values of
the normalized coefficient of variation exceed 80%, which characterizes all processes as
significantly variable and heterogeneous.

The fuel consumption figures shown in Tables 1 and 2 can be a benchmark for esti-
mating the consumption of SSRS with standard equipment. However, these experiments
did not consider the impact of SSRS operating modes on fuel consumption patterns, which
must be considered to improve the quality of rationing.

Table 2. Data on actual and regulatory fuel consumption of SSRS ADM-1 in 2016.

Date Run (km) FC(Fact) (kg) FC(Norma) (kg)
Saving (−)/

Overspending (+)
(kg)

ABS (Fact-
Norma)/Norm

(%)

1 August 2016 3.8 19 34.3 −15.3 44.6%
2 August 2016 110.9 67 61.1 5.9 9.7%
3 August 2016 59.3 49 53 −4 7.5%
9 August 2016 130.4 99 56.3 42.7 75.8%

10 August 2016 31.0 33 25.6 7.4 28.9%
. . . . . . . . . . . . . . . . . .

20 September 2016 1.6 24 39.3 −15.3 38.9%
21 September 2016 57.9 36 41 −5 12.2%

Mean 51.0 34.0 34.8 −0.8 2.3%
Std. deviation 60.6 27.3 23.5 13.4 33.4%
Coef. variation 118.9% 80.2% 67.5% −1762.8% 106.1%

Max 200.3 99.0 75.5 42.7 150%
Min 0.0 0.8 0.4 −20.3 0.0%

The conclusion regarding the significant variability and heterogeneity of fuel con-
sumption for ADM-1 and MLT-6 requires the development of an adaptive rationing system.
This system will need to set reasonable standard levels of fuel consumption in conditions of
incomplete data and monitor significant deviations in actual costs for SSRS with standard
equipment.

Therefore, the results shown here motivate further research to improve the methods of
normalizing fuel consumption on SSRS of various types based on multi-factor accounting
of controlled modes of operation.
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4. Method

With the modern system of documented fuel accounting for the SSRS of JSC Russian
Railways, the actual and normative modes of SSRS operation are taken into account and
recorded, which are measured in hours, as follows: Htot—hours in total mode; Hwm—hours
in working mode; Him—hours in idling mode; Htrm—hours in transport mode. The SSRS
factor Run is recorded in kilometers (km), and the actual fuel consumption, FC(Fact), is
recorded in kilograms (kg).

Moreover, during the monitoring, there must be a balance of the time of implementa-
tion of SSRS operating modes for each trip, that is:

Htot= Hwm+Him+Htrm. (1)

At the same time, the traditional calculation of the standard level of fuel consumption,
BN

j , is performed according to the following well-known formula:

BN = bwm·Hwm + bim·Him + btrm·Htrm, (2)

where bwm, bim, and btrm are the coefficients for SSRS hourly operation in controlled modes,
representing specific fuel consumption in kg/h. Their value is calculated as the ratio of
the absolute volume of fuel consumption per trip, j, to the time of SSRS operation in the
corresponding mode.

It is clear that the SSRS database does not have operating mode values Hwm, Him, and
Htrm on trip j, which reduces the reliability of the assessment of the normative level of
fuel consumption. Finding the solution to the problem is possible by developing methods
of statistical analysis and identification, as proposed in [39,40]. One advantage of these
methods is the possibility of using a wider range of factors in addition to BN

j , Hwm, Him,
and Htrm; for example, Run factor, temperature, or environmental performance.

In the proposed methodology, the fuel consumption rate indicator BN
j is formed on

the basis of monitoring the actual fuel consumption, BF
j , during the SSRS trips.

Digitalization of the values of m operating factors, Xe, is carried out, which affects the
level of actual fuel consumption, BF

j . The equation that links actual fuel consumption to
operational factors is presented in general terms, as follows:

BF
j = A(Xe1, Xe2, . . . , Xei, . . . Xem) + ξ, (3)

where the A operator is the relationship between operational factors, Xe, and actual fuel
consumption, BF

j , and ξ is the stochastic component, which is determined by the presence
of an influence on fuel consumption by unaccounted operational factors.

After the stage of identifying the nature and parameters of the operator of relationship
A and monitoring the values of the selected operational factors, Xe, it is possible to calculate
the values of fuel consumption rate, BN

j , based on the following expression:

BN
j = A(Xe1, Xe2, . . . , Xei, . . . Xem) + ξ. (4)

A significant advantage of the identification methodology for assessing the rate of fuel
consumption in comparison with the methods currently used by Russian Railways is the
ability to configure the interconnection operator A for a specific type of rolling stock, type
of job, and infrastructure facility.

