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Abstract: In this paper, a three-stage fourth-order numerical scheme is proposed. The first and
second stages of the proposed scheme are explicit, whereas the third stage is implicit. A fourth-order
compact scheme is considered to discretize space-involved terms. The stability of the fourth-order
scheme in space and time is checked using the von Neumann stability criterion for the scalar case.
The stability region obtained by the scheme is more than the one given by explicit Runge–Kutta
methods. The convergence conditions are found for the system of partial differential equations, which
are non-dimensional equations of heat transfer of Stokes first and second problems. The comparison
of the proposed scheme is made with the existing Crank–Nicolson scheme. From this comparison, it
can be concluded that the proposed scheme converges faster than the Crank–Nicolson scheme. It also
produces less relative error than the Crank–Nicolson method for time-dependent problems.

Keywords: three-stage scheme; fourth-order scheme; stability; convergence; mixed convection

1. Introduction

Numerical methods play a vital role in solving mathematical models of physical
phenomena. The mathematical models for fluid flow and heat transfer must be solved
exactly or approximately using numerical methods. In the literature, several numerical
approaches have been developed that involve two or more steps. These methods are called
multi-step methods. The main advantage of using multi-step methods is their use for
one stage, and so the solutions to the problems can be obtained in one loop. Still, it has a
drawback of using any scheme on a first-time level or choosing one or more initial estimates
to initialize the multi-step scheme.

On the other hand, Runge–Kutta methods have been constructed on different stages,
and so these methods may consume more time than multi-step methods. These methods
have the main advantage of providing greater stability region and do not require any other
scheme on a first-time level. Mostly implicit methods provide greater stability regions than
explicit methods, and some are unconditionally stable.

