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Abstract: Virtual inertia control is a methodology to make inverter-based resources (IBR) behave
like a synchronous machine. However, an IBR cannot fully emulate the response of synchronous
machine because of its low-current capacity. When the inertial response of an IBR is affected by the
current limitation, the synchronization of the synchronous machine simulated virtually inside the IBR
controller with the other synchronous generators in the grid is affected, which may cause step-out
of the simulated generator. We propose a methodology which can keep the synchronization by
modifying internal induced voltage of the simulated generator to follow the system voltage change.
The proposal is validated by the simulation using a nine-bus transmission system model including
two synchronous generators and a large-scale IBR. The result of the generator trip simulation shows
that the proposed method suppresses the phase angle variation while the current is limited, and
avoids the instability regarding the synchronism. Furthermore, the impact of the current limitation on
frequency stability is also evaluated through the simulation study and it is found that as the amount
of output suppression increases, the frequency nadir falls, but the rate-of-change of frequency is
hardly affected.

Keywords: grid-forming; grid-following; virtual synchronous machine; current limitation; internal
induced voltage

1. Introduction

Renewable energy sources are being installed to build a framework to supply sus-
tainable energy. Meanwhile, thermal power generation using fossil fuels and emitting
greenhouse gases is being scaled down. Synchronous generators are being replaced by
inverter-based resources (IBRs). Unlike synchronous generators, IBRs have no inertia.
Therefore, increasing the proportion of IBRs reduces the inertia of the entire power system
and may thus considerably reduce the frequency stability [1–5]. To continue the installation
of renewable energy sources, it will be essential to increase inertia as needed.

Virtual inertia control that simulates synchronous machine inertia using an IBR is
expected to be one solution to this problem [6–10]. Based on the dynamic characteristics of a
synchronous generator, virtual inertia control reproduces an output of the IBR equivalent to
a synchronous machine against disturbances. Various implementation methods have been
proposed, and they have been broadly classified as grid-forming (GFM) and grid-following
(GFL) methods [11–13]. GFL are control methods that use output current or electric power
as the controlled variables, and they are characterized by behaviors such as those of a
current source. The development of GFL control methods is easy as the structure is based
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on the conventional control method of an IBR, but it has minimal ability to maintain voltage.
Thus, unless a specific number of synchronous generators or other equipment with voltage
regulating functions exists in the system, operation may be destabilized. Conversely, GFM
virtual inertia controls use voltage as a controlled variable and are characterized by behaving
like a voltage source. For this reason, GFM is expected to replace synchronous generators and
maintain voltage in addition to providing inertia. However, in case of GFM, the suppression
of output response by current limitation leads to instability of the control system.

Output current of the IBR is limited when the output power of the inverter reaches
available power of DC generation unit or output current of the inverter for grid-connection
reaches current capacity of the inverter or the DC generation unit [14,15]. The limitation
caused by the current capacity is produced by the suppression of the DC voltage. Refer-
ence [16] proposed a control method to suppress instability due to DC current limitations.
Several current limitation methods used for the protection of an inverter from fault current
have been proposed in the field of power electronics [17,18]. Many of these methods
introduce the concept of virtual impedance in the control system, and Ref. [19] presents
various methods regarding virtual impedance. Recently, methods have been introduced to
assign constant values to control current value and phase using virtual impedance, and
to increase impedance only during a fault [20–22]. Other methods have been proposed to
improve responsiveness and implement high-speed control by feeding back the output
voltage and by using first-order lag elements [23], lead compensation [24], or by using
droop control [25]. In addition, regarding the effects on the system, there is a study on a
modeling method for the examination of the effects of current limitation [26], and another
study that applies a probabilistic method to virtual synchronous machine (VSM) control
as a way to maintain the stability of weak systems [27]. Ref. [23] presents the method to
control virtual frequency in VSM to improve transient stability. Thus, a current limitation
algorithm has been investigated for strict and fast current limiting or for grid stability
enhancement. However, the internal stability problem in the virtual inertia control system
caused by current limitation has not been considered.