In order to improve the adequacy of the identified operator A, it is possible to use
both linear and nonlinear types of operators.

With a linear nature of the relationship between operator A and factors Xe, Equation (2)
is expedient to represent in the form of a regression equation, as follows:

BN
j = a0 + b1 · Xe1 + b2 · Xe2 + . . . + bi · Xei + . . . + bm · Xem + ξ, (5)
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where a0 is a free term of the regression equation, and b1, b2, . . . bi, . . . bm are parameters for
operational indicators, representing fuel consumption.

Accuracy is estimated by the average absolute error by mean absolute percentage
error (MAPE) assessment when comparing model BN

j and actual consumption standards

BF
j using 100% diesel.

The solution of an equation in the form of (3) can be found by constructing multifactor
models based on software tools with statistical functions [42–44]. As an example of the
work of the methodology, a real database of eight factors (X1, X2, . . . , X8), characterizing
the operation of the technical system based on 40 data measurements, was selected. The
goal was to build a predictive model, Predict (X1), of the actual values of factor X1 based
on the relationship with seven other “explanatory” factors—X2, X3, . . . , X8.

The problem is considered solved when the coefficients of Expression (3) are deter-
mined: a0 (intercept) and b2, b3, . . . , b8 are the coefficients of Equation (5) (see Table 3).

After identifying these coefficients, a multifactorial equation in the form of (3) can be
constructed, as follows:

X1 = 22.8634 + 0.1871·X2 + 8.93456 · X3 − 12.0377 · X4 +
+ 2.9747 · X5 + 1.0832 · X7 + 0.5792 · X8

(6)

Table 3. Results of search for coefficients of six-factor equation by a program with statistical functions.

Beta Beta Std. Err B B Std Err. t(34) p-Value

Intercept 22.8634 6.075533 3.76319 0.000635
X2 0.334625 0.101032 0.1871 0.056498 3.31206 0.002203
X3 0.673119 0.080782 8.9455 1.073562 8.332251 0
X4 −0.181588 0.115385 −12.0377 7.649059 −1.57375 0.124715
X5 0.114232 0.107335 2.9747 2.795108 1.06425 0.294715
X7 0.081041 0.107542 1.0832 1.437419 0.75358 0.456291
X8 0.087434 0.069990 0.5792 0.463652 1.24925 0.220107

In the above example, the X6 factor was excluded due to incorrect data recording.
According to the equation, a graphical implementation of the model can be built: Predict
(X1). The obtained indicators of the Predict (X1) model are considered adequate if the
multiplier coefficient of the R2 model is greater than 0.80, or the Fisher–Snedekor coefficient
(F) exceeds the table value of FT. So, with an experimental 20 measurements of 8 factors
and with a level of significance of p = 0.05 for the identification results, the critical value is
FT = 2.55. With an experimental 20 measurements of 2 factors, the critical value is FT = 3.49.

The parameters of the X1* model (Figure 4) indicate a high level of adequacy since
they obtained a high correlation coefficient (R = 0.936), a high determination coefficient
(R2 = 0.875), a high corrected determination coefficient (adjusted R2 = 0.853), a high Fisher
criterion level (F = 39.816), and a low standard error level (std. error of estimate = 8.95).

A program with statistical functions was used to determine the significant factors, X2
and X3 (highlighted in red). These factors correspond to a p-value close to zero. Values
of factors X4, X5, . . . X7, X8 with a high p-value of can be excluded without significantly
affecting the accuracy of the model.

To improve the adequacy of the model, factors with the property of multicollinearity
must be excluded from an equation of type (3). The higher the multicollinearity, the less
reliable the results of multiple regression [42–44]. In these works, it is recommended to
search for and exclude multicollinear factors when using correlation analysis (see Table 4).
The authors propose to use cluster analysis (see Figure 4) [39,40] to solve this problem.
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Table 4. Correlation analysis: matrix of pairwise correlation coefficients.