Compact schemes can be constructed to get the high accuracy of the solution. In [1], a
sixth-order compact scheme has been constructed to solve Poisson equations with fixed
or Dirichlet boundary conditions. The sixth order has been proved numerically and
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analytically, and it was shown that the sixth order scheme outperformed the existing fourth-
order scheme. Two schemes were proposed in [2] for solving a Dirac equation with the
periodic boundary conditions. The vectored forms of schemes were analyzed by finding
convergence and conservative properties. In the literature, numerical schemes exist for
solving problems having shock waves. In [3], a nested multi-resolution finite-difference
fifth-order WENO scheme has been given. The scheme produced less error when it was
compared with the classical fifth-order WENO scheme for the smooth region. The scheme
switched to third and first orders near the discontinuous and strongly discontinuous
regions. The scheme produced smaller numerical dissipation without using any dissipation
preserving method. A higher-order compact scheme [4] was given for stratified rotating
flows. The scheme was validated with analytical solutions. The code was useful to reduce
the huge execution times. The Symplectic scheme has been proposed in [5], with three
free parameters covering the implicit midpoint methods, symplectic Euler, and Stormer–
Verlet methods. Moreover, second-order symplectic and symmetric symplectic schemes
were obtained with two free parameters and a free parameter, respectively. A compact
scheme was developed in [6] for second-order Schrodinger and parabolic partial differential
equations using Dirichlet and Neumann boundary conditions and which had a smaller
error and high order than the classical implicit scheme. The non-oscillatory behavior of
numerical schemes is not the only requirement in hyperbolic conservation laws, but also
it is required for singular perturbation problems. In [7], a Gaussian radial basis functions
finite difference method was given to achieve a non-oscillatory solution using the finite
difference method for any degree of resolution. The non-oscillatory solution of singular
perturbation problems was obtained even with the small number of grid points. A compact
nonlinear scheme [8] is given to solve the nonlinear Schrodinger equation on an unbounded
domain. First, a method is applied to reduce the problem from unbounded domain to initial
boundary value problem on a bounded domain, and then it is solved by the proposed
method. One of the features of the scheme was to avoid time-consuming iterations. A
class of second-order in time and fourth-order in space compact schemes [9] has been
given to solve the Burgers’ equations. In addition to this, linear stability analysis was also
carried out to prove that the scheme is conditionally stable. A fourth-order gas kinetic
scheme [10] is based on two-stage time discretizing and Hermite WENO reconstruction
to solve compressible Euler equations and Navier–Stokes equations. Comparing the DG
method, both used the same stencil, but the gas–kinetic scheme used two stages of the
time integration scheme. In contrast, the DG method utilized four stages of the time
integration method. The fourth-order compact difference scheme has been proposed in [9]
to solve Burgers’ equations. The scheme was fourth order in space and second-order in
time, and linear stability analysis was also carried out. It was found that the scheme is
conditionally stable. Since it was built on three grid points, the Thomas algorithm was
considered for solving the tridiagonal system. Further, the scheme was also applied for
solving two and three-dimensional Burgers’ equations. More work on the compact scheme
can be seen in [10,11]. In the literature, implicit–explicit schemes have been proposed to
solve differential equations numerically, and accelerated implicit–explicit schemes [12]
have been proposed to solve stiff problems. The problem can be split into non-stiff and
stiff constituent parts which were allowed by these schemes. The research work on the
Runge–Kutta method can be seen in [13], in which order conditions have been found for
delay differential equations. Up to order five, the stiff order conditions have been found.
The exponential Runge–Kutta methods have been given [14] for delay differential equations
which are semilinear parabolic. Conditions for DN-stability and stiff convergence have been
examined, with these characteristics being offered in the context of the analytic semigroup
framework. Up to order four, the stiff convergence order conditions have been derived.
A third-order in time adaptive order Runge–Kutta method and finite volume in space for
advection–diffusion equations have been implemented in [15]. The spatial derivatives have
essentially been discretized by a weighted non-oscillatory (WENO) scheme. To reduce
spurious oscillations, spatially partitioned Runge–Kutta methods have been employed. The
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structure-preserving family of exponential Runge–Kutta methods has been developed [16].
These methods were combined with the scalar auxiliary variable approach. A modified
version of the explicit two-stage Runge–Kutta scheme of four, five, and six order has
been derived in [17] to test a 2D cylinder and a 3D Taylor–Green vortex problem. It was
claimed that proposed modified schemes were 25% faster than the Low-Storage Runge–
Kutta method of the same order. A class of Maximum principal preserving integrators for
the Allen–Cahn equation has been designed and analyzed [18]. The space discretization
was performed by applying the second-order finite difference scheme. A fully discrete
scheme was obtained by applying Lawson transformation and the Runge-Kutta scheme for
discretizing time. Since some implicit compact numerical schemes do not converge for the
convection-diffusion type equations, an explicit compact scheme has been proposed in [19]
to overcome this deficiency of implicit scheme. The scheme was applied for the particular
type of convection-diffusion problems and provided fourth-order accuracy in space and
second-order accuracy in time.

2. Numerical Scheme

There exist numerous numerical schemes for solving time-dependent partial differen-
tial equations. The advantages and shortcomings of using multi-step and multi-stages or
Runge–Kutta types of schemes have been mentioned earlier. For a better understanding,
the performance of any scheme is its compared results with the existing known scheme
on the different types of problems. For spatial variables, a compact scheme is chosen.
The compact scheme of fourth order uses fewer grid points than the classical standard
difference scheme of the same order. So, the fourth-order accurate solution in time and
space can be obtained for parabolic equations.