This study explores the possibility of virtual inertia control using IBRs, identifies
and resolves problems arising from differences in the mechanical characteristics of syn-
chronous generators and IBRs, and addresses performance improvement using the flexible,
high-speed controllability of inverters. Concretely, this study focusses on the problem of
destabilization of GFM virtual inertia control caused by current limitation. In a contingency
such as generation trip, when the output response of GFM is suppressed, synchronization
power does not work and synchronization between the synchronous generator virtually
simulated in the GFM control system and the other physical synchronous generators in the
grid are missed. To address instability, this study proposes a mechanism for modifying the
internal induced voltage of the simulated synchronous generator depending on the output
current. The behavior of the synchronous generator inside GFM can be changed instanta-
neously and arbitrarily because it is virtual. The proposed method changes the magnitude
and phase angle of the internal induced voltage of the simulated synchronous generator
to maintain the synchronization while the current reaches the limit. It is novel that the
proposed method uses the specific characteristic of the GFM, which is controllability of
the internal voltage, for stabilization of virtual inertia control. A simulation study was
carried out to evaluate the effectiveness of the proposed method. Additionally, to clarify the
influence of current limitation on frequency stability, GFM and GFL virtual inertia control
schemes are evaluated using a simulation to determine how frequency fluctuations—in
particular, the rate of change of frequency and frequency nadir—change depending on the
level of current limitation.

The remaining sections are organized as follows. Section 2 explains the proposed
internal induced voltage modification logic. Section 3 explains the power system model
used in the simulation study and the simulation conditions. Section 4 shows the simulation
results, and Section 5 presents the conclusions.
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2. Proposed Method for Stable Current Limiting
2.1. Virtual Synchronous Machine

As a manifestation of GFM virtual inertia control, this study targets a VSM [9,10,28].
A VSM is a method used to control an IBR by virtually simulating a synchronous generator
inside the control system in such a way so that it appears from the power system side as
though the generator is connected at the point of interconnection (POI) of the inverter. It
is one of the most popular virtual inertia control schemes. Hereafter, the term ‘VI-GFM’
will be used to make it clear that it is a GFM-type VI control. Figure 1 shows a schematic
of the VSM in application. The IBR, comprising a DC power source and an inverter, is
connected to the power system via an output filter and a transformer. In the VSM, the
output current Ic is adjusted as if a virtually simulated synchronous generator (denoted as
a voltage source in the figure) is connected at the POI via virtual impedance. This virtually
simulated voltage source corresponds to the internal induced voltage of the synchronous
generator. Hereafter, this will be referred to simply as the ‘internal voltage source’.
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Figure 1. Physical configuration of inverter-based resource (IBR) interconnection and simulated
virtual connection configuration in virtual synchronous machine (VSM), grid-forming virtual inertia
control (VI-GFM).

Figure 2 shows the VI-GFM control block diagram. The phase angle of the internal
voltage source δre f is calculated as shown in Equations (1) and (2) based on the equation of
motion of a synchronous generator.

MG
dωre f (t)

dt
= Pre f (t)− KG

{
ωre f (t)−ω0

}
− PC(t), (1)

dδre f (t)
dt

= ωre f (t), (2)

Herein, MG is the inertia constant, KG is the control gain of the governor, Pre f and
PC are the active power reference and actual output, respectively, ωre f and δre f are the
references for angular frequency and phase angle of the internal voltage source, and ω0 is
rated angular frequency. PC corresponds to the electric output of the synchronous generator,
and Pre f is equivalent to the reference value for mechanical input. The second term on the
right side of the equation signifies the amount of adjustment of the mechanical input by
the governor. With an ordinary synchronous generator, the response of the governor is
delayed owing to the turbine and steam control valves, but in virtual inertia control, these
mechanical restrictions can be omitted, and simulations conducted in the form of a simple
droop mechanism are possible. The voltage magnitude of the internal voltage source Ere f
is determined by the AVR block so that the voltage at the POI Vc follows the reference V′c,re f
through the integral controller with gain Kc. In the AVR, original voltage reference Vc,re f is
modified to the new reference V′c,re f by the droop controller which with gain KV,GFM, time
delay TV according to difference in reactive power output Qc and its reference Qre f .
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The output current reference Ic,re f is calculated based on Equation (3) using the internal

source voltage Ere f

(
= Ere f∠δre f

)
calculated as indicated above, the measured value of

voltage at the POI Vc, and the virtual impedance rvir + jxvir.