X1 X2 X3 X4 X5 X6 X7 X8

X1 1.00 0.67 0.82 0.22 0.05 0.86 0.15 0.51
X2 0.67 1.00 0.32 0.09 -0.14 0.51 0.15 0.42
X3 0.82 0.32 1.00 0.40 0.20 0.94 0.20 0.38
X4 0.22 0.09 0.40 1.00 0 0.51 0.81 0.15
X5 0.05 -0.14 0.20 0 1.00 0.06 0 0.09
X6 0.86 0.51 0.94 0.51 0.06 1.00 0.33 0.42
X7 0.15 0.15 0.20 0.81 0 0.33 1.00 0.13
X8 0.51 0.42 0.38 0.15 0.09 0.42 0.13 1.00
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of the relationship of factors.

The method of selecting factors in an equation of type (3) should take into account a
number of elements, as follows:

• The correlation between the simulated X1 factor and other explanatory factors, for
example, X2, . . . , X8, should be higher than the interfactorial relationship.

• The correlation between explanatory factors X2, . . . , X8 should be no more than 0.7.
• With a high interfactorial relationship, factors with a lower correlation coefficient are

selected.

For the selection of factors, it is convenient to use a matrix of pairwise correlation
coefficients (Table 4) and a dendrogram, built based on the results of cluster analysis and
presented in Figure 4.

In the dendrogram, the clustering of factors is carried out according to the principle of
complete connections, and it is used as a metric of the distances between factors (Pearson’s r).

The dendrogram indicates the levels of relationships of factors according to the differ-
ence between the unit and the correlation coefficient (Pearson’s r) in graphical form. The
levels of relationship between X1, X2, . . . , X8 are depicted on the horizontal axis according
to the indicated criterion. All factors X1, X2, . . . , X8 are combined into groups/clusters.
So, the combination of factors X4 and X7 in a cluster at the level of 0.2 corresponds to their
correlation at the level of R = (1 − 0.2) = 0.8.

The relationship between factors X3 and X6 at a level of less than 0.1 corresponds
to correlation coefficient R = (1 − 0.06) = 0.94. A relationship on the horizontal axis at a
level of 1 corresponds to 0 correlation, i.e., R = 0. A relationship on the horizontal axis
above, for example, a level of 1.2 corresponds to R = (1 − 1.2) = −0.2, that is, a negative
correlation. According to the rules for building a model of factor X1 from the dendrogram
in Figure 4, it is advisable to choose from the cluster of X3 and X6 only factor X3, with the
lowest correlation coefficient (0.82). From the second cluster of factors X2 and X8, with a
relationship at the level of R = 0.51 − 0.67, X8 = 0.51 is chosen, and so on.

As a result of factor selection, a two-factor equation in the form of (3) is formed from
significant factors X2 and X3, with the coefficients presented in Figure 5 and Table 5. The
two-factor model also has high adequacy: correlation coefficient (R = 0.925), determination
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coefficient (R2 = 0.856), and corrected determination coefficient (adjusted R2 = 0.848).
However, there is a significant increase in the Fisher criterion (F = 113.19).
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Table 5. Coefficients of two-factor equation.

Beta Beta Std. Err. B B Std. Err. t(34) p-Value

Intercept 18.33154 4.507495 4.06690 0.000231
X2 0.455196 0.064962 0.25455 0.036327 7.00709 0
X3 0.672298 0.064962 8.93456 0.863321 10.34906 0

As a result of substitution of coefficient B from Table 5, a model of factor X1* equation
is obtained in the form of Equation (3):

X1* = 18.33154 + 0.25455 · X2 + 8.93456 · X3. (7)

Substitution in the resulting equation of the values of X2 and X3 at different times (or
in different experimental trips) will allow model implementation of X1* for comparison
with the actual X1. Figure 5 shows the joint implementation of the actual values of factor X1
and its simulated X1* values, denoted as Predict (X1). Mean absolute percentage error
(MAPE) characterizes the accuracy of the constructed Predict (X1), relative to the actual
implementation of X1. The allowable value of MAPE assessment is 10–15%, and the MAPE
value for the example is 11%, which indicates sufficient accuracy of the constructed model.

The Predict (X1) model value graph takes into account the dynamics of all controlled
and significant factors. Due to this property, this particular model can be considered
as a generalized normalized implementation of fuel consumption. This model can be
used to compare the actual values to assess fuel efficiency. Significant deviations from
this implementation of actual costs can be considered as unauthorized fuel consumption
or drain.

The construction of Predict (X1) made it possible to record an excess of the actual
value of X1 = 81 by more than 100% of its normalized value (43.7) at time 14. This can
be interpreted as an abnormal overconsumption and possibly an unauthorized drain of
fuel. Therefore, the above technique can be used to establish standard values for fuel
consumption of different types of SSRS under different operating conditions, as well as to
identify abnormal overconsumption of fuel.