To construct a numerical scheme for solving a time-dependent partial differential
equation, consider the differential equation of the form

∂u
∂t

=
∂2u
∂x2 (1)

For the first stage of the proposed scheme, consider the discretization of Equation (1)
in a form

un+1
i = un

i + ∆t
(

∂u
∂t

)n

i
(2)

where un+1
i is an unknown time level at the first stage of the scheme. Let the second stage

of the proposed scheme be given by

=
u

n+1
i =

1
2

[
un

i + un+1
i + ∆t

(
∂u
∂t

)n+1

i

]
(3)

It should be observed that the first and second stages of the proposed schemes are
explicit. For starting the third stage of the proposed scheme, consider the difference scheme
with unknowns given as

un+1
i = un

i + ∆t

a
(

∂u
∂t

)n+1

i
+ b

(
∂
=
u

∂t

)n+1

i

+ c
(

∂u
∂t

)n+1

i
+ c1

(
∂u
∂t

)n

i

 (4)

Substituting first and second stages (2) and (3) into stage three (4) and Taylor series

expansion for
(

∂u
∂t

)n+1

i
, it is obtained
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un+1
i = un

i + ∆t


a
(

∂u
∂t

)n

i
+ a∆t

(
∂2u
∂t2

)n

i
+ b

2

(
∂u
∂t

)n

i
+ b

2 ∆t
(

∂2u
∂t2

)n

i
+

b
2 (∆t)2

(
∂3u
∂t3

)n

i
+ c
(

∂u
∂t

)n

i
+ c∆t

(
∂2u
∂t2

)n

i
+

c
2 (∆t)2

(
∂3u
∂t3

)n

i
+ c

6 (∆t)3
(

∂4u
∂t4

)n

i
+ c1

(
∂u
∂t

)n

i

 (5)

Expanding un+1
i using the Taylor series and comparing coefficients on both sides of

Equation (5) it is obtained
1 = a + b + c + c1

1
2 = a + b + c

1
6 = b

2 + c
1

24 = c
6

 (6)

Solving Equation (6) gives the values of a, b, c and c1 as

a =
1
6

, b =
1

12
, c =

1
4

, c1 =
1
2

(7)

Thus, the third implicit stage of the proposed scheme is expressed as

un+1
i = un

i +
∆t
12

2
(

∂u
∂t

)n+1

i
+

(
∂
=
u

∂t

)n+1

i

+ 3
(

∂u
∂t

)n+1

i
+ 6
(

∂u
∂t

)n

i

 (8)

The proposed approach discretizes only the time variable; any scheme can be used to
discretize the space variable. In the present contribution, a compact fourth-order scheme is
chosen. For this reason, consider the Taylor series expansions for un

i+1 and un
i−1 as

un
i+1 = un

i + ∆x
(

∂u
∂x

)n

i
+ (∆x)2

2

(
∂2u
∂x2

)n

i
+ (∆x)3

6

(
∂3u
∂x3

)n

i
+ (∆x)4

24

(
∂4u
∂x4

)n

i

un
i−1 = un

i − ∆x
(

∂u
∂x

)n

i
+ (∆x)2

2

(
∂2u
∂x2

)n

i
− (∆x)3

6

(
∂3u
∂x3

)n

i
+ (∆x)4

24

(
∂4u
∂x4

)n

i

 (9)

Adding un
i+1 and un

i−1 yields

un
i+1 + un

i−1 = 2un
i + (∆x)2

(
∂2u
∂x2

)n

i
+

(∆x)4

12

(
∂4u
∂x4

)n

i
+ O

(
(∆x)4

)
. (10)

This implies,

un
i+1 − 2un

i + un
i−1

(∆x)2 =

(
∂2u
∂x2

)n

i
+

(∆x)2

12

(
∂4u
∂x4

)n

i
+ O

(
(∆x)4

)
, (11)

(
∂2u
∂x2

)n

i
=

un
i+1 − 2un

i + un
i−1

(∆x)2 − (∆x)2

12

(
∂4u
∂x4

)n

i
+ O

(
(∆x)4

)
. (12)

The fourth derivative in Equation (12) can be found by finding the derivative of
Equation (1) as, (

∂4u
∂x4

)n

i
=

∂3u
∂t∂x2 (13)

Substituting Equation (13) into (12), it is obtained(
∂u
∂t

)n

i
=

un
i+1 − 2un

i + un
i−1

(∆x)2 − (∆x)2

12
∂3u

∂t∂x2 . (14)

Equation (14) is a semi-discretized scheme that performs space discretization using
a fourth-order compact scheme. This type of space discretization scheme has also been
applied for partial differential equations in literature.
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Equation (14) can be expressed as,(
∂u
∂t

)n

i
= δ2

xun
i −

(∆x)2

12
δ2

x

(
∂u
∂t

)n

i
, (15)

where δ2
xun

i =
un

i+1−2un
i +un

i−1

(∆x)2 .