Ic,re f =
Ere f −Vc

rvir + jxvir
(3)

The current reference is calculated on the d–q coordinate axis. The voltage phase angle
of the internal voltage source is used for the reference phase of Park’s transformation to
project each variable onto the d–q coordinate axis. According to the calculated current refer-
ence, the output current of the IBR is adjusted by a general current control system [29]. The
current control adjusts the inverter output voltage Vo so that the d-axis and q-axis currents
follow their respective reference values, and independent control on each axis is possible
by decoupling. In conventional IBRs, the phase angle measured by a phase-locked loop
(PLL) is used for the reference phase angle of Park’s transformation. However, in VI-GFM,
there is phase angle information inside the control system; therefore, a characteristic of
VI-GFM is that this information is used as the reference phase.
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2.2. Proposed Modification Methodology

Because an IBR cannot output power in excess of the power from the DC side, it may
not be possible to fully simulate the behavior of a large-capacity power source by virtual
inertia control. In VI-GFM, current in excess of the capability of the IBR is prevented from
being output by limiting the current reference value. There are two main methods used
to limit the current. One method provides a saturation element in the current control
reference value [18], and the other method suppresses the current reference value indirectly
by temporarily increasing the virtual impedance [19–25]. The former method is used in
this study.

When the current is suppressed, the output power to be fed back is suppressed, which
affects the operation of the VSM. If the current required by the VSM is not output, the action
of the synchronizing power will not be sufficient, the phase angle difference between the
internal voltage source and the power system will increase, and the internal power source
will fall out of synchronism. This study proposes a method to avoid the loss of synchronism
by of modifying the voltage of the internal voltage source so that the synchronized state
of the internal voltage source and the power system is not destroyed when the current
is suppressed. Figure 3 shows the proposed control method. This method modifies the
voltage of the internal voltage source to a value appropriate to the current which flows
when the output current of the IBR is limited. Because the voltage of the internal voltage
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source is modified so that the limiting current flows, voltage divergence of the internal voltage
source can be avoided. A saturation element is applied to the d- and q-axis current references,
respectively, but it is necessary to ensure that the apparent current does not exceed the rated
value. As shown by Equations (4) and (5), herein, a limitation is applied so that the norm
becomes the limit value Ilmt without changing the angle of the current vector. In the equations,
Id,lmt and Iq,lmt are the upper limits of the d- and q-axis currents, respectively.

Id,lmt = Ilmt cos

{
tan−1 Ic,q,re f

Ic,d,re f

}
(4)

Iq,lmt =
√

I2
lmt − I2

d,lmt (5)

If the current reference changes owing to this limitation, the relationship in Equation (3)
will no longer hold true and the substantial voltage of the internal voltage source will not
be Ere f . Assuming that the substantial voltage of the internal voltage source is Emod, Emod
can be calculated by using Equation (6).

Emod = Vc + (rvir + jxvir)I′c,re f (6)

By performing anti-windup control so that the voltage reference of the internal voltage
source becomes the modified voltage, extreme fluctuation in the phase angle of the internal
voltage source is suppressed and loss of synchronism can be prevented. Various methods of
limiting current and their effects on stability have been studied, but there are no examples
of studies on methods that modify the reference values of virtual inertia control according
to the current limitation. This constitutes the major novelty of this study. In steady state,
which means that the current is not limited, the proposed method does not affect on the
internal induced voltage. Because (6) is the inverse function of (3), Emod equals to Ere f if the
current is not limited. This is also an advantage of the proposal.
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Figure 3. Current limitation with the proposed method modifying internal induced voltage of
synchronous generator virtually simulated inside VI-GFM.

3. Simulation Model and Condition

A simulation study was conducted to evaluate the difference in the behavior of the
VI-GFM depending on the presence or absence of the proposed modification logic for the
voltage of the internal voltage source, and to evaluate the effect of current limitation on
frequency stability after implementing the proposed method. In the evaluation of the effect
on frequency stability, GFL-type virtual inertia control was also studied, and the question
of how the effect of current limitation differs between GFM and GFL was evaluated.