5. Results
5.1. SSRS ADM-1 Fuel Rationing Results

Based on the above method for rationing identification, an analysis of the results of
monitoring the fuel consumption modes of ADM-1 was carried out at a branch of JSC
Russian Railways in 2019. The analysis was based on the results of 44 trips for the 3-month
period from 1 April 2019 to 29 June 2019 (see Table 6). The previously mentioned parameters
of SSRS operating modes were used: FC(Fact), Run, and Htot, Hwm, Him, and Htrm.

Statistical analysis of the data presented in Table 6 and Figure 6 shows that in 2019,
ADM-1, the specified type of SSRS, was characterized by significant fuel consumption. For
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ADM-1, the average diesel fuel consumption per trip was 65.8 kg, the standard deviation
was 31.4 kg, and the coefficient of variation was 47.7%. The average mileage per trip was
67.1 km with a standard deviation of 47.4 km. The coefficient of variation was 70.7%. The
average duration per trip was 6.8 hours with a standard deviation of 2.4 hours, which
produces a coefficient of variation of 35.7%.

Table 6. Data on actual and regulatory fuel consumption of SSRS ADM-1 in 2019.

Date Run (km) Htot (h) Hwm (h) Him (h) Htrm (h) FC(Fact) (kg)

23 April 2019 66 8 4 4 0 76
26 April 2019 108 8 5 3 0 83
29 April 2019 87 9 5 4 0 89
30 April 2019 23 8 3 5 0 69

. . . . . . . . . . . . . . . . . . . . .
25 June 2019 107 7 0 0 0 63
27 June 2019 107 6 0 0 0 57
28 June 2019 3 3 0 0 0 25

Mean 67.1 6.8 4.5 3.7 65.8
Std. deviation 47.4 2.4 1.5 1.2 31.4
Coef. variation 70.7% 35.7% 33.7% 33.7% 47.7%

Max 194.0 12.0 6.0 6.0 176.0
Min 0.7 0.4 0.0 0.0 0.5

The variability fuel consumption is evidenced by an average for ADM-1 in 2019 of
65.8 kg per trip, while in 2016 it was only 34 kg. Actual mileage in 2019 was 67.1 km, as
opposed to 51 km in 2016. The normalized standard deviation for actual fuel consumption
in 2019 was 47.7%, compared with 106.1% in 2016. It was found that when filling out
database forms in automated control systems of the NBD type (Figure 1) on a personal
computer, there may be errors in data input and interpretation. The actual values of the
factors are most fully filled: Htot, FC(Fact), and Run.

However, due to a number of organizational or technical problems, the factor data
(Hwm, Him, and Htrm) may be partially absent.

Energies 2022, 15, x FOR PEER REVIEW 12 of 21 
 

 
Figure 6. ADM-1 operating modes and fuel consumption in 2019. 

The visual analysis of a fuel consumption graph indicates the presence of abnormal 
excesses of fuel consumption over statistically stable values, for example, on 01 April 
2019. In this case, the values of factors totH  and Run SSRS at such times are in normal 
ranges. 

To build the normalized values of fuel consumption according to the presented 
methodology, based on Table 6, a dendrogram was built (see Figure 7), where the 
following factors were used: FC(Fact), Run, totH , wmH , and imH . trmH  was excluded 
from the original data, so it was not used in the dendrogram. 

Based on the type of dendrogram, it can be expected that the factor that will have the 
greatest effect in the model on FC(Fact) is factor totH , since the correlation coefficient 
between them is high at R = (1 − 0.05) = 0.85. 

As a result of calculations for a program with statistical functions, the values of the B 
coefficients were determined with four explanatory factors: Run, totH , wmH , and imH . 

Indicators of the solution option indicate high adequacy of the compiled 4-factor 
model (see Tables 7 and 8), based on high values of the correlation coefficient (R = 0.929), 
coefficient of determination (R2 = 0.968), corrected determination coefficient (adjusted R2 
= 0.938), high Fisher criterion (F = 113.88), and low standard error (5.8723). 

However, in this variant, the free part of the equation (Intercept) and the Run factor 
were insignificant. These factors in Equation (3) can be used for analysis but cannot be 
used for prediction problems. 

 
Figure 7. Results of construction of statistical indicators of SSRS type ADM-1: dendrogram of 
relationship of factors under study.  