Applying the first stage of the proposed scheme to Equation (15), it is obtained,

un+1
i = un

i + ∆tδ2
xun

i − ∆t
(∆x)2

12

(
δ2

xun+1
i − δ2

xun+1
i

∆t

)
. (16)

Applying the second stage of the proposed scheme it yields

=
u

n+1
i =

1
2

[
un

i + un+1
i + ∆tδ2

xun+1
i − (∆x)2

12

(
δ2

x
=
u

n+1
i − δ2

xun
i

)]
. (17)

The implicit and final stage of the proposed scheme for Equation (1) is given as,

un+1
i = un

i +
∆t

(∆x)2


a
(

∂2u
∂x2

)n+1

i
+ b
(

∂2u
∂x2

)n+1

i
+

c
(

∂2u
∂x2

)n+1

i
+ c1

(
∂2u
∂x2

)n+1

i

− (∆x)2

12

(
δ2

xun+1
i − δ2

xun
i

)
. (18)

3. Algorithm

Since the proposed time-discretizing scheme comprises three stages, it requires at least
four loops to compute results. Each loop for the corresponding stage of the scheme will find
the solution on each grid point at a fixed time level. Since the scheme is implicit, the present
strategy for solving equations is to use an iterative scheme. This iterative scheme is used
for solving discretized or difference equations obtained by applying proposed scheme on
considered system of partial differential equations. There will be six dependent variables
due to velocity and temperature profiles and three stages of the scheme. The Matlab code
is consisted on the following steps:

Step 1. Define the starting and ending points of 1D domain and also define the final
time. Then, choose step sizes in space and time. Define the independent and dependent
variables, choose values for dimensionless parameters. Go to the next step 2;

Step 2. Initialize the loop for the iterative scheme, define the initial conditions for each
dependent variable that represents the velocity and temperature of the flow. Go to the next
step 3;

Step 3. Initialize the time loop for finding the solution for each time level. In addition,
Initialize the first loop for spatial direction for the first stage of the scheme. Define the
boundary condition for each variable, compute the solution at each grid point, and End this
spatial loop. Similarly, Initialize another loop for the second stage of the scheme and find
the solution at each grid point using the same step size used for the previous loop. Then,
End this second loop Initialize the loop for the third stage and find the solution at each grid
point and at a particular time level. Then, End this third spatial loop for finding the final
solution on each grid point. Also, end the loop for time direction. Go to the next step 4;

Step 4. Give the stopping criteria to stop the first iterative loop. If the stopping criteria
are met, End this iterative loop; otherwise, go to step 3.

4. Stability Analysis

For finding the stability of the proposed scheme, the Von Neumann stability criterion
is considered. According to this criterion, the dependent variables in a scheme are replaced
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with other variables in time and space. Therefore, the following transformations are
considered first,

un+1
i = En+1eiIθ , un

i+1 = Ene(i+1)Iθ , un
i−1 = Ene(i−1)Iθ

un+1
i = En+1eiIθ ,

=
u

n+1
i =

=
E

n+1
eiIθ

}
, (19)

where I =
√
−1. Substitution of transformation (19) into the first stage of proposed scheme

(16) yields,

En+1eiIθ = EneiIθ + ∆t

(
e(i+1)Iθ − eiIθ + e(i−1)Iθ

(∆x)2

)
En − 1

12

[
e(i+1)Iθ − eiIθ + e(i−1)Iθ

(∆x)2

(
En+1 − En

)]
. (20)