Three types of simulations were performed in this study. First, in Step 1, the frequency
stability of a power system was evaluated in which the power sources were synchronous
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generators only and no IBRs were installed, based on the consideration of the power source
trip as a disturbance. In Step 2, a case in which a conventional IBR with a fixed output was
installed was analyzed. These two simulations are reference cases used for the evaluation
of the effects of the installation of an IBR that implements virtual inertia control. Finally, in
Step 3, a case in which an IBR with virtual inertia control is installed was examined. Herein,
differences in the behavior of the VI-GFM depending on the presence or absence of the
proposed logic and the effect of current limitation on frequency stability were evaluated.
The effect of current limitation was examined in a similar manner for GFL-type virtual
inertia control, and a comparative study of GFL and GFM was conducted.

3.1. Power System Model

In this study, the power system model based on the Institution of Electrical and
Electronic Engineers (IEEE) nine-bus system [30] was used, as shown in Figure 4. The
power sources consist of S1, S2, S3, and SD. In Step 1, they are all synchronous generators,
but in Steps 2 and 3, power source S3 is replaced with an IBR. Power source SD is a
small-scale power source used to simulate a disturbance. The synchronous generator
model is the sixth-order Park’s model, and a governor, turbine, and a AVR with a PSS are
modeled [31] as controllers. The average model is used for the IBR. As shown in Figure 5,
this modeling method implements the voltage reference values generated by the inverter
control system directly by using an AC voltage source. Because switching is not simulated,
harmonics do not appear and only fundamental waves can be analyzed, but the calculation
accuracy of the fundamental wave components is high, and the computation load can be
reduced considerably [32]. In this study, the DC-side circuit was not simulated. Changes in
the available output power of the power source on the DC side were simulated based on
the changes in the upper limit of the current in the current control.
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3.2. IBR Model for Comparison Study

In this simulation study, in addition to VI-GFM, conventional control and GFL-type
virtual inertia control were also analyzed for comparison. This section describes these
models. First, Figure 6 shows a block diagram of the conventional control. The current
control section is common with the VI-GFM, and the d- and q-axis current reference values
are adjusted by active and reactive power control, respectively. In solar and wind power
generation, the maximum available generation power—which varies depending on the
weather conditions—is input as an active power reference value. However, in this study,
the analysis was performed based on the assumption that the active power reference value
is constant to focus on phenomena in the first few seconds after generator trip. Additionally,
taking the reactive power reference value as zero, the condition of operating always at a
power factor of 1 was set. The voltage phase angle at the POI measured by a PLL was used
for the reference phase of Park’s transformation.
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Figure 7 shows a block diagram of the GFL-type virtual inertia control. Hereafter, this
control method will be referred to as ‘VI-GFL’. The left side of Equation (1) means that the
power goes in and out of the rotor of the synchronous generator, which means the inertial
response. By calculating the power corresponding to the left side of Equation (1) from the
measured frequency value, it is possible to simulate the inertial response of the synchronous
generator, which is output or absorbed from the IBR. The derivative of the frequency is
pseudo-computed as a slope of frequency with time window of TW . It, along with the
PLL measured frequency f , is filtered by low-pass filter (LPF) with time constant Tf . The
frequency fm is the output of the LPF and used for the slope computation. In VI-GFL, as
in VI-GFM, a function used to adjust the active power in proportion to the frequency was
provided to simulate the governor’s response. Additionally, to achieve voltage control
by reactive power adjustment appropriate for VI-GFL, a voltage control function with
droop characteristics was modeled as shown in Figure 8. By assigning the droop gain so
that it is inversely related to the droop gain in the AVR of the VI-GFM, the relationship
between voltage and reactive power can be equated. Regarding the current limitation in
the VI-GFL, only a saturation element in the current control reference value was provided.
This is because, unlike VI-GFM, VI-GFL does not have internal phase information, and
destabilization similar to loss of synchronism does not occur.
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Figure 7. Controller model of the grid-following virtual inertia control (VI-GFL) used in a part of the
simulation in Step 3.
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3.3. Simulation Condition

We evaluated two subjects through the simulation study. One was an evaluation of
the effectiveness of the proposed method that identified whether destabilization can be
prevented by modifying the voltage of the internal voltage source in VI-GFM. The other
was an evaluation of the effect of limiting the response of the simulated inertia control
on frequency stability by limiting current. The effect was analyzed in detail by taking the
penetration rate of IBRs and the value of the upper limit of current limitation as parameters.