Figure 6. ADM-1 operating modes and fuel consumption in 2019.

The visual analysis of a fuel consumption graph indicates the presence of abnormal
excesses of fuel consumption over statistically stable values, for example, on 1 April 2019.
In this case, the values of factors Htot and Run SSRS at such times are in normal ranges.

To build the normalized values of fuel consumption according to the presented method-
ology, based on Table 6, a dendrogram was built (see Figure 7), where the following factors
were used: FC(Fact), Run, Htot, Hwm, and Him. Htrm was excluded from the original data,
so it was not used in the dendrogram.
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Based on the type of dendrogram, it can be expected that the factor that will have
the greatest effect in the model on FC(Fact) is factor Htot, since the correlation coefficient
between them is high at R = (1 − 0.05) = 0.85.

As a result of calculations for a program with statistical functions, the values of the
B coefficients were determined with four explanatory factors: Run, Htot, Hwm, and Him.

Indicators of the solution option indicate high adequacy of the compiled 4-factor
model (see Tables 7 and 8), based on high values of the correlation coefficient (R = 0.929),
coefficient of determination (R2 = 0.968), corrected determination coefficient (adjusted
R2 = 0.938), high Fisher criterion (F = 113.88), and low standard error (5.8723).

However, in this variant, the free part of the equation (Intercept) and the Run factor
were insignificant. These factors in Equation (3) can be used for analysis but cannot be used
for prediction problems.
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Table 7. Indicators of primary construction of four-factor equation.

Beta Beta Std.
Err. B B Std. Err. t(34) p-Value

Intercept 0.45105 3.7167 0.12136 0.904218
Run (km) −0.02017 0.067249 −0.01009 0.033632 −0.29993 0.766301

Htot (h) 0.898698 0.066183 9.23942 0.680419 13.57902 0
Hwm (h) 0.431198 0.095342 3.92286 0.867383 4.52264 0.000089
Him (h) −0.30163 0.106922 −3.36296 1.192101 −2.82104 0.008408

Table 8. Optimized two-factor equation.

Beta Beta Std. Err. B B Std. Err. t(34) p-Value

Intercept 0.404305 4.154952 0.09731 0.92309
Htot (h) 0.87637 0.054674 9.009876 0.562102 16.02891 0
Hwm (h) 0.180593 0.054674 1.642964 0.497405 3.30307 0.00236

A more adequate model for the rationing tasks for the sample used is obtained using
two factors, Htot and Hwm.

The adequacy of the model also remained high. The coefficient of multiple correlation
was R = 0.957, and the value of the Fisher criterion increased significantly (F = 177).

To predict the level of fuel consumption and establish an adequate level of fuel
rationing for this sample the most significant factor was Htot. The paired Beta correlation
coefficient with the forecast model was R = 0.1805, and the coefficient of the equation was
b = 1.6429. A less significant factor was Hwm. The paired Beta correlation coefficient with
the forecast model was R = 0.1805, the coefficient of the equation b = 1.6429.
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Figure 8a illustrates the results of constructing a graphical view of a two-factor model
of ADM-1 fuel consumption. At the top of the graph there is a regression equation that
allows us to plot the fuel consumption value plane. From the nature of the constructed
plane, it can be seen that significant changes in the output indicator depend mainly on the
change in the indicator of the total operating time Htot and, practically, do not depend on
the operating (working) mode Hwm.
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Figure 8. Graph of SSRS indicators of type ADM-1: (a) two-factor model, Htot and Hwm; (b) FC(fact)
and model-predicted FC.

Figure 8b shows parts of the overall graph: actual FC(Fact) and model-predicted FC
for the period from 1 April 2020 to 13 May 2019. The accuracy of modeling, according
to the MAPE criterion, was assessed as high, at 6.9%. Comparing the values of actual
and model graphs, for example, for 1 April 2019, allows us to identify an abnormal ac-
tual overconsumption of fuel and further find out its cause, including unauthorized fuel
draining.

The low degree of adequacy of the ADM-1 diesel fuel rationing model is primarily
determined by the lack of data on the time of the operating modes, including operating
(working) time, Hwm, idle time, Him, and transport time, Htrm.

Further improvement of the model can be carried out based on accurate electronic mea-
surement of actual fuel consumption FC(Fact) and correct filling of databases or reporting
on the normal operating modes of SSRS: Htot, Hwm, Him, and Htrm.