Dividing both sides of Equation (20) by eiIθ results,

En+1
= En +

∆t

(∆x)2 (2cosθ − 2)− 1
12

(2cosθ − 2)
(

En+1 − En
)

, (21)

En+1
=

[
1 + 2d(cosθ − 1) + 1

6 (cosθ − 1)
]

En

1 + 1
6 (cosθ − 1)

. (22)

Re-write Equation (22) in the form of,

En+1
= ϕEn, (23)

where

ϕ =
1 + 2d(cosθ − 1) + 1

6 (cosθ − 1)

1 + 1
6 (cosθ − 1)

.

Similarly, the relationship between En+1 and En can be found by substituting transfor-
mations (19) to Equation (17), which results,

=
E

n+1
= ϕ1En, (24)

where

ϕ1 =

1
2

[
1 + ϕ + 2d(cosθ − 1)ϕ + 1

6 (cosθ − 1)
]

En

1 + 1
12 (cosθ − 1)

.

Similarly substituting transformations into the third stage of the proposed scheme, it
is obtained,

En+1 =
1 + d(2aϕ + 2bϕ1 + 2c1)(cosθ − 1) + 1

6 (cosθ − 1)

1 +
(
−2cd + 1

6

)
(cosθ − 1)

. (25)

Let cosθ = −1, in (25), it yields

En+1 =

 2
3 + d

(
3
2 − 3d

(
12
5

)
d3
)

2
3 + d

En (26)

The amplification factor and stability conditions can be expressed as∣∣∣∣En+1

En

∣∣∣∣ ≤ 1 (27)
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By drawing the graph of the third equation in (26), the stability region can be found
approximately, as shown in Figure 1.
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Figure 1. Amplification factor over diffusion number.

This contribution has also consisted of the mathematical model of fluid flow under
heat transfer effects. The general form of the model is given as:

∂u
∂t

= α1
∂2u
∂x2 + α2u (28)

∂θ

∂t
= β1

∂2θ

∂x2 + β2

(
∂u
∂x

)2
(29)

where α1, α2, β1 and β2 are constants. System of Equations (28) and (29) can be expressed
in a single equation of the form

∂U
∂t

= A
∂2U
∂x2 + B

∂U
∂x

+ CU (30)

where A =

[
α1 0
0 β1

]
, U =

[
u θ

]C, B =

[
0 0

2β2

(
∂u
∂x

)
0

]
, C =

[
α2 0
0 0

]
.

Applying first stage of the proposed scheme on Equation (30), it is obtained

Un+1
i = Un

i + ∆tAδx2Un
i −

(∆x)2

12


A−1 ∂3U

∂x2∂t − A−1 BA−1 ∂2U
∂x∂t+(

A−1BA−1B− A−1C
)

∂2U
∂x2

+A−1BA−1C ∂U
∂x

+∆t BδxUn
i −

(∆x)2

6

{
A−1 ∂2U

∂x∂t−
B ∂2U

∂x2 − C ∂U
∂x

}
+CUn

i (31)

where third- and fourth-order derivatives in (31) are found using Equation (30), similarly,
the other two stages of the proposed scheme can be constructed.

Theorem 1. The proposed scheme for the Equations (28) and (29) converges if it satisfies

1− 1
3
‖A−1‖ − 1

∆x
‖A2‖ ≥ 0,

where A2 = (∆x)2

12 A−1BA−1 − (∆x)2

6 A−1.
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Proof. Let the error between exact and numerical scheme be denoted by ei = un
i −Un

i .
Then error equation using the first stage of the scheme is given as

en+1
i = en

i + ∆tAδ2
xen

i −
(∆x)2

12
A−1

(
δ2

xen+1
i − δ2

xen
i

)
+ A2

(
δxen+1

i − δxen
i

)
+ A3δ2

xen
i + A4δxen

i + Cen
i (32)