Table 1 shows the case indices according to the analysis condition. Cases in which
the IBR penetration rate was 20% and 60% of the power system capacity were considered.
Analyses of steps 1, 2, and 3 were conducted for each penetration rate. For Step 3, three
types of control were evaluated separately: VI-GFM with the proposed logic, VI-GFM
without the proposed logic, and VI-GFL. In Step 1, as no IBR was included, the capacity
of the synchronous generator connected as the power source S3 was changed. The rated
capacities of power sources S1 and S2 were also changed as shown in Table 2 so that the
system capacity was fixed even when the IBR penetration rate was changed. The capacity
of the power source SD was maintained constant so that the size of the disturbance was
constant. For each case in Table 1, multiple cases with different current limitation values
were analyzed. The current limitation settings were determined based on the results of a
base-case simulation in which current limitation was not used. The details are presented in
the next section.

Table 1. Indices of the simulation study.

Step Source Connected as S3
S3 Capacity Ratio Corresponding to IBR 1 Penetration

Rate in Steps 2 and 3

20% (Low) 60% (High)

1 Synchronous generator #1-L #1-H

2 IBR 1: conventional control #2-L #2-H

3

IBR 1: VI-GFM 2 without proposed modification logic #3-GFM-L #3-GFM-H

IBR 1: VI-GFM 2 with proposed modification logic #3-GFMpro-L #3-GFMpro-H

IBR 1: VI-GFL 3 #3-GFL-L #3-GFL-H
1 Inverter-based resource (IBR), 2 grid-forming virtual inertia control (VI-GFM), 3 grid-following virtual inertia
control (VI-GFL).

Table 2. Rated capacities of the generation units at each IBR penetration rate.

Percentage of S3 Capacity 1 (Means IBR
Penetration Rate in Steps 2 and 3)

Rated Capacity (MVA)

S1 (SG 2) S2 (SG 2) S3 (Step 1: SG 2,
Step 2, 3: IBR)

20% 120 120 60

60% 60 60 180
1 SD is not considered in the percentage. The capacity of SD is 10 MVA in all cases. 2 SG denotes the synchronous generator.

The demand settings were common to all cases, and the active power demand for a
power system capacity of 300 MVA was set to 80% (240 MW), equally distributed among
three load buses. For reactive power demand, the power factor of each bus in the IEEE
nine-bus system was set. Additionally, the output distribution in the initial state of each
power source was taken to be the rated capacity ratio of the power source. In this simulation,
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the disturbance is the disconnection of the power source SD. The rated capacity of SD was
10 MVA, and its output was 5 MW. It was disconnected at 80 s.

Table 3 shows the control parameters assigned to controllers of VI-GFM, VI-GFL. The
inertia constant MG and the governor control gain KG are set to be the same as the power
source S3 in IEEE nine-bus system. The voltage control gains in VI-GFM and VI-GFL are set
to be inverse values to have equivalent capability in voltage regulation. Time constants are
determined by trial-and-error so that the stable operation is ensured as much as possible.

Table 3. Control parameters of IBR.

Algorithm Control Parameter Letter Value

VI-GFM, VI-GFL
(common)

Inertia constant MG 4.70 (s)

Governor gain KG 25.0

VI-GFL

Voltage control gain KV,GFL 10.0

Time constant of low-pass filter Tf 0.10 (s)

Time window of the slope computation TW 0.10 (s)

VI-GFM
Voltage control gain KV,GFM 0.10

Time constant of voltage controller TV 0.02 (s)

4. Results

First, Section 4.1 explains the results of the base-case simulation to determine the
current limitation settings. Section 4.2 explains the results of the evaluation of effectiveness
of the proposed modification logic of the voltage of the internal voltage source in the
VI-GFM. Finally, Section 4.3 explains the results of evaluating the relationship between the
current limitation value and frequency stability.