In addition, the model can be improved by including other factors, such as Run
SSRS to the place of work, the mass of transported goods, the speed of movement, the
environmental temperature, equipment wear, the skill of personnel, and other measurable
factors that can affect fuel consumption.

5.2. Results of Standardization of SSRS Fuel of MLT-6

Based on the above method of identifying rationing, an analysis of the results of
monitoring the fuel consumption modes of SSRS type MLT-6 at a branch of JSC Russian
Railways in 2019 was also analyzed. The analysis was based on the results of 62 trips over
3 months from 1 April 2019 to 29 June 2019 (see Table 9). As parameters of the modes of
SSRS operation, the factors previously mentioned for ADM-1 were used: FC(Fact), Run,
Htot, Hwm, Him, and Htrm.

Statistical analysis of the data shows that in 2019, MLT-6, the specified type of SSRS,
was characterized by significant fuel consumption. For the MLT-6 car, the average con-
sumption of diesel fuel per trip was 89.5 kg, the standard deviation was 47 kg, and the
coefficient of variation was 53%. The average mileage per trip was 69.53 km with a standard
deviation of 52.4 km. The coefficient of variation was 75.3%. The average duration per
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trip was 8.2 hours with a standard deviation of 2.5 hours, which produces a coefficient of
variation of 30%.

Table 9. Data on actual and regulatory fuel consumption of SSRS MLT-6 in 2019.

Date Run (km) Htot (h) Hwm (h) Him (h) Htrm (h) FC(Fact) (kg)

1 April 2019 50 9 6 1 2 92
2 April 2019 100 10 6 1 3 103
3 April 2019 30 8 6 1 1 81
4 April 2019 150 11 7 1 3 114

. . . . . . . . . . . . . . . . . . . . .
26 June 2019 250 9 4 1 4 92
29 June 2019 15 6 5 1 0 60

Mean 69.53 8.18 5.18 1.00 1.67 89.45
Std. deviation 52.4 2.5 1.6 0.3 1.0 47.0
Coef. variation 75.3% 30.5 31% 33% 60% 53%

Max 250 18 7 2 4 302
Min 0 2 0 0 0 12

The variability of fuel is evidenced by an average of 89.45 kg per trip in 2019, while in
2016 it was only 39.9 kg. Actual mileage in 2019 was 69.53 km, compared with 88.8 km in
2016. The normalized standard deviation for actual fuel consumption in 2019 was 55.5%,
compared with 77.5% in 2016.

We note that filling out database forms for transmission to the automated control
system of NBD type (see Figure 9) for SSRS type MLT-6 is more correct than for ADM-1.
The actual values of the variables are most fully populated: Htot, FC(Fact), and Run.
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Figure 9. Fuel values and modes of MLT-6 in 2019.

In MLT-6-related databases and reports on organizational or technical problems, factor
indicators Hwm, Him, and Htrm can be filled in formally and do not reflect the actual
performance of SSRS operating modes.

This paper made a comparative analysis of indicators and modes of fuel consumption
for types of SSRS in 2019—ADM-1 and MLT-6. The average diesel fuel consumption for
an MLT-6 trip in 2019 was 89.45 kg, which is 36% higher than ADM-1 (65.8 kg). The span
between maximum and minimum values of MLT-6 (290 kg) was 67% higher than that of
ADM-1 (175 kg).

The average mileage per trip was almost the same, at 67–68 km.
Differences in the statistical data from the actual performance indicators in modes Htot,

Hwm, and Him are as follows: ADM-1: 6.8, 4.5, and 3.7 and MLT-6: 8.2, 5.2,
and 1.0., respectively.

Thus, the total operating time of MLT-6 is only 20.6% longer than that of ADM-1, and
this cannot explain the 36% difference in fuel consumption. Moreover, the fuel consumption
of MLT-6 is higher than that of ADM-1 in conditions of the same established consumption
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rates, with the same type of diesel power plant, YaMZ-238, produced by the Yaroslavl
Machine-Building Plant (Yaroslavl, Russia).

The variation coefficients of the modes of operation of both types of SSRS are approxi-
mately the same, at 33%.

For SSRS types ADM-1 and MLT-6, the research established average specific actual
fuel consumption, which was calculated from actual consumption for FC(Fact) trips and the
total operating time of SSRS, Htot. These values were 9.7 and 10.9 kg/h and the coefficients
of variation of the actual specific flow rate were 15.7 and 6.5% for ADM-1 and MLT-6,
respectively.