where, A3 = −
(

A−1BA−1B− A−1C
) (∆x)2

12 + (∆x)2

6 B and A4 = − (∆x)2

12 A−1BA−1C+ (∆x)2

6 C.
Applying norm on both sides of Equation (32) and using norm property, it is obtained,

ên+1 ≤ ên + ∆t‖A‖δ2
x ên +

(∆x)2

12
‖A−1‖

(
δ2

x ên+1 + δ2
x ên
)
+ ‖A2‖

(
δx ên+1 + δx ên

)
+ ‖A3‖δ2

x ên + ‖A4‖δx ên + ‖C‖ên (33)

where ên = max
(
‖en

i , en
i ‖
)
. From (33), the following inequality can be obtained,(

1− 1
3
‖A−1‖ − 1

∆x
‖A2‖

)
ên+1 ≤ ên +

4∆t

(∆x)2 ‖A‖ên +
1
3
‖A−1‖ên +

1
∆x
‖A2‖ên +

4

(∆x)2 ‖A3‖ên +
1

∆x
‖A4‖ên + ‖C‖ên (34)

The following inequality can be obtained from (34),

ên+1 ≤ λên + M
(

O(∆t)4, (∆x)4
)

, (35)

where λ =
1+ 4∆t

(∆x)2
‖A‖+ 1

3 ‖A−1‖+ 1
∆x ‖A2‖+ 4

(∆x)2
‖A3‖+ 1

∆x ‖A4‖+‖C‖

1− 1
3 ‖A−1‖− 1

∆x ‖A2‖
.

Let, n = 0 in (35), it gives

ê1 ≤ λê0 + M
(

O(∆t)4, (∆x)4
)

where ê0 = 0 for initial boundary condition and for n = 1 in (35), it is obtained

ê2 ≤ λê1 + M
(

O(∆t)4, (∆x)4
)
≤ (1 + λ)M

(
O(∆t)4, (∆x)4

)
(36)

If this is continued, then for any finite n,

ên ≤
(

1 + λ + . . . + λn−1
)

M
(

O(∆t)4, (∆x)4
)

ên ≤ 1− λn

1− λ
M
(

O(∆t)4, (∆x)4
)

Since the series . . . + λn−1 + . . . + λ + 1 is a geometric series with common ratio λ, and
it will converge if |λ| ≤ 1. So, convergence conditions are obtained. Similarly, convergence
conditions for the second and third stages can also be obtained. �

5. Applications to Engineering Problem

Example 1. Consider a parabolic Equation (1), subject to the initial

u(x, 0) = sin(x) (37)

and boundary conditions
u(0, t) = 0, u(π, t) = 0 (38)

The exact solution of the problem (1), (37), (38) is expressed as

u(x, t) = e−tsin(x) (39)

Figure 2 shows the comparison of relative error obtained by applying the Crank–
Nicolson method with the proposed scheme. It is clearly observed that the proposed
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fourth-order scheme produced less relative error than the one obtained by the second-order
Crank-Nicolson method. This error can be increased and decreased by choosing different
time and step sizes. Figure 3 compares the speed of the convergence of the proposed scheme
and the Crank-Nicolson method. Since the proposed method is fourth-order accurate, it
converges faster than the Crank-Nicolson method.

Energies 2022, 15, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 2. Comparison of two schemes over spatial coordinate using 𝑁௫ = 40, 𝑁௧ = 520, 𝐿 = 𝜋, 𝑡௙ = 1. 

 
Figure 3. Comparison of speed of convergence of two schemes using 𝑁௫ = 40, 𝑁௧ = 520, 𝐿 = 𝜋, 𝑡௙ = 1. 