4.1. Base-Case Simulation to Set Simulation Conditions

In this study, the effects on the performance of virtual inertia control in multiple cases
with different current limitation settings were analyzed. The current limitation settings
were determined as follows based on the results of a base-case simulation without current
limitation elements. Figure 9 shows the IBR output current when VI-GFM and VI-GFL
were used at each IBR penetration rate. For the VI-GFM, the model did not implement the
proposed modification logic. The figure shows that the current is temporarily increased in
response to the power source trip, and eventually converges to a state in which part of the
power loss is shared. The maximum current value and final current value (value at a time
of 120 s) are shown in the figure.

Table 4 shows the current limitation settings determined based on this result. Taking
the difference between the current value before the disturbance occurrence and the max-
imum value as 100%, the upper current limit was set to decrease at 10% intervals given
that the setting was not set lower than the final value. This is because a situation was
assumed in which there was enough extra power only for the power borne by the IBR after
convergence. The aim of the study was to evaluate the effect when a transient response for
several seconds after power source trip was limited. In the case of an IBR penetration rate
of 60%, the transient fluctuation was relatively small, and there were few verifiable current
limitation settings.
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Figure 9. IBR output current. (a) 20% IBR penetration, VI-GFM, (b) 20% IBR penetration, VI-GFL,
(c) 60% IBR penetration, VI-GFM, (d) 60% IBR penetration, VI-GFL.

Table 4. Current limitation settings.

Case Index

IBR Penetration Ratio

20% 60%

VI-GFM VI-GFL VI-GFM VI-GFL

No limit case 1.20 pu 1.20 pu 1.20 pu 1.20 pu
90% case 0.832 pu 0.832 pu 0.817 pu 0.818 pu
80% case 0.828 pu 0.828 pu 0.814 pu 0.815 pu
70% case 0.824 pu 0.824 pu - 0.813 pu
60% case 0.820 pu 0.820 pu - -
50% case 0.816 pu 0.816 pu - -

4.2. Effectiveness of Proposed Methodology

This section verifies the effectiveness of the proposed modification logic of the internal
voltage source in the VI-GFM. Figure 10 shows the IBR output current as a function of the
IBR penetration rate when the proposed method was/was not applied. The figure shows
that regardless of whether the proposed method was applied, the increase in the current
immediately after the disturbance was suppressed by the current limitation. However,
when the proposed method was not applied, in most cases, several seconds after reaching
the upper limit, the current suddenly decreased and oscillated persistently, as indicated in
Figure 10a,c. Herein, if an undamped oscillation occurred, the data plotting in the figure
was stopped a few moments after the oscillation, to ensure visibility. In the #3-GFM-L
90% case, continuous oscillation did not occur, but at 84 s, when the current was no
longer limited, small vibration was observed. The figure also shows that as the upper
limit was lowered, the oscillation was reached earlier. Meanwhile, Figure 10b,d shows
that destabilization is avoided by using the proposed modification logic, regardless of the
current upper limit, which demonstrates the effectiveness of the proposed method.
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In the rest of this section, the mechanism of the destabilization of the VI-GFM seen in
Figure 10a,c is considered according to the behavior of the internal induced voltage, and
the reason why it is improved by the proposed method is also considered. Figure 11a,b
respectively show the phase angle of the voltage of the internal voltage source in VI-GFM
in terms of system voltage and the output current of the IBR in #3-GFM-L (no limit case),
#3-GFM-L (60% case), #3-GFMpro-L (60% case). The figures show that the phase angle
increases after the generator trip in the same way as in all cases until 80.5 s when the current
reach its limitation. After that, in #3-GFM-L (60% case), the phase angle increased to a large
degree and diverged. It is expected that enough synchronizing power for deacceleration
of the simulated synchronous generator was not supplied because the current limitation
suppressed active power output of the IBR. This corresponds to the loss of synchronism
among synchronous generators. The arguments listed above show that by simply applying
a saturation element in current control, destabilization of control occurs due to phase angle
divergence of the internal voltage source.
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On the other hand, in #3-GFMpro-L (60% case) in which the proposed method was
applied, when the current reached the limit value, the increase in the phase angle of the
internal voltage source became gradual, and this did not lead to divergence. While the
current stays at the upper limit, the active power output does not increase even if the phase
angle of the internal voltage source increases unlike synchronous generator. In such a
condition, the proposed method suppresses the phase angle increase so that the Kirchhoff’s
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law is satisfied and maintains the synchronization of the internal voltage source and the
grid. When the current reference was released from the upper limit at 86 s, VI-GFM with
the proposed method seamlessly returned to the normal operation in which the phase
angle was not modified.