An investigation of SSRS work databases showed that the components of total uptime
Htot in modes Hwm, Him, and Htrm in databases and documentation (route sheets) are
entered irregularly and with distortions. More errors are observed in the databases for
ADM-1. This may distort the adequacy of the fuel consumption rationing model.

It has been established that the adequacy of the fuel consumption rationing model
can be influenced by the non-stationarity property of the fuel consumption process over
time or on trips. Figure 10 shows that fuel consumption is non-stationary in nature for the
periods of the experiment. This non-stationarity follows from the difference in statistical
indicators in different periods of the experiment. Table 10 presents the FC(Fact 1) indicators
for the period from 6 May 2019 to 10 June 2019 and the FC(Fact 2) indicators for the period
from 10 June 2019 to 29 June 2019.

Table 10. Fuel consumption characteristics of SSRS MLT-6 in 2019.

INDEX FC(Fact 1) (kg) FC(Fact 2) (kg)

Mean 80.4 120.4
Std. deviation 22.5 84.9
Coef. variation 28.05% 70.51%

Max 114 302
Min 12 21

A dendrogram was constructed to build a model of fuel consumption rationing for
the entire period of the experiment, from 6 May 2019 to 29 August 2019 (see Figure 10).
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Figure 10. Results of construction of statistical indicators of SSRS type MLT-6 for entire study period
in the form of a dendrogram of relationship of factors.

From the type of factor connections in the dendrogram, it can be expected that will
have the greatest effect on the FC(Fact) model (as well as for AMD-1). The value of the
correlation coefficient between these factors is the highest, at about R = (1 − 0.3) = 0.7. The
next most related to the FC(Fact) model is Run, or Htrm. The correlation coefficient of this
cluster with FC(Fact) is a weak relationship, R = (1 − 0.6) = 0.4. The relationship of FC(Fact)
with the cluster of Him and Htrm factors is close to zero.
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Calculating the coefficients of an equation in the form of (3) with the five factors in the
model (Run, Htot, Hwm, Him, Htrm) showed that the adequacy of the model is at the lowest
permissible level. This is indicated by a low value close to the limit of the coefficient of
determination (adjusted R2 = 0.503) and, accordingly, a low multiplier correlation coefficient
(R = 0.737).

In addition, the value of the F criterion was just over 13, which is higher than the
critical value, but an order of magnitude lower than that for the ADM-1 type SSRS model.

The coefficients of the multifactor B equation with four factors (Run, Hwm, Him, Htrm)
are insignificant. This follows from their p-values, which are higher than the permissible
value of p < 0.005 at 0.17–0.68.

In addition, the low values of the Beta pair correlation coefficients of these factors
at the −0.068 and 0.223 indicate a low degree of influence of the factors on the FC(Fact)
model.

The most significant coefficient of the Beta pair correlation is the coefficient of Htot
equal to 0.6158. The presence of insignificant factors in the solution requires further
optimization of the model.

Tables 11 and 12 show options for optimizing the equation by excluding insignificant
factors—Hwm, Him, Htrm. However, there was no significant improvement in the degree of
adequacy: the adjusted R2 value improved to 0.521, the multiplier correlation coefficient
remained at the level of 0.733, and the value of the Fisher criterion was 34.27.

Table 11. Indicators of primary construction of five-factor equation.

Beta Beta Std.
Err. B B Std. Err. t(34) p-Value

Intercept −16.062 17.44132 −0.920914 0.361046
Run, km 0.223059 0.163805 0.2001 0.14694 1.361735 0.178735

Htot, h 0.615885 0.139593 11.7157 2.65541 4.412016 0.000047
Hwm, h 0.07774 0.149578 2.1816 4.19749 0.519729 0.605301
Him, h −0.075170 0.108360 −10.4507 15.06513 −0.693703 0.490736
Htrm, h −0.068884 0.166171 −3.0648 7.39326 −0.414533 0.680067

Table 12. Optimized two-factor equation.

Beta Beta Std. Err. B B Std. Err. t(34) p-Value

Intercept −19.8874 14.43721 −1.37751 0.173558
Htot, h 0.173903 0.101107 0.1560 0.0907 1.71999 0.090676
Hwm, h 0.633153 0.101107 12.0442 1.92331 6.26221 0

Based on the studies conducted, it was assumed that the reason for the insufficient
adequacy of the FC(Fact) model was the non-stationarity of implementation in different
periods of the experiment, which was presumably associated with an unreasonable and/or
unauthorized increase in fuel consumption, for example, on 16 June 2019 and 25 June 2019.
Figure 11a shows a graphical view of a two-factor model of ADM-1 fuel consumption. At
the top of the graph is the regression equation that allows us to plot the fuel consumption
value plane. From the nature of the constructed plane, it can be seen that significant changes
in the output indicator depend mainly on changes in the total operating time Htot and do
not depend much on the operating (working) mode Hwm.