Example 2. Stokes First Problem. 
Consider unsteady, laminar, and incompressible fluid flow over the stretching sheet 𝑢௪. The sheet is infinitely long, and the flow is generated by a sudden plate movement in 

a positive 𝑥∗-axis direction. Let the 𝑥∗-axis be along with the plate, and 𝑦∗-axis is perpen-
dicular to the plate. According to Stokes assumptions, the governing equations of the flow 
can be expressed as 𝜕𝑢∗𝜕𝑡∗ = 𝜈 𝜕ଶ𝑢∗𝜕𝑦∗ଶ − 𝜎𝐵଴ଶ𝜌 𝑢∗ + 𝑔𝛽்(𝑇 − 𝑇ஶ) (40)𝜕𝑇𝜕𝑡∗ = 𝛼 𝜕ଶ𝑇𝜕𝑦∗ଶ + 𝜇𝜌𝑐௣ ൬𝜕𝑢∗𝜕𝑦∗൰ଶ

 (41)

subject to the initial condition 𝑢∗(𝑦∗, 0) = 0, 𝑇(𝑦∗, 0) = 0, (42)

and boundary conditions 

0 2 4
1.7547

1.7548

1.7549

1.755

1.7551

1.7552

1.7553

1.7554

1.7555

1.7556
x 10-7

x

R
el

at
iv

e 
E

rr
or

(b)

 

 

0 2 4
5.4046

5.4046

5.4046

5.4046

5.4046

5.4046

5.4046

5.4046
x 10-4

x

R
el

at
iv

e 
E

rr
or

(a)

 

 

ProposedCrank-Nicolson

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I terations

N
or

m
 o

f R
el

at
iv

e 
E

rr
or

 

 

Crank-Nicolson
Proposed

Figure 2. Comparison of two schemes over spatial coordinate using Nx = 40, Nt = 520, L = π,
t f = 1. (a) Crank–Nicolson; (b) Proposed.
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Example 2. Stokes First Problem.

Consider unsteady, laminar, and incompressible fluid flow over the stretching sheet
uw. The sheet is infinitely long, and the flow is generated by a sudden plate movement
in a positive x∗-axis direction. Let the x∗-axis be along with the plate, and y∗-axis is
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perpendicular to the plate. According to Stokes assumptions, the governing equations of
the flow can be expressed as

∂u∗

∂t∗
= ν

∂2u∗

∂y∗2
−

σB2
0

ρ
u∗ + gβT(T − T∞) (40)

∂T
∂t∗

= α
∂2T
∂y∗2

+
µ

ρcp

(
∂u∗

∂y∗

)2
(41)

subject to the initial condition

u∗(y∗, 0) = 0, T(y∗, 0) = 0, (42)

and boundary conditions

u∗(y∗, t∗) = uw, T(y∗, t∗) = Tw when y∗ → 0
u∗(y∗, t∗) = 0, T(y∗, t∗) = T∞ when y∗ → ∞

}
(43)

The governing equations with initial and boundary conditions are dimensional, which
are turned into non-dimensional equations using the transformations

u =
u∗

uw
, θ =

T − T∞

Tw − T∞
, t =

u2
wt∗

ν
, y =

uwy∗

ν
(44)

Applying transformations (44) to Equations (40)–(43) results

∂u
∂t

=
∂2u
∂y2 −Mu + GrLθ (45)

∂θ

∂t
=

1
Pr

∂2θ

∂y2 + Ec
(

∂u
∂y

)2
(46)

subject to the dimensionless initial condition

u(y, 0) = 0, θ(y, 0) = 0 (47)

and boundary conditions are given as

u(y, t) = 1, θ(y, t) = 1 when y→ 0
u(y, t) = 0, θ(y, t) = 0 when y→ ∞

}
(48)

The dimensionless Equations (45)–(48) are solved by employing the proposed scheme
in time and fourth-order compact scheme in space. Figure 4 shows the comparison of
the speed of convergence for two schemes, showing that the proposed scheme converges
faster than the Crank–Nicolson method. Figures 5 and 6 show contours for velocity and
temperature profiles, respectively. Velocity and temperature are maximum at the plate
y = 0. Then these profiles decrease from one to zero if one moves away from the plate.