4.3. Frequency Stability Evaluation

This section explains the results of the evaluation of the effect of limiting the output
response of virtual inertia control by current limitation on frequency stability. Figure 12a–d
shows the calculation results for center of inertia frequency in #3-GFMpro-L, #3-GFMpro-H,
#3-GFL-L, and #3-GFL-H, respectively. For comparison, the figures also show the simulation
results for Steps 1 and 2 which correspond to each case. Herein, the center of inertia (COI)
frequency is the average frequency of the entire system based on considerations of the
difference in inertia between generators, and it is calculated using the following equation.
In power systems with multiple generators, this is used to monitor the average frequency
of the entire system without the effect of oscillations between generators [33].

fCOI(t) =
∑NG

i=1 Mi fi(t)

∑NG
i=1 Mi

(7)
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In Figure 12a, frequency fluctuation was greater in Step 2 than in Step 1. This is
because system inertia and frequency control capability of the governor were reduced
owing to the fact that the synchronous machine of S3 was replaced with a conventional
IBR. However, in #3-GFMpro-L (no limit), in which the current limitation setting was
sufficiently large, frequency fluctuation was reduced considerably compared with Step 1.
This was mainly attributed to primary control capability of the synchronous machine
and the VI-GFM. In a synchronous machine, because the governor and turbine have a
mechanical response delay, it takes a few seconds for the primary control reserve to exert
an effect; by contrast in VI-GFM, it is possible to obtain a response without any delay.
As a result, the IBR can respond quickly to a disturbance, thus reducing the burden on
other synchronous machines, and thus suppressing frequency fluctuations. When the
current limitation setting was decreased, the burden on the other synchronous machines
and frequency fluctuations increased owing to the limited transient response of the IBR.
However, even in #3-GFMpro-L (50% case), which had the lowest limit value, the maximum
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deviation of frequency fluctuation was comparable to #1-L, that is, the frequency fluctuation
was not worse than in the conventional synchronous machine system. This means that
the disadvantage of the suppression of the IBR output changes was accounted for by the
readiness of the governor control. A similar trend can be confirmed in the other cases shown
in Figure 12b–d. Collectively, the arguments listed above show that although maximum
frequency deviation increases owing to the limitations of the transient response by the
current limitation, if the control reserve required for load sharing after convergence is
secured, it is possible to maintain the frequency fluctuation to the level of a conventional
synchronous machine system.

The frequency fluctuation was then converted to index values in each case, and a
quantitative comparison was performed. The frequency nadir, which is the minimum value
of the COI frequency, and rate-of-change of frequency (RoCoF), which is the minimum rate
of change of the COI frequency, were then used. Equations (8) and (9) show the definition
of RoCoF. Herein, the minimum rate of change calculated from the frequencies observed in
interval Ts (seconds) is denoted by RoCoF. RoCoF is calculated was limited to the range
from the disturbance occurrence until the appearance of the frequency nadir at time tnadir.
In this evaluation, Ts was set to 100 ms.