The accuracy of modeling according to the MAPE criterion is good at about 15%.
Such accuracy is sufficient to identify and compare graphs of actual and model predicted
fuel consumption.

Figure 11b shows part of the overall graph of actual FC(Fact) and model-predicted
FC fuel consumption for the period 10 June 2019 to 30 June 2019. For example, the actual
fuel consumption on 16 June 2019 of 302 kg is adjusted by the model value on the graph,
which is 127 kg. Thus, an abnormal overconsumption of fuel by 130% of the standard can
be identified.
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Based on the deviations from normative costs for SSRS of type ADM-1 and MLT-6, a
collapsing criterion for classifying deviations as abnormal and non-normative is proposed.
With this criterion, Ka, it is proposed to use the excess of the current actual value of fuel
consumption, SFC = (FC(Fact)/Htot), over the level of the established standardized fuel
consumption, SPC = (Predict FC/Htot), increased by the standard deviation at the time of
assessment, as follows:

Ka = (SFC − SPC) > Std. Deviation (SFC(Fact)) (8)
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Therefore, according to the calculations for SSRS types ADM-1 and MLT-6, the actual
fuel consumption was 9.7 and 10.9 kg/h and the coefficients of variation were 15.7% and
6.5%, respectively. At the same time, the boundary levels for detecting abnormal deviations
FC(Fact), calculated through the coefficient of variation are (9.7 + 9.7·15.7%) = 11.2 kg/h
(ADM-1) and (10.9 + 10.9·6.5%) = 11.6 kg/h (MLT-6).

The calculations carried out according to the above methodology for the period from
6 May 2019 to 10 June 2019 for the implementation of FC(Fact 1) (see Table 6) show the
possibility of building an adequate five-factor model of fuel consumption using Htot, Hwm,
Him, Htrm, and Run modes with high rates: R= 0.992, R2 = 0.984, adjusted R2 = 0.983, F
criterion = 2415, standard error = 2.984.

In this case, the error of model construction is determined by a MAPE score of 3.8%.
Thus, the use of the considered identification method with the correct choice of SSRS oper-
ating modes, for example, cluster analysis, allow us to build models of fuel consumption
rationing with an accuracy not worse than 96%.

6. Conclusions

The rationing of fuel consumption is aimed at solving the problem of fuel economy.
For a transport company with significant numbers and types of SSRS, equipped only with
standard equipment for metering fuel consumption, a significant effect on fuel economy is
achieved when using the results of SSRS test trips equipped with automated accounting
systems for operating modes and fuel consumption, correct procedures for monitoring and
storing indicators of fuel consumption in databases, accurate methods of regulating fuel
consumption based on identification with operating modes, and data on fuel consumption
from test and operational trips.

Experimentally proven methods of multifactor identification using data of regulated
modes of SSRS operation (hours in total mode, hours in working mode, hours in idling
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mode, hours in transport, Run) allow us to simulate normalized fuel consumption with an
accuracy of not worse than 96% even in conditions of incomplete data.

The model of normalized fuel consumption built by the identification methods makes
it possible to determine volumes and periods of abnormal fuel overconsumption. To
do this, it is advisable to establish a certain tolerance, for example, the amount of stan-
dard deviation from the established normalized fuel consumption. For example, if the
total rates for SSRS of the ADM-1 and MLT-6 types were set at 9.7 and 10.9 kg/h, respec-
tively, and the coefficients of variation of the consumption rates were 15.7% and 6.5%,
respectively, then the tolerance value that would be considered anomalous regarding con-
sumption would be determined as follows: (9.7 + 9.7·15.7%) = 11.2 kg/h (ADM-1) and
(10.9 + 10.9·6.5%) = 11.6 kg/h (MLT-6).

Indirect fuel rationing for special self-propelled rolling stock can be of significant
methodological and practical importance for transport companies that operate SSRS with
traditional fuel consumption meters. The lack of means or technology in these devices
to monitor the actual operating modes of SSRS can lead to incorrect assessment of fuel
consumption standards and adversely affect fuel economy.
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