Example 3. Stokes Second Problem.

In this problem, the sheet has behaved in the manner of a trigonometry function form.
The governing equations, initial and boundary conditions are considered to be (40)–(43),
except one boundary condition expressed as

u∗(y∗, t∗) = uwcos(ωt∗) (49)

Then using the transformations [20]
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u =
u∗

uw
, y = y∗

√
ω

ν
, t = ωt∗, θ =

T − T∞

Tw − T∞
(50)

The set of dimensional Equations (40)–(43) (except one boundary condition) & (40) are
reduced to Equations (45)–(48) except and including one dimensionless boundary condition
given as

u(y, t) = cos(t) (51)
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Figure 4. Comparison of speed of convergence of two schemes using M = 0, N = 0, Nx = 40,
Nt = 200, L = 17, t f = 10.
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The proposed strategy for discretizing the time variable is used to solve the set of
equations for heat transport in Stokes second problem, and a compact scheme is used for
spatial discretization. Figure 7 shows that the proposed scheme converges faster than the
existing scheme, and also it produces a smaller norm of error than the one obtained by
the Crank–Nicolson method. The contour plots are presented in Figures 8 and 9. The
oscillatory behaviors of the velocity and temperature profiles can be seen in these figures.
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Figure 9. Contours of temperature profile for Stokes second problem.

6. Results and Discussion

The proposed numerical scheme for discretizing time variables is applied to the
boundary layer flow problem. The problems of flow over the flat and oscillatory sheets are
considered. These problems are associated with the energy equation, which can investigate
the effect of temperature on flow. A dissipation force is also added to the energy equation,
which makes the problem nonlinear. The compact scheme can be applied to solve the linear
or linearized problem, and so the nonlinear term is linearized, and the proposed scheme
solves the resulting linearized problem. For checking the scheme’s performance, a figure is
drawn that shows the stability region of the proposed scheme. This region can be compared
with those given by some existing explicit schemes, and improvement in the stability region
can be observed. So, the proposed scheme provides a better region of stability than some
explicit schemes. For its convergence, figures for convergence of the proposed and existing
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scheme are also established. Its faster convergence can be seen in the convergence plots
for three kinds of problems since it stops earlier than the Crank–Nicolson method, so it
converges faster than the existing second-order Crank–Nicolson scheme. Moreover, the
first time-dependent problem provides less relative error than the existing Crank–Nicolson
scheme. The contour plots have also been constructed that show the contours on which
surface stays constant, and colors in these plots show the surface’s peak or trough. Since
the flow is generated due to a certain acceleration of sheet, so its effect on the adjacent
layers can be seen in these figures. Additionally, when sinusoidal boundary conditions in
time are chosen, it will have oscillatory effects near the time axis that can be observed in
corresponding velocity and temperature contour plots.

7. Conclusions

A fourth-order numerical scheme has been constructed for solving time-dependent
partial differential equations. The scheme was explicit–implicit, and it has been constructed
on two-time levels. The stability of the single-equation and convergence for the system
of equations has been given. The extended mathematical model for mixed convection of
magnetohydrodynamics (MHD) Stokes problems has been given and solved using the
proposed fourth-order scheme. Comparison with the existing Crank–Nicolson scheme
showed its faster convergence. The scheme can be implemented for solving time-dependent
partial differential equations. Additionally, the suggested method is straightforward to
implement and may be used to a broader class of partial differential equations that are
encountered in both practice and theoretical settings.
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Nomenclature

u Horizontal velocity
ν Kinematic viscosity
σ Electrical Conductivity
B0 Strength of magnetic field
ρ Density of Fluid
g Gravity
βT Coefficient of Thermal Expansion
T∞ Ambient Temperature
α Thermal Diffusivity
cp Specific Heat Capacity
Tw Wall Temperature
M Magnetic parameter
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GrL Grashof number
Pr Prandtl number
Ec Eckert number
µ Dynamic viscosity
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