RoCoF = min
i=1, 2, ··· , K

fCOI(t0 + iTs)− fCOI(t0 + (i− 1)Ts)

Ts
(8)

K = max
{

n ∈ Z
∣∣∣∣n ≤ tnadir − t0

Ts

}
(9)

Figure 13 shows the correlation between RoCoF and the frequency nadir. After the
disturbance occurred, frequency continued to decrease until the frequency nadir appeared.
Therefore, RoCoF took a negative value. As the value of RoCoF increased, the change
in frequency became more gradual. Additionally, as the frequency nadir increased, the
magnitude of the frequency fluctuation became smaller. First, the results associated with
the comparison of Steps 1 and 2 show that RoCoF and the frequency nadir were both
worse in Step 2 compared with Step 1, regardless of the IBR penetration rate. This is due
to a reduction in inertia and a reduction in frequency control capability of the governor
owing to a decrease in the number of synchronous generators. In Step 3, in VI-GFM
(#3-GFMpro-L, #3-GFMpro-H), both RoCoF and the frequency nadir were larger than those
in Step 1, regardless of IBR penetration rate and current limitation setting. As mentioned
previously, this is due to the fast governor response. In VI-GFM, because the governor
response is extremely fast compared with the synchronous machine, the effect is observed
at the frequency nadir, which appears within a few seconds after the disturbance, and at the
RoCoF, which appears within a few hundred milliseconds after the disturbance. Regarding
the subject of this study, which is the effect of current limitation, the results show that
regardless of IBR penetration rate, as the current limitation setting decreases, the frequency
nadir worsens, but RoCoF does not worsen. This is because, as shown in Figure 10, there is
a small period between the occurring of the disturbance and the current limitation. In many
cases, the RoCoF appears during this period, specifically between 200 ms and 300 ms after
the disturbance. However, if the current limitation setting decreases, the current is affected
by the current limitation sooner, and it is therefore possible that RoCoF will worsen, albeit
slightly, as in the #3-GFMpro-L 50% case.

In VI-GFL (#3-GFL-L, #3-GFL-H), although the results are broadly similar to VI-GFM,
in #3-GFL-H with a high IBR penetration rate, RoCoF was worse compared with Step 1. This
is attributed to the low responsiveness of VI-GFL. Because output references are determined
from the frequency measured by a PLL, the VI-GFL is affected by the measurement delay of
the PLL. However, an improvement effect is observed compared with Step 2. Additionally,
because the PLL operation is stable in the time domain of the governor’s response, the
improvement effect on the frequency nadir is approximately the same as that of the VI-GFM.
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The effect of current limitation was similar to the VI-GFM with no current limitation effects
on RoCoF.
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5. Conclusions

Virtual inertia control using IBRs is expected to be an effective measure against low
inertia. However, the control response may be limited by the maximum output of the
power source on the DC side and the inverter capacity, thus resulting in performance
deterioration. This study showed that current limitation causes grid-forming virtual inertia
control (VI-GFM) to be unable to provide synchronizing power, thus causing instability of
control comparable to a loss of synchronism. We proposed a to modify the internal induced
voltage of the simulated synchronous generator inside the control system of the inverter
according to the output current. A simulation study showed that it is possible to prevent
instability of the voltage phase angle of the VI-GFM by applying the proposed method.

Additionally, simulations were used to evaluate the influence of the suppression of the
output response by current limitation on frequency stability in VI-GFM with the proposed
method applied and grid-following virtual inertia control (VI-GFL). The results showed
that because there is a small amount of time between the occurrence of the disturbance and
the limitation of the current, the influence of current limitation on the most rapid frequency
changes that appeared immediately after the disturbance were small. Additionally, as the
current limitation setting was lowered, the maximum frequency deviation which appeared
a few seconds after the disturbance became greater. However, it was also found that if the
IBR had a sufficient generation margin to meet the load shared by the control reserve for
governor, even if it was affected transiently by current limitations, the frequency fluctuation
will not become worse compared with a synchronous machine system without IBRs. This
finding has important implications pertaining to the extent of control reserve IBRs should
possess to perform virtual inertia control.

The proposed method can avoid the instability of the VI-GFM caused by current
limitation. However, while the current is held to the limit, the VI-GFM cannot provide any
more inertial response nor supply synchronizing power. This is a limitation of the proposed
method. The influence of the limitation on the frequency stability is discussed in this paper,
but it also affects the stability of synchronization of so called phase angle stability. The effect
of the proposed method on the phase angle stability needs to be evaluated quantitively in
the future. Eventually, we will extract the requirements for the IBR for its contribution to
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enhancement of the system stability from our and relevant research and those are organized
for standardization.
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